Properties

Label 351.2.bf.a.305.11
Level $351$
Weight $2$
Character 351.305
Analytic conductor $2.803$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(206,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.206"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([10, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.bf (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 305.11
Character \(\chi\) \(=\) 351.305
Dual form 351.2.bf.a.206.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.477221 - 1.78101i) q^{2} +(-1.21221 - 0.699872i) q^{4} +(-0.672617 + 2.51024i) q^{5} +(1.99353 + 1.99353i) q^{7} +(0.782609 - 0.782609i) q^{8} +(4.14978 + 2.39588i) q^{10} +(6.08140 + 1.62951i) q^{11} +(-3.52535 + 0.756266i) q^{13} +(4.50185 - 2.59914i) q^{14} +(-2.42010 - 4.19174i) q^{16} +(-2.31896 - 4.01655i) q^{17} +(0.390218 + 0.104559i) q^{19} +(2.57220 - 2.57220i) q^{20} +(5.80434 - 10.0534i) q^{22} +4.26737 q^{23} +(-1.51877 - 0.876864i) q^{25} +(-0.335449 + 6.63959i) q^{26} +(-1.02137 - 3.81179i) q^{28} +(-5.22693 + 3.01777i) q^{29} +(-2.27098 - 0.608508i) q^{31} +(-6.48234 + 1.73694i) q^{32} +(-8.26018 + 2.21331i) q^{34} +(-6.34511 + 3.66335i) q^{35} +(1.60869 - 0.431046i) q^{37} +(0.372440 - 0.645085i) q^{38} +(1.43814 + 2.49093i) q^{40} +(1.18032 + 1.18032i) q^{41} -2.99100i q^{43} +(-6.23151 - 6.23151i) q^{44} +(2.03648 - 7.60024i) q^{46} +(-1.25642 - 4.68901i) q^{47} +0.948297i q^{49} +(-2.28650 + 2.28650i) q^{50} +(4.80276 + 1.55053i) q^{52} -0.186317i q^{53} +(-8.18091 + 14.1698i) q^{55} +3.12030 q^{56} +(2.88028 + 10.7494i) q^{58} +(-1.07545 - 4.01364i) q^{59} +0.0950990 q^{61} +(-2.16752 + 3.75426i) q^{62} +2.69361i q^{64} +(0.472797 - 9.35815i) q^{65} +(-2.70944 + 2.70944i) q^{67} +6.49189i q^{68} +(3.49646 + 13.0490i) q^{70} +(1.56243 - 5.83108i) q^{71} +(-1.49562 - 1.49562i) q^{73} -3.07079i q^{74} +(-0.399850 - 0.399850i) q^{76} +(8.87497 + 15.3719i) q^{77} +(-2.84121 + 4.92112i) q^{79} +(12.1501 - 3.25561i) q^{80} +(2.66543 - 1.53889i) q^{82} +(-15.0939 + 4.04440i) q^{83} +(11.6423 - 3.11954i) q^{85} +(-5.32701 - 1.42737i) q^{86} +(6.03462 - 3.48409i) q^{88} +(-0.0313812 - 0.117116i) q^{89} +(-8.53551 - 5.52023i) q^{91} +(-5.17297 - 2.98661i) q^{92} -8.95077 q^{94} +(-0.524935 + 0.909214i) q^{95} +(11.2137 - 11.2137i) q^{97} +(1.68893 + 0.452547i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 6 q^{2} - 6 q^{4} + 6 q^{5} + 2 q^{7} + 30 q^{8} - 12 q^{10} - 6 q^{11} - 2 q^{13} + 12 q^{14} + 14 q^{16} - 4 q^{19} + 6 q^{20} + 2 q^{22} + 12 q^{23} - 48 q^{26} + 6 q^{29} + 6 q^{31} - 30 q^{32}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.477221 1.78101i 0.337446 1.25937i −0.563747 0.825948i \(-0.690641\pi\)
0.901193 0.433418i \(-0.142693\pi\)
\(3\) 0 0
\(4\) −1.21221 0.699872i −0.606107 0.349936i
\(5\) −0.672617 + 2.51024i −0.300804 + 1.12261i 0.635694 + 0.771941i \(0.280714\pi\)
−0.936498 + 0.350673i \(0.885953\pi\)
\(6\) 0 0
\(7\) 1.99353 + 1.99353i 0.753482 + 0.753482i 0.975127 0.221645i \(-0.0711427\pi\)
−0.221645 + 0.975127i \(0.571143\pi\)
\(8\) 0.782609 0.782609i 0.276694 0.276694i
\(9\) 0 0
\(10\) 4.14978 + 2.39588i 1.31228 + 0.757644i
\(11\) 6.08140 + 1.62951i 1.83361 + 0.491315i 0.998290 0.0584482i \(-0.0186153\pi\)
0.835321 + 0.549763i \(0.185282\pi\)
\(12\) 0 0
\(13\) −3.52535 + 0.756266i −0.977755 + 0.209750i
\(14\) 4.50185 2.59914i 1.20317 0.694650i
\(15\) 0 0
\(16\) −2.42010 4.19174i −0.605026 1.04794i
\(17\) −2.31896 4.01655i −0.562430 0.974157i −0.997284 0.0736558i \(-0.976533\pi\)
0.434854 0.900501i \(-0.356800\pi\)
\(18\) 0 0
\(19\) 0.390218 + 0.104559i 0.0895221 + 0.0239874i 0.303302 0.952894i \(-0.401911\pi\)
−0.213780 + 0.976882i \(0.568578\pi\)
\(20\) 2.57220 2.57220i 0.575162 0.575162i
\(21\) 0 0
\(22\) 5.80434 10.0534i 1.23749 2.14340i
\(23\) 4.26737 0.889808 0.444904 0.895578i \(-0.353238\pi\)
0.444904 + 0.895578i \(0.353238\pi\)
\(24\) 0 0
\(25\) −1.51877 0.876864i −0.303755 0.175373i
\(26\) −0.335449 + 6.63959i −0.0657869 + 1.30213i
\(27\) 0 0
\(28\) −1.02137 3.81179i −0.193020 0.720361i
\(29\) −5.22693 + 3.01777i −0.970617 + 0.560386i −0.899424 0.437077i \(-0.856014\pi\)
−0.0711925 + 0.997463i \(0.522680\pi\)
\(30\) 0 0
\(31\) −2.27098 0.608508i −0.407881 0.109291i 0.0490441 0.998797i \(-0.484383\pi\)
−0.456925 + 0.889505i \(0.651049\pi\)
\(32\) −6.48234 + 1.73694i −1.14593 + 0.307050i
\(33\) 0 0
\(34\) −8.26018 + 2.21331i −1.41661 + 0.379579i
\(35\) −6.34511 + 3.66335i −1.07252 + 0.619220i
\(36\) 0 0
\(37\) 1.60869 0.431046i 0.264466 0.0708635i −0.124149 0.992264i \(-0.539620\pi\)
0.388615 + 0.921400i \(0.372953\pi\)
\(38\) 0.372440 0.645085i 0.0604178 0.104647i
\(39\) 0 0
\(40\) 1.43814 + 2.49093i 0.227390 + 0.393851i
\(41\) 1.18032 + 1.18032i 0.184335 + 0.184335i 0.793242 0.608907i \(-0.208392\pi\)
−0.608907 + 0.793242i \(0.708392\pi\)
\(42\) 0 0
\(43\) 2.99100i 0.456123i −0.973647 0.228062i \(-0.926761\pi\)
0.973647 0.228062i \(-0.0732388\pi\)
\(44\) −6.23151 6.23151i −0.939436 0.939436i
\(45\) 0 0
\(46\) 2.03648 7.60024i 0.300262 1.12059i
\(47\) −1.25642 4.68901i −0.183267 0.683962i −0.994995 0.0999262i \(-0.968139\pi\)
0.811728 0.584036i \(-0.198527\pi\)
\(48\) 0 0
\(49\) 0.948297i 0.135471i
\(50\) −2.28650 + 2.28650i −0.323359 + 0.323359i
\(51\) 0 0
\(52\) 4.80276 + 1.55053i 0.666023 + 0.215020i
\(53\) 0.186317i 0.0255926i −0.999918 0.0127963i \(-0.995927\pi\)
0.999918 0.0127963i \(-0.00407330\pi\)
\(54\) 0 0
\(55\) −8.18091 + 14.1698i −1.10311 + 1.91065i
\(56\) 3.12030 0.416968
\(57\) 0 0
\(58\) 2.88028 + 10.7494i 0.378200 + 1.41146i
\(59\) −1.07545 4.01364i −0.140012 0.522532i −0.999927 0.0120945i \(-0.996150\pi\)
0.859915 0.510438i \(-0.170517\pi\)
\(60\) 0 0
\(61\) 0.0950990 0.0121762 0.00608809 0.999981i \(-0.498062\pi\)
0.00608809 + 0.999981i \(0.498062\pi\)
\(62\) −2.16752 + 3.75426i −0.275276 + 0.476791i
\(63\) 0 0
\(64\) 2.69361i 0.336702i
\(65\) 0.472797 9.35815i 0.0586433 1.16074i
\(66\) 0 0
\(67\) −2.70944 + 2.70944i −0.331010 + 0.331010i −0.852970 0.521960i \(-0.825201\pi\)
0.521960 + 0.852970i \(0.325201\pi\)
\(68\) 6.49189i 0.787258i
\(69\) 0 0
\(70\) 3.49646 + 13.0490i 0.417907 + 1.55965i
