Properties

Label 351.2.ba.a.89.8
Level $351$
Weight $2$
Character 351.89
Analytic conductor $2.803$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(71,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.71"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([10, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.ba (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 89.8
Character \(\chi\) \(=\) 351.89
Dual form 351.2.ba.a.71.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.662754 - 0.662754i) q^{2} +1.12151i q^{4} +(-0.101414 - 0.0271738i) q^{5} +(-0.353095 - 0.0946115i) q^{7} +(2.06880 + 2.06880i) q^{8} +(-0.0852221 + 0.0492030i) q^{10} +(2.25143 + 2.25143i) q^{11} +(3.51083 + 0.821016i) q^{13} +(-0.296719 + 0.171311i) q^{14} +0.499177 q^{16} +(0.713952 - 1.23660i) q^{17} +(2.92701 - 0.784289i) q^{19} +(0.0304758 - 0.113737i) q^{20} +2.98429 q^{22} +(-1.83687 + 3.18155i) q^{23} +(-4.32058 - 2.49449i) q^{25} +(2.87095 - 1.78269i) q^{26} +(0.106108 - 0.396001i) q^{28} +5.17142i q^{29} +(1.46476 - 5.46656i) q^{31} +(-3.80676 + 3.80676i) q^{32} +(-0.346388 - 1.29274i) q^{34} +(0.0332378 + 0.0191899i) q^{35} +(-4.32627 - 1.15922i) q^{37} +(1.42009 - 2.45967i) q^{38} +(-0.153588 - 0.266022i) q^{40} +(-1.76108 - 6.57243i) q^{41} +(1.94536 - 1.12315i) q^{43} +(-2.52501 + 2.52501i) q^{44} +(0.891194 + 3.32598i) q^{46} +(4.42009 - 1.18436i) q^{47} +(-5.94645 - 3.43319i) q^{49} +(-4.51671 + 1.21025i) q^{50} +(-0.920781 + 3.93745i) q^{52} -13.0901i q^{53} +(-0.167147 - 0.289507i) q^{55} +(-0.534750 - 0.926214i) q^{56} +(3.42738 + 3.42738i) q^{58} +(-2.44633 - 2.44633i) q^{59} +(3.12378 + 5.41055i) q^{61} +(-2.65221 - 4.59376i) q^{62} +6.04425i q^{64} +(-0.333737 - 0.178665i) q^{65} +(-14.8055 + 3.96713i) q^{67} +(1.38687 + 0.800708i) q^{68} +(0.0347467 - 0.00931034i) q^{70} +(-1.56835 - 5.85317i) q^{71} +(-4.13084 + 4.13084i) q^{73} +(-3.63553 + 2.09897i) q^{74} +(0.879591 + 3.28268i) q^{76} +(-0.581958 - 1.00798i) q^{77} +(8.15587 - 14.1264i) q^{79} +(-0.0506235 - 0.0135645i) q^{80} +(-5.52307 - 3.18874i) q^{82} +(4.29512 + 16.0296i) q^{83} +(-0.106008 + 0.106008i) q^{85} +(0.544920 - 2.03367i) q^{86} +9.31551i q^{88} +(-0.630472 + 2.35295i) q^{89} +(-1.16198 - 0.622062i) q^{91} +(-3.56816 - 2.06008i) q^{92} +(2.14449 - 3.71437i) q^{94} -0.318151 q^{95} +(-3.20249 + 11.9519i) q^{97} +(-6.21639 + 1.66568i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 6 q^{2} + 6 q^{5} - 4 q^{7} - 30 q^{8} - 12 q^{10} + 6 q^{11} - 2 q^{13} + 12 q^{14} - 28 q^{16} - 4 q^{19} + 18 q^{20} - 4 q^{22} + 6 q^{23} + 48 q^{26} - 18 q^{31} - 54 q^{32} + 6 q^{34} - 6 q^{35}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.662754 0.662754i 0.468638 0.468638i −0.432835 0.901473i \(-0.642487\pi\)
0.901473 + 0.432835i \(0.142487\pi\)
\(3\) 0 0
\(4\) 1.12151i 0.560757i
\(5\) −0.101414 0.0271738i −0.0453537 0.0121525i 0.236071 0.971736i \(-0.424140\pi\)
−0.281425 + 0.959583i \(0.590807\pi\)
\(6\) 0 0
\(7\) −0.353095 0.0946115i −0.133457 0.0357598i 0.191472 0.981498i \(-0.438674\pi\)
−0.324929 + 0.945738i \(0.605341\pi\)
\(8\) 2.06880 + 2.06880i 0.731430 + 0.731430i
\(9\) 0 0
\(10\) −0.0852221 + 0.0492030i −0.0269496 + 0.0155594i
\(11\) 2.25143 + 2.25143i 0.678833 + 0.678833i 0.959736 0.280903i \(-0.0906341\pi\)
−0.280903 + 0.959736i \(0.590634\pi\)
\(12\) 0 0
\(13\) 3.51083 + 0.821016i 0.973729 + 0.227709i
\(14\) −0.296719 + 0.171311i −0.0793016 + 0.0457848i
\(15\) 0 0
\(16\) 0.499177 0.124794
\(17\) 0.713952 1.23660i 0.173159 0.299920i −0.766364 0.642407i \(-0.777936\pi\)
0.939523 + 0.342487i \(0.111269\pi\)
\(18\) 0 0
\(19\) 2.92701 0.784289i 0.671501 0.179928i 0.0930701 0.995660i \(-0.470332\pi\)
0.578431 + 0.815731i \(0.303665\pi\)
\(20\) 0.0304758 0.113737i 0.00681460 0.0254324i
\(21\) 0 0
\(22\) 2.98429 0.636253
\(23\) −1.83687 + 3.18155i −0.383014 + 0.663400i −0.991492 0.130171i \(-0.958447\pi\)
0.608477 + 0.793571i \(0.291781\pi\)
\(24\) 0 0
\(25\) −4.32058 2.49449i −0.864116 0.498898i
\(26\) 2.87095 1.78269i 0.563039 0.349613i
\(27\) 0 0
\(28\) 0.106108 0.396001i 0.0200526 0.0748372i
\(29\) 5.17142i 0.960309i 0.877184 + 0.480155i \(0.159419\pi\)
−0.877184 + 0.480155i \(0.840581\pi\)
\(30\) 0 0
\(31\) 1.46476 5.46656i 0.263079 0.981823i −0.700337 0.713812i \(-0.746967\pi\)
0.963416 0.268011i \(-0.0863663\pi\)
\(32\) −3.80676 + 3.80676i −0.672947 + 0.672947i
\(33\) 0 0
\(34\) −0.346388 1.29274i −0.0594050 0.221703i
\(35\) 0.0332378 + 0.0191899i 0.00561822 + 0.00324368i
\(36\) 0 0
\(37\) −4.32627 1.15922i −0.711234 0.190575i −0.114977 0.993368i \(-0.536679\pi\)
−0.596257 + 0.802793i \(0.703346\pi\)
\(38\) 1.42009 2.45967i 0.230370 0.399012i
\(39\) 0 0
\(40\) −0.153588 0.266022i −0.0242844 0.0420618i
\(41\) −1.76108 6.57243i −0.275034 1.02644i −0.955818 0.293958i \(-0.905028\pi\)
0.680784 0.732484i \(-0.261639\pi\)
\(42\) 0 0
\(43\) 1.94536 1.12315i 0.296665 0.171279i −0.344279 0.938867i \(-0.611877\pi\)
0.640944 + 0.767588i \(0.278543\pi\)
\(44\) −2.52501 + 2.52501i −0.380660 + 0.380660i
\(45\) 0 0
\(46\) 0.891194 + 3.32598i 0.131399 + 0.490389i
\(47\) 4.42009 1.18436i 0.644736 0.172756i 0.0783882 0.996923i \(-0.475023\pi\)
0.566348 + 0.824166i \(0.308356\pi\)
\(48\) 0 0
\(49\) −5.94645 3.43319i −0.849493 0.490455i
\(50\) −4.51671 + 1.21025i −0.638760 + 0.171155i
\(51\) 0 0
\(52\) −0.920781 + 3.93745i −0.127689 + 0.546026i
\(53\) 13.0901i 1.79807i −0.437881 0.899033i \(-0.644271\pi\)
0.437881 0.899033i \(-0.355729\pi\)
\(54\) 0 0
\(55\) −0.167147 0.289507i −0.0225381 0.0390371i
\(56\) −0.534750 0.926214i −0.0714589 0.123771i
\(57\) 0 0
\(58\) 3.42738 + 3.42738i 0.450037 + 0.450037i
\(59\) −2.44633 2.44633i −0.318485 0.318485i 0.529700 0.848185i \(-0.322304\pi\)
−0.848185 + 0.529700i \(0.822304\pi\)
\(60\) 0 0
\(61\) 3.12378 + 5.41055i 0.399959 + 0.692750i 0.993720 0.111892i \(-0.0356909\pi\)
−0.593761 + 0.804641i \(0.702358\pi\)
\(62\) −2.65221 4.59376i −0.336831 0.583408i
\(63\) 0 0
\(64\) 6.04425i 0.755531i
\(65\) −0.333737 0.178665i −0.0413950 0.0221607i
\(66\) 0 0
\(67\) −14.8055 + 3.96713i −1.80878 + 0.484662i −0.995292 0.0969186i \(-0.969101\pi\)
−0.813489 + 0.581580i \(0.802435\pi\)
\(68\) 1.38687 + 0.800708i 0.168182 + 0.0971001i
\(69\) 0 0
