Properties

Label 3480.2.a.bd
Level $3480$
Weight $2$
Character orbit 3480.a
Self dual yes
Analytic conductor $27.788$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3480,2,Mod(1,3480)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3480, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3480.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3480 = 2^{3} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3480.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,4,0,1,0,4,0,2,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.7879399034\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.69272.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} - 2x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + q^{5} - \beta_1 q^{7} + q^{9} - \beta_{3} q^{11} + \beta_{2} q^{13} + q^{15} + (\beta_{2} + 2) q^{17} + ( - \beta_{2} + \beta_1 + 2) q^{19} - \beta_1 q^{21} + (\beta_{3} - \beta_{2} + 2) q^{23}+ \cdots - \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{5} + q^{7} + 4 q^{9} + 2 q^{11} - q^{13} + 4 q^{15} + 7 q^{17} + 8 q^{19} + q^{21} + 7 q^{23} + 4 q^{25} + 4 q^{27} - 4 q^{29} + 2 q^{33} + q^{35} + 9 q^{37} - q^{39} + 15 q^{41}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 9x^{2} - 2x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 5\nu - 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 9\nu - 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -5\beta_{2} + 9\beta _1 + 4 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.96018
−1.16160
0.871384
−2.66996
0 1.00000 0 1.00000 0 −4.56909 0 1.00000 0
1.2 0 1.00000 0 1.00000 0 −1.12032 0 1.00000 0
1.3 0 1.00000 0 1.00000 0 2.84763 0 1.00000 0
1.4 0 1.00000 0 1.00000 0 3.84178 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3480.2.a.bd 4
4.b odd 2 1 6960.2.a.cn 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3480.2.a.bd 4 1.a even 1 1 trivial
6960.2.a.cn 4 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3480))\):

\( T_{7}^{4} - T_{7}^{3} - 22T_{7}^{2} + 28T_{7} + 56 \) Copy content Toggle raw display
\( T_{11}^{4} - 2T_{11}^{3} - 23T_{11}^{2} + 28T_{11} + 124 \) Copy content Toggle raw display
\( T_{13}^{4} + T_{13}^{3} - 18T_{13}^{2} + 32 \) Copy content Toggle raw display
\( T_{17}^{4} - 7T_{17}^{3} + 52T_{17} - 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{3} + \cdots + 56 \) Copy content Toggle raw display
$11$ \( T^{4} - 2 T^{3} + \cdots + 124 \) Copy content Toggle raw display
$13$ \( T^{4} + T^{3} + \cdots + 32 \) Copy content Toggle raw display
$17$ \( T^{4} - 7 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$19$ \( T^{4} - 8 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$23$ \( T^{4} - 7 T^{3} + \cdots - 224 \) Copy content Toggle raw display
$29$ \( (T + 1)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - 36 T^{2} + \cdots + 128 \) Copy content Toggle raw display
$37$ \( T^{4} - 9 T^{3} + \cdots - 256 \) Copy content Toggle raw display
$41$ \( T^{4} - 15 T^{3} + \cdots - 64 \) Copy content Toggle raw display
$43$ \( T^{4} - 3 T^{3} + \cdots + 704 \) Copy content Toggle raw display
$47$ \( T^{4} - 3 T^{3} + \cdots + 2816 \) Copy content Toggle raw display
$53$ \( T^{4} - 5 T^{3} + \cdots + 8 \) Copy content Toggle raw display
$59$ \( T^{4} + 2 T^{3} + \cdots + 512 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + 5 T^{3} + \cdots + 1168 \) Copy content Toggle raw display
$71$ \( T^{4} + 2 T^{3} + \cdots - 512 \) Copy content Toggle raw display
$73$ \( T^{4} - 7 T^{3} + \cdots + 1072 \) Copy content Toggle raw display
$79$ \( T^{4} + 2 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$83$ \( T^{4} - 15 T^{3} + \cdots - 568 \) Copy content Toggle raw display
$89$ \( T^{4} - 15 T^{3} + \cdots - 64 \) Copy content Toggle raw display
$97$ \( T^{4} - 23 T^{3} + \cdots - 2696 \) Copy content Toggle raw display
show more
show less