\(71\) 1.56243 5.83108i 0.185427 0.692022i −0.809112 0.587655i \(-0.800051\pi\)
0.994539 0.104368i \(-0.0332819\pi\)
\(72\) 0 0
\(73\) −1.49562 1.49562i −0.175049 0.175049i 0.614144 0.789194i \(-0.289501\pi\)
−0.789194 + 0.614144i \(0.789501\pi\)
\(74\) 3.07079i 0.356972i
\(75\) 0 0
\(76\) −0.399850 0.399850i −0.0458659 0.0458659i
\(77\) 8.87497 + 15.3719i 1.01140 + 1.75179i
\(78\) 0 0
\(79\) −2.84121 + 4.92112i −0.319661 + 0.553669i −0.980417 0.196931i \(-0.936902\pi\)
0.660756 + 0.750601i \(0.270236\pi\)
\(80\) 12.1501 3.25561i 1.35842 0.363988i
\(81\) 0 0
\(82\) 2.66543 1.53889i 0.294348 0.169942i
\(83\) −15.0939 + 4.04440i −1.65677 + 0.443931i −0.961498 0.274812i \(-0.911384\pi\)
−0.695275 + 0.718743i \(0.744718\pi\)
\(84\) 0 0
\(85\) 11.6423 3.11954i 1.26278 0.338362i
\(86\) −5.32701 1.42737i −0.574426 0.153917i
\(87\) 0 0
\(88\) 6.03462 3.48409i 0.643293 0.371405i
\(89\) −0.0313812 0.117116i −0.00332640 0.0124143i 0.964243 0.265021i \(-0.0853788\pi\)
−0.967569 + 0.252607i \(0.918712\pi\)
\(90\) 0 0
\(91\) −8.53551 5.52023i −0.894764 0.578678i
\(92\) −5.17297 2.98661i −0.539319 0.311376i
\(93\) 0 0
\(94\) −8.95077 −0.923201
\(95\) −0.524935 + 0.909214i −0.0538572 + 0.0932833i
\(96\) 0 0
\(97\) 11.2137 11.2137i 1.13858 1.13858i 0.149879 0.988704i \(-0.452112\pi\)
0.988704 0.149879i \(-0.0478885\pi\)
\(98\) 1.68893 + 0.452547i 0.170608 + 0.0457141i
\(99\) 0 0
\(100\) 1.22739 + 2.12589i 0.122739 + 0.212589i
\(101\) 1.75051 + 3.03197i 0.174182 + 0.301693i 0.939878 0.341510i \(-0.110938\pi\)
−0.765696 + 0.643203i \(0.777605\pi\)
\(102\) 0 0
\(103\) −10.5831 + 6.11018i −1.04279 + 0.602054i −0.920622 0.390456i \(-0.872317\pi\)
−0.122166 + 0.992510i \(0.538984\pi\)
\(104\) −2.16711 + 3.35083i −0.212502 + 0.328576i
\(105\) 0 0
\(106\) −0.331833 0.0889144i −0.0322305 0.00863613i
\(107\) −3.96991 2.29203i −0.383786 0.221579i 0.295678 0.955288i \(-0.404454\pi\)
−0.679464 + 0.733709i \(0.737788\pi\)
\(108\) 0 0
\(109\) −7.19868 + 7.19868i −0.689508 + 0.689508i −0.962123 0.272615i \(-0.912111\pi\)
0.272615 + 0.962123i \(0.412111\pi\)
\(110\) 21.3324 + 21.3324i 2.03396 + 2.03396i
\(111\) 0 0
\(112\) 3.53181 13.1809i 0.333724 1.24548i
\(113\) −13.4282 7.75279i −1.26322 0.729322i −0.289525 0.957170i \(-0.593497\pi\)
−0.973697 + 0.227849i \(0.926831\pi\)
\(114\) 0 0
\(115\) −2.87031 + 10.7121i −0.267658 + 0.998912i
\(116\) 8.44821 0.784397
\(117\) 0 0
\(118\) −7.66158 −0.705305
\(119\) 3.38420 12.6300i 0.310229 1.15779i
\(120\) 0 0
\(121\) 24.8019 + 14.3194i 2.25471 + 1.30176i
\(122\) 0.0453832 0.169372i 0.00410880 0.0153343i
\(123\) 0 0
\(124\) 2.32704 + 2.32704i 0.208974 + 0.208974i
\(125\) −5.96543 + 5.96543i −0.533564 + 0.533564i
\(126\) 0 0
\(127\) 2.41225 + 1.39271i 0.214052 + 0.123583i 0.603193 0.797595i \(-0.293895\pi\)
−0.389141 + 0.921178i \(0.627228\pi\)
\(128\) −8.16731 2.18843i −0.721895 0.193431i
\(129\) 0 0
\(130\) −16.4413 5.30796i −1.44200 0.465539i
\(131\) 11.1980 6.46515i 0.978370 0.564862i 0.0765926 0.997062i \(-0.475596\pi\)
0.901778 + 0.432200i \(0.142263\pi\)
\(132\) 0 0
\(133\) 0.569470 + 0.986350i 0.0493793 + 0.0855274i
\(134\) 3.53254 + 6.11854i 0.305165 + 0.528561i
\(135\) 0 0
\(136\) −4.95822 1.32855i −0.425164 0.113922i
\(137\) 0.300887 0.300887i 0.0257065 0.0257065i −0.694137 0.719843i \(-0.744214\pi\)
0.719843 + 0.694137i \(0.244214\pi\)
\(138\) 0 0
\(139\) −4.36753 + 7.56478i −0.370449 + 0.641636i −0.989635 0.143608i \(-0.954129\pi\)
0.619186 + 0.785245i \(0.287463\pi\)
\(140\) 10.2555 0.866749
\(141\) 0 0
\(142\) −9.63961 5.56543i −0.808938 0.467040i
\(143\) −22.6714 1.14542i −1.89588 0.0957845i
\(144\) 0 0
\(145\) −4.05961 15.1507i −0.337132 1.25819i
\(146\) −3.37746 + 1.94998i −0.279521 + 0.161381i
\(147\) 0 0
\(148\) −2.25175 0.603354i −0.185093 0.0495954i
\(149\) −2.49557 + 0.668687i −0.204445 + 0.0547810i −0.359588 0.933111i \(-0.617083\pi\)
0.155143 + 0.987892i \(0.450416\pi\)
\(150\) 0 0
\(151\) 1.31486 0.352316i 0.107002 0.0286711i −0.204921 0.978779i \(-0.565694\pi\)
0.311923 + 0.950107i \(0.399027\pi\)
\(152\) 0.387216 0.223559i 0.0314074 0.0181331i
\(153\) 0 0
\(154\) 31.6129 8.47064i 2.54744 0.682584i
\(155\) 3.05501 5.29143i 0.245384 0.425018i
\(156\) 0 0
\(157\) −6.09285 10.5531i −0.486263 0.842231i 0.513613 0.858022i \(-0.328307\pi\)
−0.999875 + 0.0157906i \(0.994973\pi\)
\(158\) 7.40869 + 7.40869i 0.589404 + 0.589404i
\(159\) 0 0
\(160\) 17.4405i 1.37879i
\(161\) 8.50712 + 8.50712i 0.670455 + 0.670455i
\(162\) 0 0
\(163\) 6.32949 23.6220i 0.495764 1.85022i −0.0299426 0.999552i \(-0.509532\pi\)
0.525707 0.850666i \(-0.323801\pi\)
\(164\) −0.604726 2.25687i −0.0472212 0.176232i
\(165\) 0 0
\(166\) 28.8125i 2.23629i
\(167\) 5.44679 5.44679i 0.421485 0.421485i −0.464230 0.885715i \(-0.653669\pi\)
0.885715 + 0.464230i \(0.153669\pi\)
\(168\) 0 0
\(169\) 11.8561 5.33220i 0.912009 0.410169i
\(170\) 22.2238i 1.70448i
\(171\) 0 0
\(172\) −2.09332 + 3.62573i −0.159614 + 0.276460i
\(173\) 11.6046 0.882279 0.441139 0.897439i \(-0.354574\pi\)
0.441139 + 0.897439i \(0.354574\pi\)
\(174\) 0 0
\(175\) −1.27966 4.77577i −0.0967334 0.361014i
\(176\) −7.88714 29.4352i −0.594516 2.21876i
\(177\) 0 0
\(178\) −0.223561 −0.0167566
\(179\) −2.75530 + 4.77232i −0.205941 + 0.356700i −0.950432 0.310932i \(-0.899359\pi\)
0.744491 + 0.667632i \(0.232692\pi\)
\(180\) 0 0
\(181\) 9.65258i 0.717471i 0.933439 + 0.358735i \(0.116792\pi\)
−0.933439 + 0.358735i \(0.883208\pi\)
\(182\) −13.9049 + 12.5675i −1.03070 + 0.931563i
\(183\) 0 0
\(184\) 3.33968 3.33968i 0.246205 0.246205i
\(185\) 4.32812i 0.318210i
\(186\) 0 0
\(187\) −7.55751 28.2050i −0.552660 2.06255i
\(188\) −1.75866 + 6.56341i −0.128264 + 0.478686i
\(189\) 0 0
\(190\) 1.36881 + 1.36881i 0.0993040 + 0.0993040i
\(191\) 7.27544i 0.526433i 0.964737 + 0.263216i \(0.0847833\pi\)
−0.964737 + 0.263216i \(0.915217\pi\)
\(192\) 0 0
\(193\) −9.06750 9.06750i −0.652693 0.652693i 0.300948 0.953641i \(-0.402697\pi\)
−0.953641 + 0.300948i \(0.902697\pi\)
\(194\) −14.6204 25.3233i −1.04968 1.81810i
\(195\) 0 0
\(196\) 0.663686 1.14954i 0.0474062 0.0821099i
\(197\) 15.2346 4.08211i 1.08542 0.290838i 0.328608 0.944467i \(-0.393421\pi\)
0.756816 + 0.653628i \(0.226754\pi\)