\(70\) 0.0347467 0.00931034i 0.00415302 0.00111280i
\(71\) −1.56835 5.85317i −0.186129 0.694643i −0.994386 0.105813i \(-0.966255\pi\)
0.808257 0.588830i \(-0.200411\pi\)
\(72\) 0 0
\(73\) −4.13084 + 4.13084i −0.483478 + 0.483478i −0.906241 0.422763i \(-0.861060\pi\)
0.422763 + 0.906241i \(0.361060\pi\)
\(74\) −3.63553 + 2.09897i −0.422622 + 0.244001i
\(75\) 0 0
\(76\) 0.879591 + 3.28268i 0.100896 + 0.376549i
\(77\) −0.581958 1.00798i −0.0663203 0.114870i
\(78\) 0 0
\(79\) 8.15587 14.1264i 0.917607 1.58934i 0.114569 0.993415i \(-0.463451\pi\)
0.803039 0.595927i \(-0.203215\pi\)
\(80\) −0.0506235 0.0135645i −0.00565988 0.00151656i
\(81\) 0 0
\(82\) −5.52307 3.18874i −0.609921 0.352138i
\(83\) 4.29512 + 16.0296i 0.471450 + 1.75948i 0.634565 + 0.772870i \(0.281179\pi\)
−0.163114 + 0.986607i \(0.552154\pi\)
\(84\) 0 0
\(85\) −0.106008 + 0.106008i −0.0114982 + 0.0114982i
\(86\) 0.544920 2.03367i 0.0587603 0.219296i
\(87\) 0 0
\(88\) 9.31551i 0.993037i
\(89\) −0.630472 + 2.35295i −0.0668298 + 0.249412i −0.991257 0.131947i \(-0.957877\pi\)
0.924427 + 0.381359i \(0.124544\pi\)
\(90\) 0 0
\(91\) −1.16198 0.622062i −0.121809 0.0652098i
\(92\) −3.56816 2.06008i −0.372006 0.214778i
\(93\) 0 0
\(94\) 2.14449 3.71437i 0.221187 0.383108i
\(95\) −0.318151 −0.0326416
\(96\) 0 0
\(97\) −3.20249 + 11.9519i −0.325164 + 1.21353i 0.588983 + 0.808145i \(0.299529\pi\)
−0.914147 + 0.405383i \(0.867138\pi\)
\(98\) −6.21639 + 1.66568i −0.627951 + 0.168259i
\(99\) 0 0
\(100\) 2.79760 4.84559i 0.279760 0.484559i
\(101\) −3.80275 −0.378388 −0.189194 0.981940i \(-0.560587\pi\)
−0.189194 + 0.981940i \(0.560587\pi\)
\(102\) 0 0
\(103\) −5.80875 + 3.35368i −0.572353 + 0.330448i −0.758089 0.652152i \(-0.773867\pi\)
0.185736 + 0.982600i \(0.440533\pi\)
\(104\) 5.56468 + 8.96171i 0.545662 + 0.878768i
\(105\) 0 0
\(106\) −8.67553 8.67553i −0.842642 0.842642i
\(107\) 10.4912 6.05707i 1.01422 0.585559i 0.101795 0.994805i \(-0.467542\pi\)
0.912424 + 0.409246i \(0.134208\pi\)
\(108\) 0 0
\(109\) −0.643264 0.643264i −0.0616135 0.0616135i 0.675629 0.737242i \(-0.263872\pi\)
−0.737242 + 0.675629i \(0.763872\pi\)
\(110\) −0.302649 0.0810946i −0.0288565 0.00773206i
\(111\) 0 0
\(112\) −0.176257 0.0472279i −0.0166547 0.00446262i
\(113\) 3.07587i 0.289354i −0.989479 0.144677i \(-0.953786\pi\)
0.989479 0.144677i \(-0.0462143\pi\)
\(114\) 0 0
\(115\) 0.272739 0.272739i 0.0254331 0.0254331i
\(116\) −5.79983 −0.538500
\(117\) 0 0
\(118\) −3.24263 −0.298508
\(119\) −0.369090 + 0.369090i −0.0338344 + 0.0338344i
\(120\) 0 0
\(121\) 0.862100i 0.0783727i
\(122\) 5.65616 + 1.51556i 0.512085 + 0.137213i
\(123\) 0 0
\(124\) 6.13082 + 1.64275i 0.550564 + 0.147523i
\(125\) 0.741584 + 0.741584i 0.0663293 + 0.0663293i
\(126\) 0 0
\(127\) 11.1811 6.45543i 0.992165 0.572827i 0.0862440 0.996274i \(-0.472514\pi\)
0.905921 + 0.423448i \(0.139180\pi\)
\(128\) −3.60767 3.60767i −0.318876 0.318876i
\(129\) 0 0
\(130\) −0.339597 + 0.102775i −0.0297846 + 0.00901393i
\(131\) 13.4537 7.76749i 1.17545 0.678649i 0.220495 0.975388i \(-0.429233\pi\)
0.954958 + 0.296739i \(0.0958993\pi\)
\(132\) 0 0
\(133\) −1.10771 −0.0960510
\(134\) −7.18319 + 12.4416i −0.620533 + 1.07479i
\(135\) 0 0
\(136\) 4.03530 1.08125i 0.346024 0.0927168i
\(137\) 4.77136 17.8070i 0.407645 1.52135i −0.391480 0.920187i \(-0.628037\pi\)
0.799125 0.601165i \(-0.205297\pi\)
\(138\) 0 0
\(139\) 9.08265 0.770381 0.385190 0.922837i \(-0.374136\pi\)
0.385190 + 0.922837i \(0.374136\pi\)
\(140\) −0.0215217 + 0.0372767i −0.00181892 + 0.00315046i
\(141\) 0 0
\(142\) −4.91864 2.83978i −0.412763 0.238309i
\(143\) 6.05594 + 9.75286i 0.506423 + 0.815575i
\(144\) 0 0
\(145\) 0.140527 0.524455i 0.0116702 0.0435536i
\(146\) 5.47546i 0.453152i
\(147\) 0 0
\(148\) 1.30008 4.85197i 0.106866 0.398830i
\(149\) −8.51487 + 8.51487i −0.697565 + 0.697565i −0.963885 0.266319i \(-0.914192\pi\)
0.266319 + 0.963885i \(0.414192\pi\)
\(150\) 0 0
\(151\) −0.0109208 0.0407571i −0.000888724 0.00331676i 0.965480 0.260477i \(-0.0838798\pi\)
−0.966369 + 0.257160i \(0.917213\pi\)
\(152\) 7.67791 + 4.43284i 0.622761 + 0.359551i
\(153\) 0 0
\(154\) −1.05374 0.282348i −0.0849127 0.0227523i
\(155\) −0.297094 + 0.514583i −0.0238632 + 0.0413323i
\(156\) 0 0
\(157\) −6.95508 12.0466i −0.555076 0.961420i −0.997898 0.0648102i \(-0.979356\pi\)
0.442822 0.896610i \(-0.353978\pi\)
\(158\) −3.95698 14.7677i −0.314801 1.17485i
\(159\) 0 0
\(160\) 0.489503 0.282615i 0.0386986 0.0223427i
\(161\) 0.949602 0.949602i 0.0748391 0.0748391i
\(162\) 0 0
\(163\) 0.208136 + 0.776776i 0.0163025 + 0.0608418i 0.973598 0.228270i \(-0.0733068\pi\)
−0.957295 + 0.289112i \(0.906640\pi\)
\(164\) 7.37108 1.97507i 0.575584 0.154227i
\(165\) 0 0
\(166\) 13.4703 + 7.77707i 1.04550 + 0.603618i
\(167\) −14.9871 + 4.01578i −1.15974 + 0.310750i −0.786860 0.617131i \(-0.788295\pi\)
−0.372875 + 0.927881i \(0.621628\pi\)
\(168\) 0 0
\(169\) 11.6519 + 5.76490i 0.896297 + 0.443454i
\(170\) 0.140514i 0.0107770i
\(171\) 0 0
\(172\) 1.25963 + 2.18175i 0.0960462 + 0.166357i
\(173\) −7.66869 13.2826i −0.583039 1.00985i −0.995117 0.0987051i \(-0.968530\pi\)
0.412077 0.911149i \(-0.364803\pi\)
\(174\) 0 0
\(175\) 1.28957 + 1.28957i 0.0974822 + 0.0974822i
\(176\) 1.12386 + 1.12386i 0.0847144 + 0.0847144i
\(177\) 0 0
\(178\) 1.14158 + 1.97728i 0.0855651 + 0.148203i
\(179\) 9.33636 + 16.1710i 0.697832 + 1.20868i 0.969217 + 0.246209i \(0.0791851\pi\)
−0.271385 + 0.962471i \(0.587482\pi\)
\(180\) 0 0
\(181\) 14.2199i 1.05695i −0.848947 0.528477i \(-0.822763\pi\)
0.848947 0.528477i \(-0.177237\pi\)
\(182\) −1.18238 + 0.357832i −0.0876439 + 0.0265243i
\(183\) 0 0
\(184\) −10.3821 + 2.78188i −0.765378 + 0.205083i
\(185\) 0.407244 + 0.235122i 0.0299412 + 0.0172865i
\(186\) 0 0
\(187\) 4.39154 1.17671i 0.321141 0.0860495i
\(188\) 1.32827 + 4.95719i 0.0968744 + 0.361540i
\(189\) 0 0
\(190\) −0.210856 + 0.210856i −0.0152971 + 0.0152971i
\(191\) −6.35291 + 3.66785i −0.459680 + 0.265397i −0.711910 0.702271i \(-0.752170\pi\)
0.252229 + 0.967667i \(0.418836\pi\)
\(192\) 0 0
\(193\) 5.53999 + 20.6755i 0.398777 + 1.48826i 0.815250 + 0.579109i \(0.196599\pi\)
−0.416473 + 0.909148i \(0.636734\pi\)
\(194\) 5.79868 + 10.0436i 0.416321 + 0.721090i
\(195\) 0 0
\(196\) 3.85037 6.66903i 0.275026 0.476359i