\(198\) 0 0
\(199\) −21.4175 + 12.3654i −1.51825 + 0.876560i −0.518477 + 0.855091i \(0.673501\pi\)
−0.999770 + 0.0214686i \(0.993166\pi\)
\(200\) −1.87485 + 0.502364i −0.132572 + 0.0355225i
\(201\) 0 0
\(202\) 6.23536 1.67076i 0.438718 0.117554i
\(203\) −16.4360 4.40402i −1.15358 0.309102i
\(204\) 0 0
\(205\) −3.75678 + 2.16898i −0.262385 + 0.151488i
\(206\) 5.83181 + 21.7646i 0.406321 + 1.51641i
\(207\) 0 0
\(208\) 11.7018 + 12.9471i 0.811372 + 0.897719i
\(209\) 2.20269 + 1.27173i 0.152363 + 0.0879671i
\(210\) 0 0
\(211\) 14.4023 0.991498 0.495749 0.868466i \(-0.334894\pi\)
0.495749 + 0.868466i \(0.334894\pi\)
\(212\) −0.130398 + 0.225856i −0.00895578 + 0.0155119i
\(213\) 0 0
\(214\) −5.97665 + 5.97665i −0.408556 + 0.408556i
\(215\) 7.50814 + 2.01180i 0.512051 + 0.137204i
\(216\) 0 0
\(217\) −3.31419 5.74035i −0.224982 0.389680i
\(218\) 9.38557 + 16.2563i 0.635671 + 1.10101i
\(219\) 0 0
\(220\) 19.8340 11.4512i 1.33721 0.772038i
\(221\) 11.2127 + 12.4060i 0.754248 + 0.834517i
\(222\) 0 0
\(223\) −0.984477 0.263790i −0.0659254 0.0176647i 0.225706 0.974196i \(-0.427531\pi\)
−0.291631 + 0.956531i \(0.594198\pi\)
\(224\) −16.3853 9.46008i −1.09479 0.632078i
\(225\) 0 0
\(226\) −20.2161 + 20.2161i −1.34475 + 1.34475i
\(227\) −5.49340 5.49340i −0.364609 0.364609i 0.500897 0.865507i \(-0.333003\pi\)
−0.865507 + 0.500897i \(0.833003\pi\)
\(228\) 0 0
\(229\) 4.06263 15.1620i 0.268466 1.00193i −0.691628 0.722254i \(-0.743106\pi\)
0.960094 0.279676i \(-0.0902272\pi\)
\(230\) 17.7087 + 10.2241i 1.16768 + 0.674158i
\(231\) 0 0
\(232\) −1.72891 + 6.45237i −0.113508 + 0.423619i
\(233\) 9.38345 0.614730 0.307365 0.951592i \(-0.400553\pi\)
0.307365 + 0.951592i \(0.400553\pi\)
\(234\) 0 0
\(235\) 12.6156 0.822953
\(236\) −1.50536 + 5.61808i −0.0979905 + 0.365706i
\(237\) 0 0
\(238\) −20.8792 12.0546i −1.35340 0.781384i
\(239\) 4.63155 17.2852i 0.299590 1.11809i −0.637913 0.770108i \(-0.720202\pi\)
0.937503 0.347977i \(-0.113131\pi\)
\(240\) 0 0
\(241\) −10.7084 10.7084i −0.689788 0.689788i 0.272397 0.962185i \(-0.412184\pi\)
−0.962185 + 0.272397i \(0.912184\pi\)
\(242\) 37.3389 37.3389i 2.40024 2.40024i
\(243\) 0 0
\(244\) −0.115280 0.0665571i −0.00738006 0.00426088i
\(245\) −2.38045 0.637841i −0.152082 0.0407502i
\(246\) 0 0
\(247\) −1.45473 0.0734965i −0.0925621 0.00467647i
\(248\) −2.25352 + 1.30107i −0.143098 + 0.0826179i
\(249\) 0 0
\(250\) 7.77767 + 13.4713i 0.491903 + 0.852002i
\(251\) 8.02608 + 13.9016i 0.506602 + 0.877460i 0.999971 + 0.00763991i \(0.00243188\pi\)
−0.493369 + 0.869820i \(0.664235\pi\)
\(252\) 0 0
\(253\) 25.9516 + 6.95371i 1.63156 + 0.437176i
\(254\) 3.63161 3.63161i 0.227868 0.227868i
\(255\) 0 0
\(256\) −10.4888 + 18.1672i −0.655552 + 1.13545i
\(257\) −14.3574 −0.895588 −0.447794 0.894137i \(-0.647790\pi\)
−0.447794 + 0.894137i \(0.647790\pi\)
\(258\) 0 0
\(259\) 4.06626 + 2.34766i 0.252665 + 0.145876i
\(260\) −7.12264 + 11.0132i −0.441727 + 0.683008i
\(261\) 0 0
\(262\) −6.17060 23.0290i −0.381221 1.42274i
\(263\) 15.6938 9.06082i 0.967721 0.558714i 0.0691806 0.997604i \(-0.477962\pi\)
0.898541 + 0.438890i \(0.144628\pi\)
\(264\) 0 0
\(265\) 0.467701 + 0.125320i 0.0287306 + 0.00769835i
\(266\) 2.02846 0.543525i 0.124373 0.0333257i
\(267\) 0 0
\(268\) 5.18067 1.38816i 0.316460 0.0847952i
\(269\) 2.52163 1.45587i 0.153747 0.0887657i −0.421153 0.906990i \(-0.638374\pi\)
0.574900 + 0.818224i \(0.305041\pi\)
\(270\) 0 0
\(271\) 13.0634 3.50032i 0.793544 0.212629i 0.160796 0.986988i \(-0.448594\pi\)
0.632748 + 0.774358i \(0.281927\pi\)
\(272\) −11.2242 + 19.4409i −0.680569 + 1.17878i
\(273\) 0 0
\(274\) −0.392294 0.679474i −0.0236994 0.0410485i
\(275\) −7.80741 7.80741i −0.470805 0.470805i
\(276\) 0 0
\(277\) 25.2517i 1.51723i 0.651540 + 0.758615i \(0.274123\pi\)
−0.651540 + 0.758615i \(0.725877\pi\)
\(278\) 11.3887 + 11.3887i 0.683048 + 0.683048i
\(279\) 0 0
\(280\) −2.09877 + 7.83271i −0.125425 + 0.468094i
\(281\) 5.40894 + 20.1864i 0.322670 + 1.20422i 0.916633 + 0.399729i \(0.130896\pi\)
−0.593963 + 0.804492i \(0.702437\pi\)
\(282\) 0 0
\(283\) 2.16398i 0.128635i −0.997929 0.0643177i \(-0.979513\pi\)
0.997929 0.0643177i \(-0.0204871\pi\)
\(284\) −5.97502 + 5.97502i −0.354552 + 0.354552i
\(285\) 0 0
\(286\) −12.8593 + 39.8314i −0.760384 + 2.35528i
\(287\) 4.70599i 0.277786i
\(288\) 0 0
\(289\) −2.25512 + 3.90599i −0.132654 + 0.229764i
\(290\) −28.9208 −1.69829
\(291\) 0 0
\(292\) 0.766270 + 2.85976i 0.0448425 + 0.167355i
\(293\) 8.29952 + 30.9742i 0.484863 + 1.80953i 0.580676 + 0.814135i \(0.302788\pi\)
−0.0958129 + 0.995399i \(0.530545\pi\)
\(294\) 0 0
\(295\) 10.7986 0.628718
\(296\) 0.921631 1.59631i 0.0535687 0.0927837i
\(297\) 0 0
\(298\) 4.76376i 0.275957i
\(299\) −15.0440 + 3.22727i −0.870015 + 0.186638i
\(300\) 0 0
\(301\) 5.96264 5.96264i 0.343681 0.343681i
\(302\) 2.50992i 0.144429i
\(303\) 0 0
\(304\) −0.506085 1.88873i −0.0290260 0.108326i
\(305\) −0.0639652 + 0.238721i −0.00366264 + 0.0136691i
\(306\) 0 0
\(307\) 18.5795 + 18.5795i 1.06039 + 1.06039i 0.998055 + 0.0623341i \(0.0198544\pi\)
0.0623341 + 0.998055i \(0.480146\pi\)
\(308\) 24.8454i 1.41570i
\(309\) 0 0
\(310\) −7.96618 7.96618i −0.452449 0.452449i
\(311\) 3.45338 + 5.98144i 0.195823 + 0.339176i 0.947170 0.320732i \(-0.103929\pi\)
−0.751347 + 0.659908i \(0.770595\pi\)
\(312\) 0 0
\(313\) −14.0998 + 24.4216i −0.796969 + 1.38039i 0.124613 + 0.992205i \(0.460231\pi\)
−0.921582 + 0.388185i \(0.873102\pi\)
\(314\) −21.7029 + 5.81527i −1.22476 + 0.328175i
\(315\) 0 0
\(316\) 6.88831 3.97697i 0.387498 0.223722i
\(317\) 0.698082 0.187051i 0.0392082 0.0105058i −0.239162 0.970980i \(-0.576873\pi\)
0.278370 + 0.960474i \(0.410206\pi\)
\(318\) 0 0
\(319\) −36.7045 + 9.83495i −2.05506 + 0.550651i
\(320\) −6.76162 1.81177i −0.377986 0.101281i
\(321\) 0 0
\(322\) 19.2111 11.0915i 1.07059 0.618106i
\(323\) −0.484934 1.80980i −0.0269824 0.100700i
\(324\) 0 0
\(325\) 6.01734 + 1.94265i 0.333782 + 0.107759i
\(326\) −39.0505 22.5458i −2.16281 1.24870i
\(327\) 0 0
\(328\) 1.84745 0.102009
\(329\) 6.84296 11.8524i 0.377265 0.653442i
\(330\) 0 0
\(331\) −3.42545 + 3.42545i −0.188280 + 0.188280i −0.794952 0.606672i \(-0.792504\pi\)
0.606672 + 0.794952i \(0.292504\pi\)
\(332\) 21.1276 + 5.66113i 1.15953 + 0.310695i
\(333\) 0 0
\(334\) −7.10148 12.3001i −0.388575 0.673032i
\(335\) −4.97892 8.62375i −0.272028 0.471166i
\(336\) 0 0
\(337\) 21.7282 12.5448i 1.18361 0.683359i 0.226765 0.973949i \(-0.427185\pi\)
0.956848 + 0.290590i \(0.0938516\pi\)
\(338\) −3.83872 23.6605i −0.208799 1.28696i
\(339\) 0 0
\(340\) −16.2962 4.36656i −0.883787 0.236810i
\(341\) −12.8192 7.40117i −0.694198 0.400796i
\(342\) 0 0
\(343\) 12.0642 12.0642i 0.651407 0.651407i
\(344\) −2.34078 2.34078i −0.126207 0.126207i
\(345\) 0 0
\(346\) 5.53794 20.6679i 0.297721 1.11111i
\(347\) 23.7482 + 13.7111i 1.27487 + 0.736048i 0.975901 0.218214i \(-0.0700230\pi\)
0.298972 + 0.954262i \(0.403356\pi\)
\(348\) 0 0
\(349\) 0.265695 0.991586i 0.0142223 0.0530784i −0.958450 0.285261i \(-0.907920\pi\)
0.972672 + 0.232182i \(0.0745865\pi\)
\(350\) −9.11638 −0.487291
\(351\) 0 0
\(352\) −42.2520 −2.25204
\(353\) 4.96485 18.5291i 0.264252 0.986203i −0.698454 0.715655i \(-0.746128\pi\)
0.962706 0.270548i \(-0.0872049\pi\)
\(354\) 0 0
\(355\) 13.5865 + 7.84418i 0.721097 + 0.416326i
\(356\) −0.0439257 + 0.163933i −0.00232806 + 0.00868842i
\(357\) 0 0
\(358\) 7.18467 + 7.18467i 0.379721 + 0.379721i
\(359\) −18.1179 + 18.1179i −0.956226 + 0.956226i −0.999081 0.0428555i \(-0.986354\pi\)
0.0428555 + 0.999081i \(0.486354\pi\)
\(360\) 0 0
\(361\) −16.3131 9.41840i −0.858587 0.495705i
\(362\) 17.1914 + 4.60641i 0.903558 + 0.242108i
\(363\) 0 0
\(364\) 6.48340 + 12.6655i 0.339823 + 0.663851i
\(365\) 4.76035 2.74839i 0.249168 0.143857i
\(366\) 0 0
\(367\) −11.6527 20.1831i −0.608268 1.05355i −0.991526 0.129910i \(-0.958531\pi\)
0.383258 0.923641i \(-0.374802\pi\)
\(368\) −10.3275 17.8877i −0.538357 0.932461i
\(369\) 0 0
\(370\) 7.70843 + 2.06547i 0.400742 + 0.107379i
\(371\) 0.371428 0.371428i 0.0192836 0.0192836i
\(372\) 0 0
\(373\) −3.51100 + 6.08123i −0.181793 + 0.314874i −0.942491 0.334231i \(-0.891523\pi\)
0.760698 + 0.649106i \(0.224857\pi\)
\(374\) −53.8401 −2.78400
\(375\) 0 0
\(376\) −4.65294 2.68638i −0.239957 0.138539i
\(377\) 16.1445 14.5916i 0.831484 0.751507i
\(378\) 0 0
\(379\) 2.49511 + 9.31188i 0.128165 + 0.478319i 0.999933 0.0116007i \(-0.00369271\pi\)
−0.871767 + 0.489920i \(0.837026\pi\)
\(380\) 1.27267 0.734774i 0.0652864 0.0376931i
\(381\) 0 0
\(382\) 12.9577 + 3.47199i 0.662971 + 0.177643i
\(383\) −22.3537 + 5.98966i −1.14222 + 0.306057i −0.779844 0.625974i \(-0.784701\pi\)
−0.362377 + 0.932032i \(0.618035\pi\)
\(384\) 0 0
\(385\) −44.5566 + 11.9389i −2.27082 + 0.608463i
\(386\) −20.4765 + 11.8221i −1.04223 + 0.601731i
\(387\) 0 0
\(388\) −21.4416 + 5.74527i −1.08853 + 0.291672i
\(389\) −2.26345 + 3.92041i −0.114761 + 0.198772i −0.917684 0.397310i \(-0.869944\pi\)
0.802923 + 0.596083i \(0.203277\pi\)
\(390\) 0 0
\(391\) −9.89585 17.1401i −0.500455 0.866813i
\(392\) 0.742145 + 0.742145i 0.0374840 + 0.0374840i
\(393\) 0 0
\(394\) 29.0812i 1.46509i
\(395\) −10.4422 10.4422i −0.525402 0.525402i
\(396\) 0 0
\(397\) −2.03359 + 7.58947i −0.102063 + 0.380905i −0.997995 0.0632859i \(-0.979842\pi\)
0.895932 + 0.444191i \(0.146509\pi\)
\(398\) 11.8021 + 44.0459i 0.591583 + 2.20782i
\(399\) 0 0
\(400\) 8.48840i 0.424420i
\(401\) 0.183248 0.183248i 0.00915098 0.00915098i −0.702516 0.711667i \(-0.747940\pi\)
0.711667 + 0.702516i \(0.247940\pi\)
\(402\) 0 0
\(403\) 8.46620 + 0.427734i 0.421731 + 0.0213069i
\(404\) 4.90053i 0.243811i
\(405\) 0 0
\(406\) −15.6872 + 27.1711i −0.778544 + 1.34848i
\(407\) 10.4855 0.519745
\(408\) 0 0
\(409\) 9.55921 + 35.6754i 0.472672 + 1.76404i 0.630108 + 0.776508i \(0.283011\pi\)
−0.157435 + 0.987529i \(0.550323\pi\)
\(410\) 2.07016 + 7.72596i 0.102238 + 0.381558i
\(411\) 0 0
\(412\) 17.1054 0.842721
\(413\) 5.85736 10.1453i 0.288222 0.499215i
\(414\) 0 0
\(415\) 40.6097i 1.99345i
\(416\) 21.5389 11.0257i 1.05603 0.540578i
\(417\) 0 0
\(418\) 3.31613 3.31613i 0.162197 0.162197i
\(419\) 29.1073i 1.42199i 0.703199 + 0.710993i \(0.251754\pi\)
−0.703199 + 0.710993i \(0.748246\pi\)
\(420\) 0 0
\(421\) 1.88779 + 7.04531i 0.0920051 + 0.343368i 0.996548 0.0830142i \(-0.0264547\pi\)
−0.904543 + 0.426382i \(0.859788\pi\)
\(422\) 6.87309 25.6507i 0.334577 1.24866i
\(423\) 0 0
\(424\) −0.145813 0.145813i −0.00708132 0.00708132i
\(425\) 8.13364i 0.394540i
\(426\) 0 0
\(427\) 0.189582 + 0.189582i 0.00917453 + 0.00917453i
\(428\) 3.20825 + 5.55686i 0.155077 + 0.268601i
\(429\) 0 0
\(430\) 7.16608 12.4120i 0.345579 0.598560i
\(431\) −14.6266 + 3.91918i −0.704537 + 0.188780i −0.593262 0.805009i \(-0.702160\pi\)
−0.111275 + 0.993790i \(0.535494\pi\)
\(432\) 0 0
\(433\) 26.0240 15.0250i 1.25063 0.722054i 0.279399 0.960175i \(-0.409865\pi\)
0.971235 + 0.238121i \(0.0765316\pi\)
\(434\) −11.8052 + 3.16320i −0.566669 + 0.151838i
\(435\) 0 0
\(436\) 13.7645 3.68818i 0.659199 0.176632i
\(437\) 1.66520 + 0.446190i 0.0796575 + 0.0213442i
\(438\) 0 0
\(439\) 13.5780 7.83924i 0.648041 0.374146i −0.139664 0.990199i \(-0.544602\pi\)
0.787705 + 0.616052i \(0.211269\pi\)
\(440\) 4.68692 + 17.4918i 0.223440 + 0.833890i
\(441\) 0 0
\(442\) 27.4461 14.0496i 1.30548 0.668270i
\(443\) −11.9145 6.87886i −0.566076 0.326824i 0.189504 0.981880i \(-0.439312\pi\)
−0.755581 + 0.655056i \(0.772645\pi\)
\(444\) 0 0
\(445\) 0.315098 0.0149371
\(446\) −0.939626 + 1.62748i −0.0444926 + 0.0770634i
\(447\) 0 0
\(448\) −5.36979 + 5.36979i −0.253699 + 0.253699i
\(449\) 11.5500 + 3.09482i 0.545079 + 0.146054i 0.520843 0.853653i \(-0.325618\pi\)
0.0242366 + 0.999706i \(0.492285\pi\)
\(450\) 0 0
\(451\) 5.25465 + 9.10132i 0.247432 + 0.428564i
\(452\) 10.8519 + 18.7961i 0.510432 + 0.884094i
\(453\) 0 0
\(454\) −12.4054 + 7.16224i −0.582213 + 0.336141i
\(455\) 19.5983 17.7132i 0.918780 0.830407i
\(456\) 0 0
\(457\) 37.9781 + 10.1762i 1.77654 + 0.476023i 0.989946 0.141446i \(-0.0451750\pi\)
0.786596 + 0.617468i \(0.211842\pi\)
\(458\) −25.0649 14.4712i −1.17120 0.676195i
\(459\) 0 0
\(460\) 10.9765 10.9765i 0.511784 0.511784i
\(461\) 12.7210 + 12.7210i 0.592474 + 0.592474i 0.938299 0.345825i \(-0.112401\pi\)
−0.345825 + 0.938299i \(0.612401\pi\)
\(462\) 0 0