\(197\) −3.74628 1.00381i −0.266911 0.0715186i 0.122881 0.992421i \(-0.460787\pi\)
−0.389792 + 0.920903i \(0.627453\pi\)
\(198\) 0 0
\(199\) 8.87017 + 5.12119i 0.628790 + 0.363032i 0.780283 0.625426i \(-0.215075\pi\)
−0.151494 + 0.988458i \(0.548408\pi\)
\(200\) −3.77781 14.0990i −0.267132 0.996949i
\(201\) 0 0
\(202\) −2.52029 + 2.52029i −0.177327 + 0.177327i
\(203\) 0.489276 1.82600i 0.0343405 0.128160i
\(204\) 0 0
\(205\) 0.714392i 0.0498953i
\(206\) −1.62710 + 6.07244i −0.113366 + 0.423087i
\(207\) 0 0
\(208\) 1.75253 + 0.409832i 0.121516 + 0.0284168i
\(209\) 8.35573 + 4.82418i 0.577978 + 0.333696i
\(210\) 0 0
\(211\) 9.03550 15.6500i 0.622030 1.07739i −0.367078 0.930190i \(-0.619642\pi\)
0.989107 0.147197i \(-0.0470250\pi\)
\(212\) 14.6808 1.00828
\(213\) 0 0
\(214\) 2.93871 10.9674i 0.200886 0.749717i
\(215\) −0.227807 + 0.0610407i −0.0155363 + 0.00416294i
\(216\) 0 0
\(217\) −1.03440 + 1.79163i −0.0702196 + 0.121624i
\(218\) −0.852651 −0.0577488
\(219\) 0 0
\(220\) 0.324686 0.187458i 0.0218903 0.0126384i
\(221\) 3.52183 3.75533i 0.236904 0.252611i
\(222\) 0 0
\(223\) 2.26872 + 2.26872i 0.151925 + 0.151925i 0.778977 0.627052i \(-0.215739\pi\)
−0.627052 + 0.778977i \(0.715739\pi\)
\(224\) 1.70431 0.983985i 0.113874 0.0657453i
\(225\) 0 0
\(226\) −2.03855 2.03855i −0.135602 0.135602i
\(227\) 3.66821 + 0.982895i 0.243468 + 0.0652370i 0.378489 0.925606i \(-0.376444\pi\)
−0.135021 + 0.990843i \(0.543110\pi\)
\(228\) 0 0
\(229\) 16.9464 + 4.54078i 1.11985 + 0.300063i 0.770823 0.637050i \(-0.219845\pi\)
0.349027 + 0.937113i \(0.386512\pi\)
\(230\) 0.361518i 0.0238378i
\(231\) 0 0
\(232\) −10.6986 + 10.6986i −0.702399 + 0.702399i
\(233\) −14.4728 −0.948143 −0.474072 0.880486i \(-0.657216\pi\)
−0.474072 + 0.880486i \(0.657216\pi\)
\(234\) 0 0
\(235\) −0.480442 −0.0313406
\(236\) 2.74359 2.74359i 0.178593 0.178593i
\(237\) 0 0
\(238\) 0.489231i 0.0317122i
\(239\) 19.7813 + 5.30038i 1.27955 + 0.342853i 0.833681 0.552247i \(-0.186229\pi\)
0.445865 + 0.895100i \(0.352896\pi\)
\(240\) 0 0
\(241\) −23.3290 6.25098i −1.50275 0.402661i −0.588732 0.808329i \(-0.700372\pi\)
−0.914021 + 0.405667i \(0.867039\pi\)
\(242\) −0.571360 0.571360i −0.0367284 0.0367284i
\(243\) 0 0
\(244\) −6.06801 + 3.50337i −0.388464 + 0.224280i
\(245\) 0.509761 + 0.509761i 0.0325674 + 0.0325674i
\(246\) 0 0
\(247\) 10.9201 0.350386i 0.694831 0.0222945i
\(248\) 14.3395 8.27891i 0.910558 0.525711i
\(249\) 0 0
\(250\) 0.982975 0.0621688
\(251\) −3.92544 + 6.79906i −0.247772 + 0.429153i −0.962907 0.269833i \(-0.913032\pi\)
0.715136 + 0.698986i \(0.246365\pi\)
\(252\) 0 0
\(253\) −11.2986 + 3.02746i −0.710340 + 0.190335i
\(254\) 3.13198 11.6887i 0.196518 0.733414i
\(255\) 0 0
\(256\) −16.8705 −1.05441
\(257\) −13.1768 + 22.8229i −0.821947 + 1.42365i 0.0822831 + 0.996609i \(0.473779\pi\)
−0.904230 + 0.427045i \(0.859554\pi\)
\(258\) 0 0
\(259\) 1.41791 + 0.818630i 0.0881046 + 0.0508672i
\(260\) 0.200376 0.374291i 0.0124268 0.0232126i
\(261\) 0 0
\(262\) 3.76855 14.0644i 0.232822 0.868903i
\(263\) 21.1195i 1.30229i 0.758955 + 0.651143i \(0.225710\pi\)
−0.758955 + 0.651143i \(0.774290\pi\)
\(264\) 0 0
\(265\) −0.355708 + 1.32752i −0.0218510 + 0.0815490i
\(266\) −0.734142 + 0.734142i −0.0450131 + 0.0450131i
\(267\) 0 0
\(268\) −4.44919 16.6046i −0.271777 1.01429i
\(269\) 3.78449 + 2.18498i 0.230744 + 0.133220i 0.610915 0.791696i \(-0.290802\pi\)
−0.380171 + 0.924916i \(0.624135\pi\)
\(270\) 0 0
\(271\) 13.6523 + 3.65813i 0.829320 + 0.222216i 0.648417 0.761285i \(-0.275431\pi\)
0.180903 + 0.983501i \(0.442098\pi\)
\(272\) 0.356389 0.617283i 0.0216092 0.0374283i
\(273\) 0 0
\(274\) −8.63940 14.9639i −0.521925 0.904001i
\(275\) −4.11132 15.3437i −0.247922 0.925258i
\(276\) 0 0
\(277\) −21.2996 + 12.2973i −1.27977 + 0.738874i −0.976805 0.214129i \(-0.931309\pi\)
−0.302961 + 0.953003i \(0.597975\pi\)
\(278\) 6.01957 6.01957i 0.361030 0.361030i
\(279\) 0 0
\(280\) 0.0290624 + 0.108462i 0.00173681 + 0.00648186i
\(281\) −20.3630 + 5.45626i −1.21476 + 0.325493i −0.808627 0.588322i \(-0.799789\pi\)
−0.406131 + 0.913815i \(0.633122\pi\)
\(282\) 0 0
\(283\) 3.49027 + 2.01511i 0.207475 + 0.119786i 0.600137 0.799897i \(-0.295113\pi\)
−0.392662 + 0.919683i \(0.628446\pi\)
\(284\) 6.56441 1.75893i 0.389526 0.104373i
\(285\) 0 0
\(286\) 10.4773 + 2.45015i 0.619538 + 0.144881i
\(287\) 2.48731i 0.146821i
\(288\) 0 0
\(289\) 7.48054 + 12.9567i 0.440032 + 0.762158i
\(290\) −0.254450 0.440720i −0.0149418 0.0258799i
\(291\) 0 0
\(292\) −4.63279 4.63279i −0.271114 0.271114i
\(293\) 8.16540 + 8.16540i 0.477028 + 0.477028i 0.904180 0.427152i \(-0.140483\pi\)
−0.427152 + 0.904180i \(0.640483\pi\)
\(294\) 0 0
\(295\) 0.181616 + 0.314568i 0.0105741 + 0.0183149i
\(296\) −6.55198 11.3484i −0.380826 0.659610i
\(297\) 0 0
\(298\) 11.2865i 0.653811i
\(299\) −9.06105 + 9.66180i −0.524014 + 0.558756i
\(300\) 0 0
\(301\) −0.793160 + 0.212527i −0.0457170 + 0.0122498i
\(302\) −0.0342497 0.0197741i −0.00197085 0.00113787i
\(303\) 0 0
\(304\) 1.46109 0.391499i 0.0837995 0.0224540i
\(305\) −0.169770 0.633591i −0.00972101 0.0362793i
\(306\) 0 0
\(307\) −17.9190 + 17.9190i −1.02269 + 1.02269i −0.0229527 + 0.999737i \(0.507307\pi\)
−0.999737 + 0.0229527i \(0.992693\pi\)
\(308\) 1.13047 0.652675i 0.0644143 0.0371896i
\(309\) 0 0
\(310\) 0.144141 + 0.537942i 0.00818667 + 0.0305531i
\(311\) −11.1301 19.2779i −0.631129 1.09315i −0.987321 0.158735i \(-0.949258\pi\)
0.356192 0.934413i \(-0.384075\pi\)
\(312\) 0 0
\(313\) 4.30058 7.44883i 0.243083 0.421033i −0.718508 0.695519i \(-0.755175\pi\)
0.961591 + 0.274486i \(0.0885078\pi\)
\(314\) −12.5934 3.37439i −0.710687 0.190428i
\(315\) 0 0
\(316\) 15.8429 + 9.14693i 0.891235 + 0.514555i
\(317\) −8.15039 30.4177i −0.457771 1.70843i −0.679810 0.733388i \(-0.737938\pi\)
0.222039 0.975038i \(-0.428729\pi\)
\(318\) 0 0
\(319\) −11.6431 + 11.6431i −0.651889 + 0.651889i
\(320\) 0.164245 0.612971i 0.00918158 0.0342661i
\(321\) 0 0
\(322\) 1.25870i 0.0701449i
\(323\) 1.11989 4.17948i 0.0623123 0.232553i
\(324\) 0 0
\(325\) −13.1208 12.3050i −0.727812 0.682558i
\(326\) 0.652755 + 0.376868i 0.0361527 + 0.0208728i
\(327\) 0 0
\(328\) 9.95371 17.2403i 0.549602 0.951938i
\(329\) −1.67276 −0.0922225
\(330\) 0 0