\(463\) −8.75526 + 32.6751i −0.406891 + 1.51854i 0.393649 + 0.919261i \(0.371213\pi\)
−0.800540 + 0.599279i \(0.795454\pi\)
\(464\) 25.2994 + 14.6066i 1.17450 + 0.678095i
\(465\) 0 0
\(466\) 4.47798 16.7120i 0.207438 0.774171i
\(467\) −15.4828 −0.716459 −0.358229 0.933634i \(-0.616619\pi\)
−0.358229 + 0.933634i \(0.616619\pi\)
\(468\) 0 0
\(469\) −10.8027 −0.498821
\(470\) 6.02044 22.4686i 0.277702 1.03640i
\(471\) 0 0
\(472\) −3.98277 2.29945i −0.183322 0.105841i
\(473\) 4.87385 18.1895i 0.224100 0.836353i
\(474\) 0 0
\(475\) −0.500969 0.500969i −0.0229860 0.0229860i
\(476\) −12.9418 + 12.9418i −0.593185 + 0.593185i
\(477\) 0 0
\(478\) −28.5748 16.4977i −1.30698 0.754587i
\(479\) 29.7901 + 7.98222i 1.36114 + 0.364717i 0.864236 0.503087i \(-0.167802\pi\)
0.496907 + 0.867804i \(0.334469\pi\)
\(480\) 0 0
\(481\) −5.34519 + 2.73618i −0.243720 + 0.124759i
\(482\) −24.1820 + 13.9615i −1.10146 + 0.635929i
\(483\) 0 0
\(484\) −20.0434 34.7163i −0.911065 1.57801i
\(485\) 20.6067 + 35.6918i 0.935700 + 1.62068i
\(486\) 0 0
\(487\) −36.9964 9.91314i −1.67647 0.449207i −0.709623 0.704582i \(-0.751135\pi\)
−0.966842 + 0.255374i \(0.917801\pi\)
\(488\) 0.0744253 0.0744253i 0.00336907 0.00336907i
\(489\) 0 0
\(490\) −2.27200 + 3.93523i −0.102639 + 0.177775i
\(491\) 32.8792 1.48382 0.741909 0.670501i \(-0.233921\pi\)
0.741909 + 0.670501i \(0.233921\pi\)
\(492\) 0 0
\(493\) 24.2421 + 13.9962i 1.09181 + 0.630355i
\(494\) −0.825124 + 2.55581i −0.0371241 + 0.114991i
\(495\) 0 0
\(496\) 2.94531 + 10.9920i 0.132248 + 0.493557i
\(497\) 14.7392 8.50967i 0.661142 0.381711i
\(498\) 0 0
\(499\) −18.6315 4.99230i −0.834061 0.223486i −0.183576 0.983005i \(-0.558767\pi\)
−0.650485 + 0.759520i \(0.725434\pi\)
\(500\) 11.4064 3.05634i 0.510110 0.136684i
\(501\) 0 0
\(502\) 28.5891 7.66043i 1.27599 0.341902i
\(503\) 14.1918 8.19366i 0.632783 0.365337i −0.149046 0.988830i \(-0.547620\pi\)
0.781829 + 0.623493i \(0.214287\pi\)
\(504\) 0 0
\(505\) −8.78841 + 2.35485i −0.391079 + 0.104789i
\(506\) 24.7693 42.9016i 1.10113 1.90721i
\(507\) 0 0
\(508\) −1.94944 3.37653i −0.0864925 0.149809i
\(509\) 7.64282 + 7.64282i 0.338762 + 0.338762i 0.855901 0.517139i \(-0.173003\pi\)
−0.517139 + 0.855901i \(0.673003\pi\)
\(510\) 0 0
\(511\) 5.96312i 0.263793i
\(512\) 15.3927 + 15.3927i 0.680269 + 0.680269i
\(513\) 0 0
\(514\) −6.85164 + 25.5707i −0.302213 + 1.12787i
\(515\) −8.21962 30.6761i −0.362200 1.35175i
\(516\) 0 0
\(517\) 30.5631i 1.34416i
\(518\) 6.12171 6.12171i 0.268972 0.268972i
\(519\) 0 0
\(520\) −6.95375 7.69378i −0.304942 0.337395i
\(521\) 18.8001i 0.823648i −0.911263 0.411824i \(-0.864892\pi\)
0.911263 0.411824i \(-0.135108\pi\)
\(522\) 0 0
\(523\) −1.02893 + 1.78216i −0.0449919 + 0.0779283i −0.887644 0.460530i \(-0.847660\pi\)
0.842652 + 0.538458i \(0.180993\pi\)
\(524\) −18.0991 −0.790663
\(525\) 0 0
\(526\) −8.64803 32.2749i −0.377072 1.40725i
\(527\) 2.82221 + 10.5326i 0.122937 + 0.458809i
\(528\) 0 0
\(529\) −4.78954 −0.208241
\(530\) 0.446393 0.773176i 0.0193901 0.0335846i
\(531\) 0 0
\(532\) 1.59422i 0.0691183i
\(533\) −5.05366 3.26839i −0.218898 0.141570i
\(534\) 0 0
\(535\) 8.42378 8.42378i 0.364192 0.364192i
\(536\) 4.24085i 0.183177i
\(537\) 0 0
\(538\) −1.38954 5.18583i −0.0599073 0.223577i
\(539\) −1.54526 + 5.76697i −0.0665589 + 0.248401i
\(540\) 0 0
\(541\) 23.9398 + 23.9398i 1.02925 + 1.02925i 0.999559 + 0.0296937i \(0.00945319\pi\)
0.0296937 + 0.999559i \(0.490547\pi\)
\(542\) 24.9365i 1.07111i
\(543\) 0 0
\(544\) 22.0088 + 22.0088i 0.943618 + 0.943618i
\(545\) −13.2285 22.9124i −0.566645 0.981458i
\(546\) 0 0
\(547\) −8.43825 + 14.6155i −0.360793 + 0.624912i −0.988092 0.153867i \(-0.950827\pi\)
0.627298 + 0.778779i \(0.284161\pi\)
\(548\) −0.575322 + 0.154157i −0.0245766 + 0.00658527i
\(549\) 0 0
\(550\) −17.6310 + 10.1792i −0.751787 + 0.434044i
\(551\) −2.35518 + 0.631067i −0.100334 + 0.0268844i
\(552\) 0 0
\(553\) −15.4744 + 4.14636i −0.658039 + 0.176321i
\(554\) 44.9736 + 12.0506i 1.91075 + 0.511983i
\(555\) 0 0
\(556\) 10.5888 6.11342i 0.449063 0.259267i
\(557\) −6.49382 24.2353i −0.275152 1.02688i −0.955739 0.294215i \(-0.904942\pi\)
0.680587 0.732667i \(-0.261725\pi\)
\(558\) 0 0
\(559\) 2.26199 + 10.5443i 0.0956721 + 0.445977i
\(560\) 30.7117 + 17.7314i 1.29780 + 0.749288i
\(561\) 0 0
\(562\) 38.5335 1.62544
\(563\) 4.00167 6.93109i 0.168650 0.292111i −0.769295 0.638893i \(-0.779393\pi\)
0.937945 + 0.346783i \(0.112726\pi\)
\(564\) 0 0
\(565\) 28.4935 28.4935i 1.19873 1.19873i
\(566\) −3.85408 1.03270i −0.161999 0.0434075i
\(567\) 0 0
\(568\) −3.34068 5.78623i −0.140172 0.242785i
\(569\) −3.43410 5.94804i −0.143965 0.249355i 0.785021 0.619469i \(-0.212652\pi\)
−0.928986 + 0.370114i \(0.879319\pi\)
\(570\) 0 0
\(571\) −8.78114 + 5.06979i −0.367479 + 0.212164i −0.672357 0.740227i \(-0.734718\pi\)
0.304877 + 0.952392i \(0.401384\pi\)
\(572\) 26.6809 + 17.2556i 1.11559 + 0.721491i
\(573\) 0 0
\(574\) 8.38142 + 2.24579i 0.349834 + 0.0937377i
\(575\) −6.48117 3.74191i −0.270283 0.156048i
\(576\) 0 0
\(577\) −6.26722 + 6.26722i −0.260908 + 0.260908i −0.825423 0.564515i \(-0.809063\pi\)
0.564515 + 0.825423i \(0.309063\pi\)
\(578\) 5.88042 + 5.88042i 0.244593 + 0.244593i
\(579\) 0 0
\(580\) −5.68241 + 21.2071i −0.235949 + 0.880575i
\(581\) −38.1528 22.0275i −1.58284 0.913855i
\(582\) 0 0
\(583\) 0.303605 1.13307i 0.0125740 0.0469269i
\(584\) −2.34097 −0.0968701
\(585\) 0 0
\(586\) 59.1262 2.44248
\(587\) 2.97754 11.1123i 0.122896 0.458656i −0.876860 0.480747i \(-0.840366\pi\)
0.999756 + 0.0220910i \(0.00703235\pi\)
\(588\) 0 0
\(589\) −0.822554 0.474902i −0.0338927 0.0195680i
\(590\) 5.15331 19.2324i 0.212158 0.791786i
\(591\) 0 0
\(592\) −5.70002 5.70002i −0.234269 0.234269i
\(593\) 12.5514 12.5514i 0.515426 0.515426i −0.400758 0.916184i \(-0.631253\pi\)
0.916184 + 0.400758i \(0.131253\pi\)
\(594\) 0 0
\(595\) 29.4281 + 16.9903i 1.20643 + 0.696535i
\(596\) 3.49316 + 0.935990i 0.143086 + 0.0383397i
\(597\) 0 0
\(598\) −1.43149 + 28.3336i −0.0585378 + 1.15865i
\(599\) −37.6976 + 21.7647i −1.54028 + 0.889283i −0.541462 + 0.840725i \(0.682129\pi\)
−0.998820 + 0.0485576i \(0.984538\pi\)
\(600\) 0 0
\(601\) −14.2443 24.6718i −0.581036 1.00638i −0.995357 0.0962533i \(-0.969314\pi\)