\(331\) −4.04974 + 15.1138i −0.222594 + 0.830732i 0.760760 + 0.649033i \(0.224826\pi\)
−0.983354 + 0.181699i \(0.941840\pi\)
\(332\) −17.9774 + 4.81704i −0.986639 + 0.264369i
\(333\) 0 0
\(334\) −7.27128 + 12.5942i −0.397867 + 0.689125i
\(335\) 1.60929 0.0879248
\(336\) 0 0
\(337\) 5.42515 3.13221i 0.295527 0.170622i −0.344905 0.938638i \(-0.612089\pi\)
0.640432 + 0.768015i \(0.278756\pi\)
\(338\) 11.5430 3.90161i 0.627858 0.212220i
\(339\) 0 0
\(340\) −0.118889 0.118889i −0.00644768 0.00644768i
\(341\) 15.6054 9.00978i 0.845080 0.487907i
\(342\) 0 0
\(343\) 3.58423 + 3.58423i 0.193530 + 0.193530i
\(344\) 6.34813 + 1.70098i 0.342268 + 0.0917105i
\(345\) 0 0
\(346\) −13.8855 3.72061i −0.746490 0.200021i
\(347\) 18.2400i 0.979176i −0.871954 0.489588i \(-0.837147\pi\)
0.871954 0.489588i \(-0.162853\pi\)
\(348\) 0 0
\(349\) 5.66873 5.66873i 0.303440 0.303440i −0.538918 0.842358i \(-0.681167\pi\)
0.842358 + 0.538918i \(0.181167\pi\)
\(350\) 1.70933 0.0913677
\(351\) 0 0
\(352\) −17.1413 −0.913636
\(353\) −12.2134 + 12.2134i −0.650052 + 0.650052i −0.953005 0.302954i \(-0.902027\pi\)
0.302954 + 0.953005i \(0.402027\pi\)
\(354\) 0 0
\(355\) 0.636211i 0.0337666i
\(356\) −2.63887 0.707083i −0.139860 0.0374753i
\(357\) 0 0
\(358\) 16.9051 + 4.52972i 0.893464 + 0.239403i
\(359\) −21.8853 21.8853i −1.15506 1.15506i −0.985523 0.169540i \(-0.945772\pi\)
−0.169540 0.985523i \(-0.554228\pi\)
\(360\) 0 0
\(361\) −8.50223 + 4.90877i −0.447486 + 0.258356i
\(362\) −9.42428 9.42428i −0.495329 0.495329i
\(363\) 0 0
\(364\) 0.697651 1.30318i 0.0365669 0.0683050i
\(365\) 0.531175 0.306674i 0.0278030 0.0160521i
\(366\) 0 0
\(367\) −1.31076 −0.0684213 −0.0342106 0.999415i \(-0.510892\pi\)
−0.0342106 + 0.999415i \(0.510892\pi\)
\(368\) −0.916924 + 1.58816i −0.0477980 + 0.0827885i
\(369\) 0 0
\(370\) 0.425731 0.114074i 0.0221327 0.00593044i
\(371\) −1.23848 + 4.62206i −0.0642985 + 0.239965i
\(372\) 0 0
\(373\) −28.8214 −1.49231 −0.746157 0.665770i \(-0.768103\pi\)
−0.746157 + 0.665770i \(0.768103\pi\)
\(374\) 2.13064 3.69038i 0.110173 0.190825i
\(375\) 0 0
\(376\) 11.5945 + 6.69406i 0.597938 + 0.345220i
\(377\) −4.24582 + 18.1560i −0.218671 + 0.935081i
\(378\) 0 0
\(379\) −4.45400 + 16.6226i −0.228787 + 0.853843i 0.752065 + 0.659088i \(0.229058\pi\)
−0.980852 + 0.194755i \(0.937609\pi\)
\(380\) 0.356811i 0.0183040i
\(381\) 0 0
\(382\) −1.77953 + 6.64130i −0.0910487 + 0.339798i
\(383\) −22.6717 + 22.6717i −1.15847 + 1.15847i −0.173666 + 0.984805i \(0.555561\pi\)
−0.984805 + 0.173666i \(0.944439\pi\)
\(384\) 0 0
\(385\) 0.0316280 + 0.118037i 0.00161191 + 0.00601575i
\(386\) 17.3744 + 10.0311i 0.884336 + 0.510571i
\(387\) 0 0
\(388\) −13.4042 3.59164i −0.680495 0.182338i
\(389\) 8.01814 13.8878i 0.406536 0.704141i −0.587963 0.808888i \(-0.700070\pi\)
0.994499 + 0.104747i \(0.0334033\pi\)
\(390\) 0 0
\(391\) 2.62288 + 4.54295i 0.132645 + 0.229747i
\(392\) −5.19944 19.4046i −0.262611 0.980078i
\(393\) 0 0
\(394\) −3.14814 + 1.81758i −0.158601 + 0.0915684i
\(395\) −1.21099 + 1.21099i −0.0609314 + 0.0609314i
\(396\) 0 0
\(397\) −7.81599 29.1697i −0.392273 1.46398i −0.826375 0.563120i \(-0.809601\pi\)
0.434102 0.900864i \(-0.357066\pi\)
\(398\) 9.27283 2.48465i 0.464805 0.124544i
\(399\) 0 0
\(400\) −2.15673 1.24519i −0.107837 0.0622596i
\(401\) −10.9633 + 2.93761i −0.547482 + 0.146697i −0.521949 0.852977i \(-0.674795\pi\)
−0.0255329 + 0.999674i \(0.508128\pi\)
\(402\) 0 0
\(403\) 9.63066 17.9896i 0.479737 0.896124i
\(404\) 4.26484i 0.212184i
\(405\) 0 0
\(406\) −0.885922 1.53446i −0.0439676 0.0761541i
\(407\) −7.13040 12.3502i −0.353441 0.612177i
\(408\) 0 0
\(409\) 8.33215 + 8.33215i 0.411998 + 0.411998i 0.882434 0.470436i \(-0.155903\pi\)
−0.470436 + 0.882434i \(0.655903\pi\)
\(410\) 0.473466 + 0.473466i 0.0233828 + 0.0233828i
\(411\) 0 0
\(412\) −3.76120 6.51459i −0.185301 0.320951i
\(413\) 0.632336 + 1.09524i 0.0311152 + 0.0538931i
\(414\) 0 0
\(415\) 1.74234i 0.0855281i
\(416\) −16.4903 + 10.2395i −0.808504 + 0.502032i
\(417\) 0 0
\(418\) 8.73504 2.34055i 0.427245 0.114480i
\(419\) 2.49796 + 1.44220i 0.122033 + 0.0704561i 0.559774 0.828645i \(-0.310888\pi\)
−0.437741 + 0.899101i \(0.644221\pi\)
\(420\) 0 0
\(421\) 2.42199 0.648970i 0.118040 0.0316288i −0.199315 0.979935i \(-0.563872\pi\)
0.317356 + 0.948307i \(0.397205\pi\)
\(422\) −4.38375 16.3604i −0.213398 0.796411i
\(423\) 0 0
\(424\) 27.0808 27.0808i 1.31516 1.31516i
\(425\) −6.16938 + 3.56189i −0.299259 + 0.172777i
\(426\) 0 0
\(427\) −0.591092 2.20598i −0.0286049 0.106755i
\(428\) 6.79309 + 11.7660i 0.328357 + 0.568730i
\(429\) 0 0
\(430\) −0.110525 + 0.191435i −0.00532999 + 0.00923182i
\(431\) 14.9429 + 4.00393i 0.719773 + 0.192863i 0.600071 0.799947i \(-0.295139\pi\)
0.119703 + 0.992810i \(0.461806\pi\)
\(432\) 0 0
\(433\) 4.53654 + 2.61917i 0.218012 + 0.125869i 0.605029 0.796203i \(-0.293161\pi\)
−0.387017 + 0.922072i \(0.626495\pi\)
\(434\) 0.501859 + 1.87296i 0.0240900 + 0.0899051i
\(435\) 0 0
\(436\) 0.721429 0.721429i 0.0345502 0.0345502i
\(437\) −2.88127 + 10.7531i −0.137830 + 0.514389i
\(438\) 0 0
\(439\) 15.7759i 0.752941i 0.926429 + 0.376470i \(0.122862\pi\)
−0.926429 + 0.376470i \(0.877138\pi\)
\(440\) 0.253138 0.944723i 0.0120679 0.0450379i
\(441\) 0 0
\(442\) −0.154751 4.82297i −0.00736076 0.229405i
\(443\) 22.7538 + 13.1369i 1.08107 + 0.624155i 0.931184 0.364549i \(-0.118777\pi\)
0.149884 + 0.988704i \(0.452110\pi\)
\(444\) 0 0
\(445\) 0.127877 0.221490i 0.00606196 0.0104996i
\(446\) 3.00721 0.142395
\(447\) 0 0
\(448\) 0.571855 2.13419i 0.0270176 0.100831i
\(449\) −12.2297 + 3.27694i −0.577156 + 0.154648i −0.535576 0.844487i \(-0.679906\pi\)
−0.0415795 + 0.999135i \(0.513239\pi\)
\(450\) 0 0
\(451\) 10.8324 18.7623i 0.510080 0.883484i
\(452\) 3.44964 0.162257
\(453\) 0 0
\(454\) 3.08254 1.77971i 0.144671 0.0835258i
\(455\) 0.100937 + 0.0946612i 0.00473201 + 0.00443778i
\(456\) 0 0
\(457\) −9.27033 9.27033i −0.433648 0.433648i 0.456219 0.889867i \(-0.349203\pi\)
−0.889867 + 0.456219i \(0.849203\pi\)
\(458\) 14.2407 8.22188i 0.665425 0.384183i
\(459\) 0 0
\(460\) 0.305881 + 0.305881i 0.0142618 + 0.0142618i
\(461\) 32.3624 + 8.67148i 1.50727 + 0.403871i 0.915527 0.402257i \(-0.131774\pi\)
0.591741 + 0.806128i \(0.298441\pi\)
\(462\) 0 0
\(463\) 14.9116 + 3.99555i 0.693000 + 0.185689i 0.588093 0.808793i \(-0.299879\pi\)
0.104907 + 0.994482i \(0.466545\pi\)
\(464\) 2.58146i 0.119841i
\(465\) 0 0
\(466\) −9.59189 + 9.59189i −0.444336 + 0.444336i
\(467\) 20.9252 0.968302 0.484151 0.874985i \(-0.339129\pi\)
0.484151 + 0.874985i \(0.339129\pi\)
\(468\) 0 0
\(469\) 5.60309 0.258727
\(470\) −0.318415 + 0.318415i −0.0146874 + 0.0146874i
\(471\) 0 0
\(472\) 10.1219i 0.465899i
\(473\) 6.90855 + 1.85114i 0.317656 + 0.0851156i
\(474\) 0 0
\(475\) −14.6028 3.91280i −0.670021 0.179531i
\(476\) −0.413939 0.413939i −0.0189729 0.0189729i
\(477\) 0 0
\(478\) 16.6230 9.59729i 0.760318 0.438970i
\(479\) 16.0406 + 16.0406i 0.732914 + 0.732914i 0.971196 0.238282i \(-0.0765844\pi\)
−0.238282 + 0.971196i \(0.576584\pi\)
\(480\) 0 0
\(481\) −14.2371 7.62176i −0.649154 0.347523i
\(482\) −19.6042 + 11.3185i −0.892949 + 0.515544i
\(483\) 0 0
\(484\) 0.966857 0.0439481
\(485\) 0.649556 1.12506i 0.0294948 0.0510865i
\(486\) 0 0
\(487\) 6.17114 1.65355i 0.279641 0.0749295i −0.116273 0.993217i \(-0.537095\pi\)
0.395914 + 0.918288i \(0.370428\pi\)
\(488\) −4.73085 + 17.6558i −0.214156 + 0.799240i
\(489\) 0 0
\(490\) 0.675692 0.0305247
\(491\) 6.90407 11.9582i 0.311576 0.539666i −0.667128 0.744943i \(-0.732476\pi\)
0.978704 + 0.205278i \(0.0658098\pi\)
\(492\) 0 0
\(493\) 6.39499 + 3.69215i 0.288016 + 0.166286i
\(494\) 7.00514 7.46958i 0.315176 0.336072i
\(495\) 0 0
\(496\) 0.731175 2.72878i 0.0328307 0.122526i
\(497\) 2.21511i 0.0993612i
\(498\) 0 0
\(499\) −1.01763 + 3.79783i −0.0455552 + 0.170014i −0.984956 0.172808i \(-0.944716\pi\)
0.939400 + 0.342822i \(0.111383\pi\)
\(500\) −0.831697 + 0.831697i −0.0371946 + 0.0371946i
\(501\) 0 0
\(502\) 1.90450 + 7.10771i 0.0850022 + 0.317232i
\(503\) 9.04338 + 5.22120i 0.403224 + 0.232802i 0.687874 0.725830i \(-0.258544\pi\)
−0.284650 + 0.958632i \(0.591877\pi\)
\(504\) 0 0
\(505\) 0.385652 + 0.103335i 0.0171613 + 0.00459835i
\(506\) −5.48176 + 9.49469i −0.243694 + 0.422090i
\(507\) 0 0
\(508\) 7.23985 + 12.5398i 0.321217 + 0.556363i
\(509\) 8.12088 + 30.3075i 0.359952 + 1.34336i 0.874137 + 0.485679i \(0.161428\pi\)
−0.514186 + 0.857679i \(0.671906\pi\)
\(510\) 0 0
\(511\) 1.84940 1.06775i 0.0818128 0.0472346i
\(512\) −3.96564 + 3.96564i −0.175258 + 0.175258i
\(513\) 0 0
\(514\) 6.39299 + 23.8590i 0.281983 + 1.05237i
\(515\) 0.680221 0.182265i 0.0299741 0.00803154i
\(516\) 0 0
\(517\) 12.6180 + 7.28502i 0.554940 + 0.320395i
\(518\) 1.48227 0.397174i 0.0651274 0.0174508i
\(519\) 0 0
\(520\) −0.320813 1.06006i −0.0140686 0.0464865i
\(521\) 22.8205i 0.999785i 0.866087 + 0.499893i \(0.166627\pi\)
−0.866087 + 0.499893i \(0.833373\pi\)
\(522\) 0 0
\(523\) −1.54860 2.68225i −0.0677156 0.117287i 0.830180 0.557496i \(-0.188238\pi\)
−0.897895 + 0.440209i \(0.854904\pi\)
\(524\) 8.71135 + 15.0885i 0.380557 + 0.659144i
\(525\) 0 0
\(526\) 13.9970 + 13.9970i 0.610300 + 0.610300i
\(527\) −5.71419 5.71419i −0.248914 0.248914i
\(528\) 0 0
\(529\) 4.75181 + 8.23037i 0.206600 + 0.357842i
\(530\) 0.644073 + 1.11557i 0.0279767 + 0.0484571i
\(531\) 0 0
\(532\) 1.24232i 0.0538613i
\(533\) −0.786773 24.5206i −0.0340789 1.06210i
\(534\) 0 0
\(535\) −1.22854 + 0.329187i −0.0531146 + 0.0142320i
\(536\) −38.8368 22.4224i −1.67749 0.968501i
\(537\) 0 0
\(538\) 3.95629 1.06008i 0.170568 0.0457035i
\(539\) −5.65845 21.1176i −0.243727 0.909601i
\(540\) 0 0
\(541\) −5.55366 + 5.55366i −0.238771 + 0.238771i −0.816341 0.577570i \(-0.804001\pi\)
0.577570 + 0.816341i \(0.304001\pi\)
\(542\) 11.4726 6.62369i 0.492789 0.284512i
\(543\) 0 0
\(544\) 1.98960 + 7.42529i 0.0853034 + 0.318357i
\(545\) 0.0477560 + 0.0827159i 0.00204564 + 0.00354316i
\(546\) 0 0
\(547\) −8.77561 + 15.1998i −0.375218 + 0.649897i −0.990360 0.138520i \(-0.955766\pi\)
0.615142 + 0.788417i \(0.289099\pi\)
\(548\) 19.9708 + 5.35115i 0.853109 + 0.228590i
\(549\) 0 0
\(550\) −12.8939 7.44428i −0.549797 0.317425i
\(551\) 4.05589 + 15.1368i 0.172787 + 0.644849i
\(552\) 0 0
\(553\) −4.21632 + 4.21632i −0.179296 + 0.179296i
\(554\) −5.96628 + 22.2665i −0.253483 + 0.946011i
\(555\) 0 0
\(556\) 10.1863i 0.431996i
\(557\) 4.44615 16.5933i 0.188390 0.703079i −0.805490 0.592609i \(-0.798098\pi\)
0.993879 0.110470i \(-0.0352356\pi\)
\(558\) 0 0
\(559\) 7.75196 2.34603i 0.327873 0.0992266i
\(560\) 0.0165916 + 0.00957914i 0.000701121 + 0.000404793i
\(561\) 0 0
\(562\) −9.87953 + 17.1119i −0.416743 + 0.721820i
\(563\) −9.32207 −0.392879 −0.196439 0.980516i \(-0.562938\pi\)
−0.196439 + 0.980516i \(0.562938\pi\)
\(564\) 0 0
\(565\) −0.0835832 + 0.311937i −0.00351637 + 0.0131233i
\(566\) 3.64871 0.977668i 0.153367 0.0410945i
\(567\) 0 0
\(568\) 8.86441 15.3536i 0.371942 0.644223i
\(569\) 26.0138 1.09056 0.545278 0.838255i \(-0.316424\pi\)
0.545278 + 0.838255i \(0.316424\pi\)
\(570\) 0 0
\(571\) −2.90676 + 1.67822i −0.121644 + 0.0702313i −0.559587 0.828771i \(-0.689040\pi\)
0.437943 + 0.899003i \(0.355707\pi\)
\(572\) −10.9380 + 6.79182i −0.457340 + 0.283980i
\(573\) 0 0
\(574\) 1.64848 + 1.64848i 0.0688060 + 0.0688060i
\(575\) 15.8727 9.16411i 0.661937 0.382170i
\(576\) 0 0
\(577\) 19.0194 + 19.0194i 0.791788 + 0.791788i 0.981785 0.189997i \(-0.0608478\pi\)
−0.189997 + 0.981785i \(0.560848\pi\)
\(578\) 13.5449 + 3.62933i 0.563392 + 0.150960i
\(579\) 0 0
\(580\) 0.588184 + 0.157603i 0.0244230 + 0.00654412i
\(581\) 6.06634i 0.251674i
\(582\) 0 0
\(583\) 29.4715 29.4715i 1.22059 1.22059i
\(584\) −17.0917 −0.707260
\(585\) 0 0
\(586\) 10.8233 0.447107
\(587\) 7.56353 7.56353i 0.312180 0.312180i −0.533573 0.845754i \(-0.679151\pi\)
0.845754 + 0.533573i \(0.179151\pi\)
\(588\) 0 0
\(589\) 17.1494i 0.706630i
\(590\) 0.328848 + 0.0881146i 0.0135385 + 0.00362762i
\(591\) 0 0
\(592\) −2.15957 0.578656i −0.0887580 0.0237826i
\(593\) −11.0116 11.0116i −0.452191 0.452191i 0.443890 0.896081i \(-0.353598\pi\)
−0.896081 + 0.443890i \(0.853598\pi\)
\(594\) 0 0
\(595\) 0.0474604 0.0274013i 0.00194569 0.00112334i
\(596\) −9.54955 9.54955i −0.391165 0.391165i
\(597\) 0 0
\(598\) 0.398147 + 12.4086i 0.0162814 + 0.507427i
\(599\) 18.9127 10.9193i 0.772752 0.446149i −0.0611031 0.998131i \(-0.519462\pi\)
0.833856 + 0.551983i \(0.186129\pi\)
\(600\) 0 0
\(601\) 12.2925 0.501420 0.250710 0.968062i \(-0.419336\pi\)