0.414321 0.910131i \(-0.364019\pi\)
\(602\) −7.77404 13.4650i −0.316846 0.548794i
\(603\) 0 0
\(604\) −1.84047 0.493152i −0.0748876 0.0200661i
\(605\) −52.6272 + 52.6272i −2.13960 + 2.13960i
\(606\) 0 0
\(607\) −14.8033 + 25.6401i −0.600848 + 1.04070i 0.391845 + 0.920031i \(0.371837\pi\)
−0.992693 + 0.120668i \(0.961496\pi\)
\(608\) −2.71114 −0.109951
\(609\) 0 0
\(610\) 0.394640 + 0.227846i 0.0159785 + 0.00922520i
\(611\) 7.97544 + 15.5802i 0.322652 + 0.630307i
\(612\) 0 0
\(613\) −8.67578 32.3784i −0.350411 1.30775i −0.886161 0.463377i \(-0.846638\pi\)
0.535750 0.844377i \(-0.320029\pi\)
\(614\) 41.9569 24.2238i 1.69324 0.977594i
\(615\) 0 0
\(616\) 18.9758 + 5.08455i 0.764557 + 0.204862i
\(617\) −32.7357 + 8.77151i −1.31789 + 0.353128i −0.848187 0.529697i \(-0.822306\pi\)
−0.469703 + 0.882824i \(0.655639\pi\)
\(618\) 0 0
\(619\) −25.9724 + 6.95927i −1.04392 + 0.279717i −0.739736 0.672897i \(-0.765050\pi\)
−0.304181 + 0.952614i \(0.598383\pi\)
\(620\) −7.40664 + 4.27623i −0.297458 + 0.171737i
\(621\) 0 0
\(622\) 12.3010 3.29605i 0.493227 0.132160i
\(623\) 0.170915 0.296034i 0.00684757 0.0118603i
\(624\) 0 0
\(625\) −15.3465 26.5810i −0.613862 1.06324i
\(626\) 36.7664 + 36.7664i 1.46948 + 1.46948i
\(627\) 0 0
\(628\) 17.0569i 0.680643i
\(629\) −5.46179 5.46179i −0.217776 0.217776i
\(630\) 0 0
\(631\) −0.0679900 + 0.253742i −0.00270664 + 0.0101013i −0.967266 0.253765i \(-0.918331\pi\)
0.964559 + 0.263866i \(0.0849977\pi\)
\(632\) 1.62776 + 6.07486i 0.0647486 + 0.241645i
\(633\) 0 0
\(634\) 1.33256i 0.0529226i
\(635\) −5.11857 + 5.11857i −0.203124 + 0.203124i
\(636\) 0 0
\(637\) −0.717165 3.34307i −0.0284151 0.132457i
\(638\) 70.0647i 2.77389i
\(639\) 0 0
\(640\) 10.9870 19.0300i 0.434297 0.752225i
\(641\) −31.2053 −1.23254 −0.616268 0.787537i \(-0.711356\pi\)
−0.616268 + 0.787537i \(0.711356\pi\)
\(642\) 0 0
\(643\) −11.4741 42.8219i −0.452494 1.68873i −0.695352 0.718669i \(-0.744752\pi\)
0.242858 0.970062i \(-0.421915\pi\)
\(644\) −4.35855 16.2663i −0.171751 0.640984i
\(645\) 0 0
\(646\) −3.45469 −0.135923
\(647\) −5.33648 + 9.24306i −0.209799 + 0.363382i −0.951651 0.307181i \(-0.900614\pi\)
0.741852 + 0.670563i \(0.233948\pi\)
\(648\) 0 0
\(649\) 26.1610i 1.02691i
\(650\) 6.33149 9.78989i 0.248341 0.383991i
\(651\) 0 0
\(652\) −24.2051 + 24.2051i −0.947944 + 0.947944i
\(653\) 35.1382i 1.37506i −0.726154 0.687532i \(-0.758694\pi\)
0.726154 0.687532i \(-0.241306\pi\)
\(654\) 0 0
\(655\) 8.69714 + 32.4582i 0.339825 + 1.26825i
\(656\) 2.09109 7.80407i 0.0816435 0.304698i
\(657\) 0 0
\(658\) −17.8436 17.8436i −0.695616 0.695616i
\(659\) 9.60362i 0.374104i 0.982350 + 0.187052i \(0.0598933\pi\)
−0.982350 + 0.187052i \(0.940107\pi\)
\(660\) 0 0
\(661\) 8.21987 + 8.21987i 0.319716 + 0.319716i 0.848658 0.528942i \(-0.177411\pi\)
−0.528942 + 0.848658i \(0.677411\pi\)
\(662\) 4.46607 + 7.73546i 0.173579 + 0.300647i
\(663\) 0 0
\(664\) −8.64745 + 14.9778i −0.335586 + 0.581252i
\(665\) −2.85901 + 0.766070i −0.110868 + 0.0297069i
\(666\) 0 0
\(667\) −22.3053 + 12.8779i −0.863663 + 0.498636i
\(668\) −10.4147 + 2.79062i −0.402958 + 0.107972i
\(669\) 0 0
\(670\) −17.7351 + 4.75209i −0.685165 + 0.183589i
\(671\) 0.578335 + 0.154964i 0.0223264 + 0.00598233i
\(672\) 0 0
\(673\) −21.0558 + 12.1566i −0.811640 + 0.468601i −0.847525 0.530755i \(-0.821908\pi\)
0.0358851 + 0.999356i \(0.488575\pi\)
\(674\) −11.9733 44.6849i −0.461194 1.72120i
\(675\) 0 0
\(676\) −18.1040 1.83400i −0.696308 0.0705386i
\(677\) 36.2277 + 20.9161i 1.39234 + 0.803871i 0.993574 0.113180i \(-0.0361038\pi\)
0.398770 + 0.917051i \(0.369437\pi\)
\(678\) 0 0
\(679\) 44.7098 1.71580
\(680\) 6.66997 11.5527i 0.255782 0.443027i
\(681\) 0 0
\(682\) −19.2992 + 19.2992i −0.739003 + 0.739003i
\(683\) −9.97708 2.67335i −0.381763 0.102293i 0.0628338 0.998024i \(-0.479986\pi\)
−0.444596 + 0.895731i \(0.646653\pi\)
\(684\) 0 0
\(685\) 0.552918 + 0.957682i 0.0211259 + 0.0365911i
\(686\) −15.7292 27.2438i −0.600545 1.04017i
\(687\) 0 0
\(688\) −12.5375 + 7.23853i −0.477988 + 0.275966i
\(689\) 0.140905 + 0.656832i 0.00536806 + 0.0250233i
\(690\) 0 0
\(691\) −0.659509 0.176715i −0.0250889 0.00672256i 0.246253 0.969206i \(-0.420801\pi\)
−0.271342 + 0.962483i \(0.587467\pi\)
\(692\) −14.0672 8.12171i −0.534755 0.308741i
\(693\) 0 0
\(694\) 35.7527 35.7527i 1.35715 1.35715i
\(695\) −16.0517 16.0517i −0.608878 0.608878i
\(696\) 0 0
\(697\) 2.00370 7.47791i 0.0758955 0.283246i
\(698\) −1.63923 0.946411i −0.0620458 0.0358222i
\(699\) 0 0
\(700\) −1.79120 + 6.68485i −0.0677010 + 0.252664i
\(701\) −48.1896 −1.82010 −0.910049 0.414502i \(-0.863956\pi\)
−0.910049 + 0.414502i \(0.863956\pi\)
\(702\) 0 0
\(703\) 0.672807 0.0253754
\(704\) −4.38926 + 16.3809i −0.165427 + 0.617380i
\(705\) 0 0
\(706\) −30.6312 17.6849i −1.15282 0.665581i
\(707\) −2.55463 + 9.53401i −0.0960767 + 0.358563i
\(708\) 0 0
\(709\) 13.1437 + 13.1437i 0.493620 + 0.493620i 0.909445 0.415824i \(-0.136507\pi\)
−0.415824 + 0.909445i \(0.636507\pi\)
\(710\) 20.4543 20.4543i 0.767638 0.767638i
\(711\) 0 0
\(712\) −0.116215 0.0670970i −0.00435536 0.00251457i
\(713\) −9.69113 2.59673i −0.362936 0.0972483i
\(714\) 0 0
\(715\) 18.1244 56.1402i 0.677815 2.09953i
\(716\) 6.68002 3.85671i 0.249644 0.144132i
\(717\) 0 0
\(718\) 23.6220 + 40.9144i 0.881563 + 1.52691i
\(719\) 17.7360 + 30.7196i 0.661439 + 1.14565i 0.980238 + 0.197824i \(0.0633875\pi\)
−0.318798 + 0.947823i \(0.603279\pi\)
\(720\) 0 0
\(721\) −33.2786 8.91697i −1.23936 0.332085i
\(722\) −24.5593 + 24.5593i −0.914001 + 0.914001i
\(723\) 0 0
\(724\) 6.75557 11.7010i 0.251069 0.434864i
\(725\) 10.5847 0.393106
\(726\) 0 0
\(727\) −0.212677 0.122789i −0.00788777 0.00455400i 0.496051 0.868293i \(-0.334783\pi\)
−0.503939 + 0.863739i \(0.668116\pi\)
\(728\) −11.0001 + 2.35978i −0.407692 + 0.0874592i
\(729\) 0 0
\(730\) −2.62318 9.78984i −0.0970882 0.362338i
\(731\) −12.0135 + 6.93600i −0.444336 + 0.256537i
\(732\) 0 0
\(733\) 0.851305 + 0.228106i 0.0314437 + 0.00842530i 0.274507 0.961585i \(-0.411485\pi\)
−0.243063 + 0.970011i \(0.578152\pi\)
\(734\) −41.5073 + 11.1219i −1.53206 + 0.410515i
\(735\) 0 0