0.250710 + 0.968062i \(0.419336\pi\)
\(602\) −0.384817 + 0.666523i −0.0156840 + 0.0271655i
\(603\) 0 0
\(604\) 0.0457096 0.0122479i 0.00185990 0.000498358i
\(605\) −0.0234265 + 0.0874290i −0.000952424 + 0.00355449i
\(606\) 0 0
\(607\) 25.1603 1.02123 0.510613 0.859811i \(-0.329418\pi\)
0.510613 + 0.859811i \(0.329418\pi\)
\(608\) −8.15681 + 14.1280i −0.330802 + 0.572966i
\(609\) 0 0
\(610\) −0.532430 0.307399i −0.0215575 0.0124462i
\(611\) 16.4905 0.529120i 0.667136 0.0214059i
\(612\) 0 0
\(613\) −0.567750 + 2.11887i −0.0229312 + 0.0855804i −0.976443 0.215775i \(-0.930772\pi\)
0.953512 + 0.301355i \(0.0974390\pi\)
\(614\) 23.7517i 0.958542i
\(615\) 0 0
\(616\) 0.881355 3.28926i 0.0355108 0.132528i
\(617\) −7.90933 + 7.90933i −0.318417 + 0.318417i −0.848159 0.529742i \(-0.822289\pi\)
0.529742 + 0.848159i \(0.322289\pi\)
\(618\) 0 0
\(619\) −2.85556 10.6571i −0.114775 0.428345i 0.884495 0.466549i \(-0.154503\pi\)
−0.999270 + 0.0382041i \(0.987836\pi\)
\(620\) −0.577112 0.333196i −0.0231774 0.0133815i
\(621\) 0 0
\(622\) −20.1530 5.39998i −0.808061 0.216519i
\(623\) 0.445233 0.771166i 0.0178379 0.0308961i
\(624\) 0 0
\(625\) 12.4174 + 21.5075i 0.496695 + 0.860302i
\(626\) −2.08651 7.78697i −0.0833938 0.311230i
\(627\) 0 0
\(628\) 13.5104 7.80023i 0.539123 0.311263i
\(629\) −4.52224 + 4.52224i −0.180314 + 0.180314i
\(630\) 0 0
\(631\) −0.654527 2.44273i −0.0260563 0.0972435i 0.951673 0.307113i \(-0.0993629\pi\)
−0.977729 + 0.209869i \(0.932696\pi\)
\(632\) 46.0974 12.3518i 1.83366 0.491327i
\(633\) 0 0
\(634\) −25.5611 14.7577i −1.01516 0.586104i
\(635\) −1.30934 + 0.350837i −0.0519596 + 0.0139225i
\(636\) 0 0
\(637\) −18.0583 16.9355i −0.715495 0.671008i
\(638\) 15.4330i 0.611000i
\(639\) 0 0
\(640\) 0.267834 + 0.463903i 0.0105871 + 0.0183374i
\(641\) −8.99758 15.5843i −0.355383 0.615541i 0.631801 0.775131i \(-0.282316\pi\)
−0.987183 + 0.159590i \(0.948983\pi\)
\(642\) 0 0
\(643\) −25.2949 25.2949i −0.997532 0.997532i 0.00246501 0.999997i \(-0.499215\pi\)
−0.999997 + 0.00246501i \(0.999215\pi\)
\(644\) 1.06499 + 1.06499i 0.0419666 + 0.0419666i
\(645\) 0 0
\(646\) −2.02776 3.51218i −0.0797811 0.138185i
\(647\) −10.1566 17.5918i −0.399298 0.691605i 0.594341 0.804213i \(-0.297413\pi\)
−0.993639 + 0.112608i \(0.964079\pi\)
\(648\) 0 0
\(649\) 11.0155i 0.432396i
\(650\) −16.8511 + 0.540687i −0.660953 + 0.0212075i
\(651\) 0 0
\(652\) −0.871165 + 0.233428i −0.0341175 + 0.00914175i
\(653\) −25.3293 14.6239i −0.991213 0.572277i −0.0855762 0.996332i \(-0.527273\pi\)
−0.905637 + 0.424055i \(0.860606\pi\)
\(654\) 0 0
\(655\) −1.57546 + 0.422144i −0.0615585 + 0.0164945i
\(656\) −0.879090 3.28081i −0.0343227 0.128094i
\(657\) 0 0
\(658\) −1.10863 + 1.10863i −0.0432189 + 0.0432189i
\(659\) −36.4402 + 21.0388i −1.41951 + 0.819554i −0.996256 0.0864566i \(-0.972446\pi\)
−0.423254 + 0.906011i \(0.639112\pi\)
\(660\) 0 0
\(661\) −4.83701 18.0520i −0.188138 0.702141i −0.993937 0.109951i \(-0.964930\pi\)
0.805799 0.592189i \(-0.201736\pi\)
\(662\) 7.33278 + 12.7007i 0.284997 + 0.493628i
\(663\) 0 0
\(664\) −24.2762 + 42.0477i −0.942101 + 1.63177i
\(665\) 0.112338 + 0.0301008i 0.00435627 + 0.00116726i
\(666\) 0 0
\(667\) −16.4532 9.49924i −0.637069 0.367812i
\(668\) −4.50375 16.8082i −0.174255 0.650330i
\(669\) 0 0
\(670\) 1.06656 1.06656i 0.0412049 0.0412049i
\(671\) −5.14850 + 19.2145i −0.198756 + 0.741767i
\(672\) 0 0
\(673\) 6.01382i 0.231816i −0.993260 0.115908i \(-0.963022\pi\)
0.993260 0.115908i \(-0.0369777\pi\)
\(674\) 1.51965 5.67142i 0.0585349 0.218455i
\(675\) 0 0
\(676\) −6.46542 + 13.0677i −0.248670 + 0.502605i
\(677\) −23.1275 13.3527i −0.888863 0.513185i −0.0152925 0.999883i \(-0.504868\pi\)
−0.873570 + 0.486698i \(0.838201\pi\)
\(678\) 0 0
\(679\) 2.26157 3.91715i 0.0867911 0.150327i
\(680\) −0.438617 −0.0168202
\(681\) 0 0
\(682\) 4.37127 16.3138i 0.167385 0.624688i
\(683\) −29.2534 + 7.83841i −1.11935 + 0.299929i −0.770620 0.637295i \(-0.780053\pi\)
−0.348729 + 0.937224i \(0.613387\pi\)
\(684\) 0 0
\(685\) −0.967766 + 1.67622i −0.0369764 + 0.0640451i
\(686\) 4.75092 0.181391
\(687\) 0 0
\(688\) 0.971079 0.560653i 0.0370220 0.0213747i
\(689\) 10.7472 45.9572i 0.409436 1.75083i
\(690\) 0 0
\(691\) 30.2032 + 30.2032i 1.14898 + 1.14898i 0.986753 + 0.162231i \(0.0518689\pi\)
0.162231 + 0.986753i \(0.448131\pi\)
\(692\) 14.8966 8.60054i 0.566283 0.326944i
\(693\) 0 0
\(694\) −12.0886 12.0886i −0.458879 0.458879i
\(695\) −0.921108 0.246810i −0.0349396 0.00936205i
\(696\) 0 0
\(697\) −9.38480 2.51465i −0.355475 0.0952492i
\(698\) 7.51395i 0.284407i
\(699\) 0 0
\(700\) −1.44627 + 1.44627i −0.0546638 + 0.0546638i
\(701\) 23.1973 0.876151 0.438075 0.898938i \(-0.355660\pi\)
0.438075 + 0.898938i \(0.355660\pi\)
\(702\) 0 0
\(703\) −13.5722 −0.511884
\(704\) −13.6082 + 13.6082i −0.512879 + 0.512879i
\(705\) 0 0
\(706\) 16.1889i 0.609278i
\(707\) 1.34273 + 0.359784i 0.0504986 + 0.0135311i
\(708\) 0 0
\(709\) 8.81969 + 2.36323i 0.331230 + 0.0887529i 0.420602 0.907245i \(-0.361819\pi\)
−0.0893711 + 0.995998i \(0.528486\pi\)
\(710\) 0.421651 + 0.421651i 0.0158243 + 0.0158243i
\(711\) 0 0
\(712\) −6.17209 + 3.56346i −0.231309 + 0.133546i
\(713\) 14.7016 + 14.7016i 0.550578 + 0.550578i
\(714\) 0 0
\(715\) −0.349134 1.15364i −0.0130569 0.0431437i
\(716\) −18.1361 + 10.4709i −0.677776 + 0.391314i
\(717\) 0 0
\(718\) −29.0092 −1.08261
\(719\) 7.26683 12.5865i 0.271007 0.469398i −0.698113 0.715988i \(-0.745977\pi\)
0.969120 + 0.246590i \(0.0793100\pi\)
\(720\) 0 0
\(721\) 2.36834 0.634594i 0.0882015 0.0236335i
\(722\) −2.38158 + 8.88819i −0.0886334 + 0.330784i
\(723\) 0 0
\(724\) 15.9478 0.592695
\(725\) 12.9001 22.3436i 0.479096 0.829819i
\(726\) 0 0
\(727\) −23.7883 13.7342i −0.882259 0.509372i −0.0108564 0.999941i \(-0.503456\pi\)
−0.871403 + 0.490569i \(0.836789\pi\)
\(728\) −1.11698 3.69082i −0.0413980 0.136791i
\(729\) 0 0
\(730\) 0.148789 0.555288i 0.00550693 0.0205521i
\(731\) 3.20751i 0.118634i
\(732\) 0 0
\(733\) 9.56277 35.6888i 0.353209 1.31819i −0.529514 0.848301i \(-0.677626\pi\)
0.882723 0.469893i \(-0.155708\pi\)
\(734\) −0.868713 + 0.868713i −0.0320648 + 0.0320648i
\(735\) 0 0
\(736\) −5.11889 19.1039i −0.188685 0.704181i
\(737\) −42.2653 24.4019i −1.55686 0.898856i
\(738\) 0 0
\(739\) −6.91898 1.85394i −0.254519 0.0681981i 0.129304 0.991605i \(-0.458726\pi\)
−0.383822 + 0.923407i \(0.625393\pi\)
\(740\) −0.263693 + 0.456730i −0.00969355 + 0.0167897i
\(741\) 0 0
\(742\) 2.24248 + 3.88409i 0.0823241 + 0.142589i
\(743\) 4.09506 + 15.2830i 0.150233 + 0.560678i 0.999467 + 0.0326604i \(0.0103980\pi\)
−0.849233 + 0.528018i \(0.822935\pi\)
\(744\) 0 0
\(745\) 1.09491 0.632146i 0.0401144 0.0231600i
\(746\) −19.1015 + 19.1015i −0.699355 + 0.699355i
\(747\) 0 0
\(748\) 1.31970 + 4.92518i 0.0482529 + 0.180082i
\(749\) −4.27745 + 1.14614i −0.156294 + 0.0418790i
\(750\) 0 0
\(751\) −32.7770 18.9238i −1.19605 0.690539i −0.236377 0.971661i \(-0.575960\pi\)
−0.959672 + 0.281123i \(0.909293\pi\)
\(752\) 2.20641 0.591204i 0.0804593 0.0215590i
\(753\) 0 0
\(754\) 9.21902 + 14.8469i 0.335737 + 0.540692i
\(755\) 0.00443010i 0.000161228i
\(756\) 0 0
\(757\) 8.84072 + 15.3126i 0.321322 + 0.556545i 0.980761 0.195212i \(-0.0625396\pi\)
−0.659439 + 0.751758i \(0.729206\pi\)
\(758\) 8.06476 + 13.9686i 0.292925 + 0.507361i
\(759\) 0 0
\(760\) −0.658190 0.658190i −0.0238751 0.0238751i
\(761\) 33.1394 + 33.1394i 1.20130 + 1.20130i 0.973771 + 0.227530i \(0.0730651\pi\)
0.227530 + 0.973771i \(0.426935\pi\)
\(762\) 0 0
\(763\) 0.166273 + 0.287993i 0.00601949 + 0.0104261i
\(764\) −4.11355 7.12488i −0.148823 0.257769i
\(765\) 0 0
\(766\) 30.0516i 1.08581i
\(767\) −6.58017 10.5971i −0.237596 0.382640i
\(768\) 0 0
\(769\) 18.4717 4.94948i 0.666107 0.178483i 0.0901064 0.995932i \(-0.471279\pi\)
0.576001 + 0.817449i \(0.304613\pi\)
\(770\) 0.0991914 + 0.0572682i 0.00357461 + 0.00206380i
\(771\) 0 0
\(772\) −23.1879 + 6.21318i −0.834551 + 0.223617i
\(773\) −5.12420 19.1238i −0.184305 0.687834i −0.994778 0.102059i \(-0.967457\pi\)
0.810474 0.585775i \(-0.199210\pi\)
\(774\) 0 0
\(775\) −19.9649 + 19.9649i −0.717160 + 0.717160i
\(776\) −31.3513 + 18.1007i −1.12545 + 0.649776i
\(777\) 0 0
\(778\) −3.89016 14.5183i −0.139469 0.520505i
\(779\) −10.3094 17.8563i −0.369371 0.639770i
\(780\) 0 0
\(781\) 9.64697 16.7090i 0.345196 0.597897i
\(782\) 4.74918 + 1.27254i 0.169830 + 0.0455059i
\(783\) 0 0
\(784\) −2.96833 1.71377i −0.106012 0.0612060i
\(785\) 0.377992 + 1.41069i 0.0134911 + 0.0503495i
\(786\) 0 0
\(787\) 4.56589 4.56589i 0.162757 0.162757i −0.621030 0.783787i \(-0.713286\pi\)
0.783787 + 0.621030i \(0.213286\pi\)
\(788\) 1.12579 4.20150i 0.0401046 0.149672i
\(789\) 0 0
\(790\) 1.60517i 0.0571095i
\(791\) −0.291013 + 1.08608i −0.0103472 + 0.0386164i
\(792\) 0 0
\(793\) 6.52492 + 21.5602i 0.231707 + 0.765625i
\(794\) −24.5124 14.1522i −0.869913 0.502244i
\(795\) 0 0
\(796\) −5.74349 + 9.94802i −0.203573 + 0.352598i
\(797\) 49.4625 1.75205 0.876026 0.482263i \(-0.160185\pi\)
0.876026 + 0.482263i \(0.160185\pi\)
\(798\) 0 0
\(799\) 1.69115 6.31146i 0.0598286 0.223283i
\(800\) 25.9433 6.95150i 0.917235 0.245772i
\(801\) 0 0
\(802\) −5.31907 + 9.21290i −0.187823 + 0.325319i
\(803\) −18.6006 −0.656401
\(804\) 0 0
\(805\) −0.122107 + 0.0704986i −0.00430371 + 0.00248475i
\(806\) −5.53990 18.3054i −0.195135 0.644781i
\(807\) 0 0
\(808\) −7.86711 7.86711i −0.276764 0.276764i
\(809\) −42.4000 + 24.4797i −1.49071 + 0.860659i −0.999943 0.0106348i \(-0.996615\pi\)
−0.490762 + 0.871294i \(0.663281\pi\)
\(810\) 0 0
\(811\) 2.24360 + 2.24360i 0.0787834 + 0.0787834i 0.745400 0.666617i \(-0.232258\pi\)
−0.666617 + 0.745400i \(0.732258\pi\)
\(812\) 2.04789 + 0.548731i 0.0718669 + 0.0192567i
\(813\) 0 0
\(814\) −12.9109 3.45945i −0.452525 0.121254i
\(815\) 0.0844318i 0.00295752i
\(816\) 0 0
\(817\) 4.81320 4.81320i 0.168393 0.168393i
\(818\) 11.0443 0.386156
\(819\) 0 0
\(820\) −0.801201 −0.0279791
\(821\) −8.81907 + 8.81907i −0.307788 + 0.307788i −0.844051 0.536263i \(-0.819835\pi\)
0.536263 + 0.844051i \(0.319835\pi\)
\(822\) 0 0
\(823\) 12.4797i 0.435016i 0.976059 + 0.217508i \(0.0697928\pi\)
−0.976059 + 0.217508i \(0.930207\pi\)
\(824\) −18.9552 5.07903i −0.660336 0.176936i
\(825\) 0 0
\(826\) 1.14496 + 0.306790i 0.0398381 + 0.0106746i
\(827\) 9.01542 + 9.01542i 0.313497 + 0.313497i 0.846263 0.532766i \(-0.178847\pi\)
−0.532766 + 0.846263i \(0.678847\pi\)
\(828\) 0 0
\(829\) −12.1868 + 7.03605i −0.423265 + 0.244372i −0.696473 0.717583i \(-0.745249\pi\)
0.273208 + 0.961955i \(0.411915\pi\)
\(830\) −1.15474 1.15474i −0.0400817 0.0400817i
\(831\) 0 0
\(832\) −4.96242 + 21.2203i −0.172041 + 0.735682i
\(833\) −8.49097 + 4.90226i −0.294195 + 0.169853i
\(834\) 0 0
\(835\) 1.62902 0.0563747
\(836\) −5.41039 + 9.37107i −0.187122 + 0.324105i
\(837\) 0 0
\(838\) 2.61136 0.699711i 0.0902079 0.0241711i
\(839\) 13.5515 50.5750i 0.467851 1.74604i −0.179410 0.983774i \(-0.557419\pi\)
0.647260 0.762269i \(-0.275915\pi\)
\(840\) 0 0
\(841\) 2.25637 0.0778057
\(842\) 1.17507 2.03529i 0.0404957 0.0701407i
\(843\) 0 0
\(844\) 17.5516 + 10.1334i 0.604152 + 0.348808i
\(845\) −1.02501 0.901267i −0.0352614 0.0310045i
\(846\) 0 0
\(847\) −0.0815646 + 0.304403i −0.00280259 + 0.0104594i
\(848\) 6.53429i 0.224388i
\(849\) 0 0
\(850\) −1.72812 + 6.44944i −0.0592741 + 0.221214i
\(851\) 11.6349 11.6349i 0.398840 0.398840i
\(852\) 0 0
\(853\) 3.77435 + 14.0861i 0.129231 + 0.482297i 0.999955 0.00947475i \(-0.00301595\pi\)
−0.870724 + 0.491772i \(0.836349\pi\)
\(854\) −1.85377 1.07028i −0.0634348 0.0366241i
\(855\) 0 0
\(856\) 34.2349 + 9.17322i 1.17013 + 0.313534i
\(857\) 6.89566 11.9436i 0.235551 0.407986i −0.723882 0.689924i \(-0.757644\pi\)
0.959433 + 0.281938i \(0.0909772\pi\)
\(858\) 0 0
\(859\) 14.9164 + 25.8359i 0.508940 + 0.881510i 0.999946 + 0.0103542i \(0.00329591\pi\)
−0.491006 + 0.871156i \(0.663371\pi\)
\(860\) −0.0684581 0.255489i −0.00233440 0.00871210i
\(861\) 0 0
\(862\) 12.5571 7.24983i 0.427696 0.246930i
\(863\) −33.0412 + 33.0412i −1.12473 + 1.12473i −0.133714 + 0.991020i \(0.542690\pi\)
−0.991020 + 0.133714i \(0.957310\pi\)
\(864\) 0 0
\(865\) 0.416775 + 1.55542i 0.0141708 + 0.0528860i
\(866\) 4.74247 1.27074i 0.161156 0.0431816i
\(867\) 0 0
\(868\) −2.00934 1.16009i −0.0682015 0.0393761i
\(869\) 50.1670 13.4422i 1.70180 0.455996i
\(870\) 0 0
\(871\) −55.2367 + 1.77234i −1.87163 + 0.0600534i
\(872\) 2.66156i 0.0901319i
\(873\) 0 0
\(874\) 5.21706 + 9.03621i 0.176470 + 0.305654i