\(736\) −27.6625 + 7.41215i −1.01965 + 0.273216i
\(737\) −20.8922 + 12.0621i −0.769574 + 0.444314i
\(738\) 0 0
\(739\) −19.4340 + 5.20731i −0.714890 + 0.191554i −0.597890 0.801578i \(-0.703994\pi\)
−0.116999 + 0.993132i \(0.537328\pi\)
\(740\) 3.02913 5.24661i 0.111353 0.192869i
\(741\) 0 0
\(742\) −0.484265 0.838771i −0.0177779 0.0307923i
\(743\) −21.9020 21.9020i −0.803507 0.803507i 0.180135 0.983642i \(-0.442346\pi\)
−0.983642 + 0.180135i \(0.942346\pi\)
\(744\) 0 0
\(745\) 6.71426i 0.245992i
\(746\) 9.15522 + 9.15522i 0.335197 + 0.335197i
\(747\) 0 0
\(748\) −10.5786 + 39.4798i −0.386791 + 1.44352i
\(749\) −3.34490 12.4833i −0.122220 0.456131i
\(750\) 0 0
\(751\) 31.5860i 1.15259i −0.817242 0.576295i \(-0.804498\pi\)
0.817242 0.576295i \(-0.195502\pi\)
\(752\) −16.6144 + 16.6144i −0.605867 + 0.605867i
\(753\) 0 0
\(754\) −18.2834 35.7170i −0.665842 1.30074i
\(755\) 3.53759i 0.128746i
\(756\) 0 0
\(757\) 6.66044 11.5362i 0.242078 0.419291i −0.719228 0.694774i \(-0.755504\pi\)
0.961306 + 0.275483i \(0.0888377\pi\)
\(758\) 17.7753 0.645628
\(759\) 0 0
\(760\) 0.300740 + 1.12238i 0.0109090 + 0.0407129i
\(761\) −1.86457 6.95866i −0.0675905 0.252251i 0.923861 0.382729i \(-0.125016\pi\)
−0.991451 + 0.130478i \(0.958349\pi\)
\(762\) 0 0
\(763\) −28.7015 −1.03906
\(764\) 5.09188 8.81939i 0.184218 0.319074i
\(765\) 0 0
\(766\) 42.6706i 1.54175i
\(767\) 6.82673 + 13.3362i 0.246499 + 0.481541i
\(768\) 0 0
\(769\) −27.9015 + 27.9015i −1.00615 + 1.00615i −0.00617137 + 0.999981i \(0.501964\pi\)
−0.999981 + 0.00617137i \(0.998036\pi\)
\(770\) 85.0534i 3.06511i
\(771\) 0 0
\(772\) 4.64566 + 17.3378i 0.167201 + 0.624003i
\(773\) 12.7625 47.6302i 0.459034 1.71314i −0.216916 0.976190i \(-0.569600\pi\)
0.675950 0.736947i \(-0.263733\pi\)
\(774\) 0 0
\(775\) 2.91553 + 2.91553i 0.104729 + 0.104729i
\(776\) 17.5519i 0.630078i
\(777\) 0 0
\(778\) 5.90213 + 5.90213i 0.211601 + 0.211601i
\(779\) 0.337169 + 0.583993i 0.0120803 + 0.0209237i
\(780\) 0 0
\(781\) 19.0036 32.9152i 0.680001 1.17780i
\(782\) −35.2493 + 9.44501i −1.26051 + 0.337753i
\(783\) 0 0
\(784\) 3.97501 2.29498i 0.141965 0.0819634i
\(785\) 30.5891 8.19632i 1.09177 0.292539i
\(786\) 0 0
\(787\) 48.2254 12.9220i 1.71905 0.460618i 0.741436 0.671024i \(-0.234145\pi\)
0.977614 + 0.210406i \(0.0674786\pi\)
\(788\) −21.3246 5.71391i −0.759657 0.203550i
\(789\) 0 0
\(790\) −23.5808 + 13.6144i −0.838968 + 0.484378i
\(791\) −11.3141 42.2249i −0.402285 1.50135i
\(792\) 0 0
\(793\) −0.335257 + 0.0719201i −0.0119053 + 0.00255396i
\(794\) 12.5465 + 7.24371i 0.445257 + 0.257070i
\(795\) 0 0
\(796\) 34.6168 1.22696
\(797\) −0.375653 + 0.650650i −0.0133063 + 0.0230472i −0.872602 0.488432i \(-0.837569\pi\)
0.859296 + 0.511479i \(0.170902\pi\)
\(798\) 0 0
\(799\) −15.9201 + 15.9201i −0.563212 + 0.563212i
\(800\) 11.3683 + 3.04612i 0.401929 + 0.107696i
\(801\) 0 0
\(802\) −0.238917 0.413817i −0.00843647 0.0146124i
\(803\) −6.65835 11.5326i −0.234968 0.406977i
\(804\) 0 0
\(805\) −27.0770 + 15.6329i −0.954337 + 0.550987i
\(806\) 4.80205 14.8743i 0.169145 0.523924i
\(807\) 0 0
\(808\) 3.74281 + 1.00288i 0.131672 + 0.0352813i
\(809\) 24.5450 + 14.1711i 0.862958 + 0.498229i 0.865002 0.501769i \(-0.167317\pi\)
−0.00204394 + 0.999998i \(0.500651\pi\)
\(810\) 0 0
\(811\) −14.9696 + 14.9696i −0.525652 + 0.525652i −0.919273 0.393621i \(-0.871222\pi\)
0.393621 + 0.919273i \(0.371222\pi\)
\(812\) 16.8417 + 16.8417i 0.591029 + 0.591029i
\(813\) 0 0
\(814\) 5.00388 18.6747i 0.175386 0.654548i
\(815\) 55.0396 + 31.7771i 1.92795 + 1.11310i
\(816\) 0 0
\(817\) 0.312735 1.16714i 0.0109412 0.0408331i
\(818\) 68.1002 2.38107
\(819\) 0 0
\(820\) 6.07203 0.212045
\(821\) −10.1140 + 37.7460i −0.352981 + 1.31734i 0.530025 + 0.847982i \(0.322183\pi\)
−0.883006 + 0.469362i \(0.844484\pi\)
\(822\) 0 0
\(823\) 38.5876 + 22.2786i 1.34508 + 0.776582i 0.987548 0.157319i \(-0.0502851\pi\)
0.357532 + 0.933901i \(0.383618\pi\)
\(824\) −3.50058 + 13.0643i −0.121948 + 0.455118i
\(825\) 0 0
\(826\) −15.2736 15.2736i −0.531435 0.531435i
\(827\) −6.18902 + 6.18902i −0.215213 + 0.215213i −0.806478 0.591265i \(-0.798629\pi\)
0.591265 + 0.806478i \(0.298629\pi\)
\(828\) 0 0
\(829\) 15.4468 + 8.91823i 0.536490 + 0.309743i 0.743655 0.668563i \(-0.233090\pi\)
−0.207165 + 0.978306i \(0.566424\pi\)
\(830\) −72.3264 19.3798i −2.51049 0.672683i
\(831\) 0 0
\(832\) −2.03709 9.49592i −0.0706234 0.329212i
\(833\) 3.80888 2.19906i 0.131970 0.0761929i
\(834\) 0 0
\(835\) 10.0092 + 17.3364i 0.346381 + 0.599949i
\(836\) −1.78009 3.08321i −0.0615657 0.106635i
\(837\) 0 0
\(838\) 51.8405 + 13.8906i 1.79080 + 0.479844i
\(839\) 23.4795 23.4795i 0.810604 0.810604i −0.174121 0.984724i \(-0.555708\pi\)
0.984724 + 0.174121i \(0.0557083\pi\)
\(840\) 0 0
\(841\) 3.71387 6.43261i 0.128064 0.221814i
\(842\) 13.4487 0.463472
\(843\) 0 0
\(844\) −17.4587 10.0798i −0.600954 0.346961i
\(845\) 5.41048 + 33.3483i 0.186126 + 1.14722i
\(846\) 0 0
\(847\) 20.8971 + 77.9892i 0.718034 + 2.67974i
\(848\) −0.780993 + 0.450906i −0.0268194 + 0.0154842i
\(849\) 0 0
\(850\) 14.4861 + 3.88154i 0.496870 + 0.133136i
\(851\) 6.86486 1.83943i 0.235324 0.0630549i
\(852\) 0 0
\(853\) 18.1694 4.86849i 0.622110 0.166694i 0.0660230 0.997818i \(-0.478969\pi\)
0.556087 + 0.831124i \(0.312302\pi\)
\(854\) 0.428121 0.247176i 0.0146500 0.00845818i
\(855\) 0 0
\(856\) −4.90065 + 1.31312i −0.167501 + 0.0448817i
\(857\) −16.1683 + 28.0043i −0.552298 + 0.956607i 0.445811 + 0.895127i \(0.352915\pi\)
−0.998108 + 0.0614802i \(0.980418\pi\)
\(858\) 0 0
\(859\) 8.02856 + 13.9059i 0.273931 + 0.474462i 0.969865 0.243644i \(-0.0783427\pi\)
−0.695934 + 0.718106i \(0.745009\pi\)
\(860\) −7.69346 7.69346i −0.262345 0.262345i
\(861\) 0 0
\(862\) 27.9204i 0.950974i
\(863\) −23.7439 23.7439i −0.808250 0.808250i 0.176119 0.984369i \(-0.443646\pi\)
−0.984369 + 0.176119i \(0.943646\pi\)
\(864\) 0 0
\(865\) −7.80543 + 29.1303i −0.265393 + 0.990458i
\(866\) −14.3405 53.5193i −0.487308 1.81866i
\(867\) 0 0
\(868\) 9.27804i 0.314917i
\(869\) −25.2975 + 25.2975i −0.858160 + 0.858160i
\(870\) 0 0
\(871\) 7.50264 11.6007i 0.254217 0.393076i
\(872\) 11.2675i 0.381565i
\(873\) 0 0
\(874\) 1.58934 2.75282i 0.0537602 0.0931155i