\(875\) −0.191687 0.332012i −0.00648021 0.0112241i
\(876\) 0 0
\(877\) −7.18363 7.18363i −0.242574 0.242574i 0.575340 0.817914i \(-0.304870\pi\)
−0.817914 + 0.575340i \(0.804870\pi\)
\(878\) 10.4555 + 10.4555i 0.352856 + 0.352856i
\(879\) 0 0
\(880\) −0.0834359 0.144515i −0.00281262 0.00487160i
\(881\) 2.67563 + 4.63432i 0.0901441 + 0.156134i 0.907572 0.419897i \(-0.137934\pi\)
−0.817428 + 0.576031i \(0.804601\pi\)
\(882\) 0 0
\(883\) 11.6579i 0.392321i 0.980572 + 0.196161i \(0.0628474\pi\)
−0.980572 + 0.196161i \(0.937153\pi\)
\(884\) 4.21166 + 3.94979i 0.141653 + 0.132846i
\(885\) 0 0
\(886\) 23.7868 6.37364i 0.799132 0.214127i
\(887\) −8.35407 4.82322i −0.280502 0.161948i 0.353149 0.935567i \(-0.385111\pi\)
−0.633651 + 0.773619i \(0.718444\pi\)
\(888\) 0 0
\(889\) −4.55876 + 1.22152i −0.152896 + 0.0409683i
\(890\) −0.0620422 0.231545i −0.00207966 0.00776139i
\(891\) 0 0
\(892\) −2.54440 + 2.54440i −0.0851929 + 0.0851929i
\(893\) 12.0087 6.93325i 0.401857 0.232012i
\(894\) 0 0
\(895\) −0.507409 1.89367i −0.0169608 0.0632986i
\(896\) 0.932524 + 1.61518i 0.0311534 + 0.0539593i
\(897\) 0 0
\(898\) −5.93349 + 10.2771i −0.198003 + 0.342951i
\(899\) 28.2699 + 7.57490i 0.942854 + 0.252637i
\(900\) 0 0
\(901\) −16.1873 9.34572i −0.539276 0.311351i
\(902\) −5.25557 19.6141i −0.174991 0.653077i
\(903\) 0 0
\(904\) 6.36336 6.36336i 0.211642 0.211642i
\(905\) −0.386408 + 1.44209i −0.0128446 + 0.0479368i
\(906\) 0 0
\(907\) 43.6107i 1.44807i −0.689764 0.724035i \(-0.742286\pi\)
0.689764 0.724035i \(-0.257714\pi\)
\(908\) −1.10233 + 4.11396i −0.0365821 + 0.136526i
\(909\) 0 0
\(910\) 0.129634 0.00415946i 0.00429731 0.000137885i
\(911\) −15.2019 8.77681i −0.503661 0.290789i 0.226563 0.973996i \(-0.427251\pi\)
−0.730224 + 0.683208i \(0.760584\pi\)
\(912\) 0 0
\(913\) −26.4194 + 45.7597i −0.874354 + 1.51443i
\(914\) −12.2879 −0.406448
\(915\) 0 0
\(916\) −5.09255 + 19.0056i −0.168262 + 0.627964i
\(917\) −5.48532 + 1.46979i −0.181141 + 0.0485367i
\(918\) 0 0
\(919\) −2.44511 + 4.23505i −0.0806566 + 0.139701i −0.903532 0.428520i \(-0.859035\pi\)
0.822876 + 0.568222i \(0.192368\pi\)
\(920\) 1.12848 0.0372050
\(921\) 0 0
\(922\) 27.1954 15.7013i 0.895632 0.517094i
\(923\) −0.700671 21.8371i −0.0230629 0.718777i
\(924\) 0 0
\(925\) 15.8003 + 15.8003i 0.519512 + 0.519512i
\(926\) 12.5308 7.23465i 0.411787 0.237745i
\(927\) 0 0
\(928\) −19.6864 19.6864i −0.646237 0.646237i
\(929\) 31.5303 + 8.44852i 1.03448 + 0.277187i 0.735822 0.677175i \(-0.236796\pi\)
0.298653 + 0.954362i \(0.403463\pi\)
\(930\) 0 0
\(931\) −20.0979 5.38522i −0.658682 0.176493i
\(932\) 16.2314i 0.531678i
\(933\) 0 0
\(934\) 13.8682 13.8682i 0.453783 0.453783i
\(935\) −0.477339 −0.0156107
\(936\) 0 0
\(937\) 35.2389 1.15121 0.575603 0.817729i \(-0.304767\pi\)
0.575603 + 0.817729i \(0.304767\pi\)
\(938\) 3.71347 3.71347i 0.121249 0.121249i
\(939\) 0 0
\(940\) 0.538823i 0.0175745i
\(941\) 23.6245 + 6.33017i 0.770137 + 0.206358i 0.622432 0.782674i \(-0.286145\pi\)
0.147705 + 0.989031i \(0.452811\pi\)
\(942\) 0 0
\(943\) 24.1454 + 6.46975i 0.786283 + 0.210684i
\(944\) −1.22115 1.22115i −0.0397451 0.0397451i
\(945\) 0 0
\(946\) 5.80552 3.35182i 0.188754 0.108977i
\(947\) −2.70978 2.70978i −0.0880561 0.0880561i 0.661707 0.749763i \(-0.269832\pi\)
−0.749763 + 0.661707i \(0.769832\pi\)
\(948\) 0 0
\(949\) −17.8942 + 11.1112i −0.580869 + 0.360684i
\(950\) −12.2713 + 7.08482i −0.398132 + 0.229862i
\(951\) 0 0
\(952\) −1.52714 −0.0494950
\(953\) −12.0041 + 20.7918i −0.388852 + 0.673512i −0.992295 0.123894i \(-0.960462\pi\)
0.603443 + 0.797406i \(0.293795\pi\)
\(954\) 0 0
\(955\) 0.743943 0.199339i 0.0240734 0.00645046i
\(956\) −5.94446 + 22.1850i −0.192257 + 0.717515i
\(957\) 0 0
\(958\) 21.2619 0.686942
\(959\) −3.36949 + 5.83613i −0.108806 + 0.188458i
\(960\) 0 0
\(961\) −0.890953 0.514392i −0.0287404 0.0165933i
\(962\) −14.4870 + 4.38431i −0.467080 + 0.141356i
\(963\) 0 0
\(964\) 7.01057 26.1638i 0.225795 0.842679i
\(965\) 2.24733i 0.0723441i
\(966\) 0 0
\(967\) −2.77473 + 10.3554i −0.0892294 + 0.333009i −0.996081 0.0884405i \(-0.971812\pi\)
0.906852 + 0.421449i \(0.138478\pi\)
\(968\) 1.78351 1.78351i 0.0573241 0.0573241i
\(969\) 0 0
\(970\) −0.315145 1.17614i −0.0101187 0.0377634i
\(971\) 46.2535 + 26.7045i 1.48435 + 0.856988i 0.999842 0.0178003i \(-0.00566631\pi\)
0.484505 + 0.874788i \(0.339000\pi\)
\(972\) 0 0
\(973\) −3.20704 0.859324i −0.102813 0.0275487i
\(974\) 2.99405 5.18584i 0.0959355 0.166165i
\(975\) 0 0
\(976\) 1.55932 + 2.70082i 0.0499126 + 0.0864512i
\(977\) 9.64944 + 36.0122i 0.308713 + 1.15213i 0.929702 + 0.368313i \(0.120064\pi\)
−0.620989 + 0.783819i \(0.713269\pi\)
\(978\) 0 0
\(979\) −6.71698 + 3.87805i −0.214676 + 0.123943i
\(980\) −0.571704 + 0.571704i −0.0182624 + 0.0182624i
\(981\) 0 0
\(982\) −3.34964 12.5010i −0.106891 0.398924i
\(983\) −15.8187 + 4.23860i −0.504537 + 0.135190i −0.502105 0.864807i \(-0.667441\pi\)
−0.00243220 + 0.999997i \(0.500774\pi\)
\(984\) 0 0
\(985\) 0.352648 + 0.203601i 0.0112363 + 0.00648727i
\(986\) 6.68529 1.79132i 0.212903 0.0570472i
\(987\) 0 0
\(988\) 0.392963 + 12.2471i 0.0125018 + 0.389632i
\(989\) 8.25236i 0.262410i
\(990\) 0 0
\(991\) −25.9576 44.9599i −0.824571 1.42820i −0.902247 0.431220i \(-0.858083\pi\)
0.0776754 0.996979i \(-0.475250\pi\)
\(992\) 15.2339 + 26.3859i 0.483676 + 0.837752i
\(993\) 0 0
\(994\) 1.46807 + 1.46807i 0.0465644 + 0.0465644i
\(995\) −0.760397 0.760397i −0.0241062 0.0241062i
\(996\) 0 0
\(997\) −0.731834 1.26757i −0.0231774 0.0401445i 0.854204 0.519938i \(-0.174045\pi\)
−0.877381 + 0.479793i \(0.840712\pi\)
\(998\) 1.84259 + 3.19146i 0.0583262 + 0.101024i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.ba.a.89.8 48
3.2 odd 2 117.2.x.a.11.5 48
9.4 even 3 117.2.bc.a.50.8 yes 48
9.5 odd 6 351.2.bf.a.206.5 48
13.6 odd 12 351.2.bf.a.305.5 48
39.32 even 12 117.2.bc.a.110.8 yes 48
117.32 even 12 inner 351.2.ba.a.71.8 48
117.58 odd 12 117.2.x.a.32.5 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.x.a.11.5 48 3.2 odd 2
117.2.x.a.32.5 yes 48 117.58 odd 12
117.2.bc.a.50.8 yes 48 9.4 even 3
117.2.bc.a.110.8 yes 48 39.32 even 12
351.2.ba.a.71.8 48 117.32 even 12 inner
351.2.ba.a.89.8 48 1.1 even 1 trivial
351.2.bf.a.206.5 48 9.5 odd 6
351.2.bf.a.305.5 48 13.6 odd 12