\(875\) −23.7845 −0.804062
\(876\) 0 0
\(877\) 8.33096 + 31.0916i 0.281317 + 1.04989i 0.951489 + 0.307683i \(0.0995535\pi\)
−0.670172 + 0.742206i \(0.733780\pi\)
\(878\) −7.48210 27.9236i −0.252508 0.942375i
\(879\) 0 0
\(880\) 79.1946 2.66965
\(881\) 21.3604 36.9973i 0.719650 1.24647i −0.241489 0.970404i \(-0.577636\pi\)
0.961139 0.276066i \(-0.0890309\pi\)
\(882\) 0 0
\(883\) 30.7720i 1.03556i 0.855514 + 0.517780i \(0.173241\pi\)
−0.855514 + 0.517780i \(0.826759\pi\)
\(884\) −4.90960 22.8862i −0.165128 0.769745i
\(885\) 0 0
\(886\) −17.9372 + 17.9372i −0.602612 + 0.602612i
\(887\) 25.5690i 0.858525i −0.903180 0.429262i \(-0.858774\pi\)
0.903180 0.429262i \(-0.141226\pi\)
\(888\) 0 0
\(889\) 2.03247 + 7.58529i 0.0681670 + 0.254403i
\(890\) 0.150371 0.561193i 0.00504045 0.0188112i
\(891\) 0 0
\(892\) 1.00878 + 1.00878i 0.0337764 + 0.0337764i
\(893\) 1.96110i 0.0656259i
\(894\) 0 0
\(895\) −10.1264 10.1264i −0.338488 0.338488i
\(896\) −11.9191 20.6444i −0.398188 0.689682i
\(897\) 0 0
\(898\) 11.0238 19.0938i 0.367870 0.637169i
\(899\) 13.7066 3.67268i 0.457141 0.122491i
\(900\) 0 0
\(901\) −0.748352 + 0.432061i −0.0249312 + 0.0143940i
\(902\) 18.7172 5.01525i 0.623214 0.166990i
\(903\) 0 0
\(904\) −16.5765 + 4.44165i −0.551325 + 0.147727i
\(905\) −24.2303 6.49249i −0.805443 0.215818i
\(906\) 0 0
\(907\) −38.7229 + 22.3567i −1.28577 + 0.742342i −0.977898 0.209085i \(-0.932952\pi\)
−0.307876 + 0.951426i \(0.599618\pi\)
\(908\) 2.81450 + 10.5038i 0.0934023 + 0.348582i
\(909\) 0 0
\(910\) −22.1947 43.3578i −0.735747 1.43730i
\(911\) −28.6386 16.5345i −0.948840 0.547813i −0.0561197 0.998424i \(-0.517873\pi\)
−0.892720 + 0.450611i \(0.851206\pi\)
\(912\) 0 0
\(913\) −98.3826 −3.25599
\(914\) 36.2479 62.7832i 1.19897 2.07668i
\(915\) 0 0
\(916\) −15.5362 + 15.5362i −0.513331 + 0.513331i
\(917\) 35.2119 + 9.43499i 1.16280 + 0.311571i
\(918\) 0 0
\(919\) −7.33901 12.7115i −0.242092 0.419315i 0.719218 0.694784i \(-0.244500\pi\)
−0.961310 + 0.275469i \(0.911167\pi\)
\(920\) 6.13708 + 10.6297i 0.202334 + 0.350452i
\(921\) 0 0
\(922\) 28.7269 16.5855i 0.946069 0.546213i
\(923\) −1.09827 + 21.7382i −0.0361500 + 0.715522i
\(924\) 0 0
\(925\) −2.82120 0.755938i −0.0927604 0.0248551i
\(926\) 54.0165 + 31.1865i 1.77509 + 1.02485i
\(927\) 0 0
\(928\) 28.6411 28.6411i 0.940189 0.940189i
\(929\) 35.3524 + 35.3524i 1.15987 + 1.15987i 0.984502 + 0.175372i \(0.0561129\pi\)
0.175372 + 0.984502i \(0.443887\pi\)
\(930\) 0 0
\(931\) −0.0991526 + 0.370042i −0.00324959 + 0.0121277i
\(932\) −11.3748 6.56722i −0.372592 0.215116i
\(933\) 0 0
\(934\) −7.38872 + 27.5751i −0.241766 + 0.902284i
\(935\) 75.8847 2.48170
\(936\) 0 0
\(937\) 12.7044 0.415036 0.207518 0.978231i \(-0.433462\pi\)
0.207518 + 0.978231i \(0.433462\pi\)
\(938\) −5.15526 + 19.2397i −0.168325 + 0.628198i
\(939\) 0 0
\(940\) −15.2928 8.82933i −0.498798 0.287981i
\(941\) −0.320048 + 1.19444i −0.0104333 + 0.0389375i −0.970946 0.239298i \(-0.923083\pi\)
0.960513 + 0.278235i \(0.0897495\pi\)
\(942\) 0 0
\(943\) 5.03685 + 5.03685i 0.164022 + 0.164022i
\(944\) −14.2214 + 14.2214i −0.462869 + 0.462869i
\(945\) 0 0
\(946\) −30.0698 17.3608i −0.977653 0.564448i
\(947\) 16.2266 + 4.34789i 0.527292 + 0.141287i 0.512638 0.858605i \(-0.328668\pi\)
0.0146546 + 0.999893i \(0.495335\pi\)
\(948\) 0 0
\(949\) 6.40367 + 4.14150i 0.207872 + 0.134439i
\(950\) −1.13130 + 0.653159i −0.0367044 + 0.0211913i
\(951\) 0 0
\(952\) −7.23585 12.5329i −0.234515 0.406192i
\(953\) 3.87222 + 6.70688i 0.125433 + 0.217257i 0.921902 0.387422i \(-0.126635\pi\)
−0.796469 + 0.604680i \(0.793301\pi\)
\(954\) 0 0
\(955\) −18.2631 4.89359i −0.590981 0.158353i
\(956\) −17.7118 + 17.7118i −0.572842 + 0.572842i
\(957\) 0 0
\(958\) 28.4329 49.2472i 0.918624 1.59110i
\(959\) 1.19965 0.0387388
\(960\) 0 0
\(961\) −22.0597 12.7362i −0.711603 0.410844i
\(962\) 2.32234 + 10.8256i 0.0748751 + 0.349031i
\(963\) 0 0
\(964\) 5.48636 + 20.4754i 0.176704 + 0.659467i
\(965\) 28.8606 16.6627i 0.929055 0.536390i
\(966\) 0 0
\(967\) 18.8877 + 5.06094i 0.607387 + 0.162749i 0.549387 0.835568i \(-0.314861\pi\)
0.0579995 + 0.998317i \(0.481528\pi\)
\(968\) 30.6166 8.20369i 0.984055 0.263677i
\(969\) 0 0
\(970\) 73.4014 19.6678i 2.35678 0.631497i
\(971\) −46.5819 + 26.8941i −1.49489 + 0.863073i −0.999983 0.00587546i \(-0.998130\pi\)
−0.494903 + 0.868948i \(0.664796\pi\)
\(972\) 0 0
\(973\) −23.7874 + 6.37381i −0.762588 + 0.204335i
\(974\) −35.3109 + 61.1602i −1.13143 + 1.95970i
\(975\) 0 0
\(976\) −0.230149 0.398630i −0.00736690 0.0127598i
\(977\) −31.2770 31.2770i −1.00064 1.00064i −1.00000 0.000639826i \(-0.999796\pi\)
−0.000639826 1.00000i \(-0.500204\pi\)
\(978\) 0 0
\(979\) 0.763367i 0.0243973i
\(980\) 2.43921 + 2.43921i 0.0779178 + 0.0779178i
\(981\) 0 0
\(982\) 15.6906 58.5583i 0.500708 1.86867i
\(983\) 12.5790 + 46.9456i 0.401209 + 1.49733i 0.810942 + 0.585127i \(0.198955\pi\)
−0.409733 + 0.912206i \(0.634378\pi\)
\(984\) 0 0
\(985\) 40.9883i 1.30600i
\(986\) 36.4961 36.4961i 1.16227 1.16227i
\(987\) 0 0
\(988\) 1.71200 + 1.10722i 0.0544661 + 0.0352252i
\(989\) 12.7637i 0.405862i
\(990\) 0 0
\(991\) 20.5994 35.6792i 0.654362 1.13339i −0.327691 0.944785i \(-0.606271\pi\)
0.982053 0.188604i \(-0.0603961\pi\)
\(992\) 15.7782 0.500959
\(993\) 0 0
\(994\) −8.12198 30.3116i −0.257614 0.961427i
\(995\) −16.6344 62.0803i −0.527345 1.96808i
\(996\) 0 0
\(997\) −30.0081 −0.950367 −0.475183 0.879887i \(-0.657618\pi\)
−0.475183 + 0.879887i \(0.657618\pi\)
\(998\) −17.7827 + 30.8005i −0.562901 + 0.974973i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.bf.a.305.11 48
3.2 odd 2 117.2.bc.a.110.2 yes 48
9.4 even 3 117.2.x.a.32.11 yes 48
9.5 odd 6 351.2.ba.a.71.2 48
13.11 odd 12 351.2.ba.a.89.2 48
39.11 even 12 117.2.x.a.11.11 48
117.50 even 12 inner 351.2.bf.a.206.11 48
117.76 odd 12 117.2.bc.a.50.2 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.x.a.11.11 48 39.11 even 12
117.2.x.a.32.11 yes 48 9.4 even 3
117.2.bc.a.50.2 yes 48 117.76 odd 12
117.2.bc.a.110.2 yes 48 3.2 odd 2
351.2.ba.a.71.2 48 9.5 odd 6
351.2.ba.a.89.2 48 13.11 odd 12
351.2.bf.a.206.11 48 117.50 even 12 inner
351.2.bf.a.305.11 48 1.1 even 1 trivial