Properties

Label 3467.2.a.c.1.16
Level $3467$
Weight $2$
Character 3467.1
Self dual yes
Analytic conductor $27.684$
Analytic rank $0$
Dimension $162$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3467,2,Mod(1,3467)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3467.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3467, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3467 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3467.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [162] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.6841343808\)
Analytic rank: \(0\)
Dimension: \(162\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Character \(\chi\) \(=\) 3467.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.41030 q^{2} +2.99235 q^{3} +3.80954 q^{4} -2.37452 q^{5} -7.21245 q^{6} +3.58446 q^{7} -4.36154 q^{8} +5.95415 q^{9} +5.72329 q^{10} -5.47371 q^{11} +11.3995 q^{12} +2.68607 q^{13} -8.63962 q^{14} -7.10538 q^{15} +2.89353 q^{16} +4.30605 q^{17} -14.3513 q^{18} +3.21371 q^{19} -9.04582 q^{20} +10.7260 q^{21} +13.1933 q^{22} -2.38479 q^{23} -13.0512 q^{24} +0.638327 q^{25} -6.47424 q^{26} +8.83984 q^{27} +13.6552 q^{28} +1.63049 q^{29} +17.1261 q^{30} +0.794782 q^{31} +1.74881 q^{32} -16.3793 q^{33} -10.3789 q^{34} -8.51136 q^{35} +22.6826 q^{36} -5.49840 q^{37} -7.74600 q^{38} +8.03767 q^{39} +10.3565 q^{40} +2.65665 q^{41} -25.8528 q^{42} +7.32376 q^{43} -20.8523 q^{44} -14.1382 q^{45} +5.74805 q^{46} +6.93681 q^{47} +8.65844 q^{48} +5.84836 q^{49} -1.53856 q^{50} +12.8852 q^{51} +10.2327 q^{52} +0.702901 q^{53} -21.3067 q^{54} +12.9974 q^{55} -15.6338 q^{56} +9.61654 q^{57} -3.92998 q^{58} +9.07114 q^{59} -27.0682 q^{60} +6.59025 q^{61} -1.91566 q^{62} +21.3424 q^{63} -10.0022 q^{64} -6.37813 q^{65} +39.4789 q^{66} -12.9929 q^{67} +16.4041 q^{68} -7.13611 q^{69} +20.5149 q^{70} -6.48396 q^{71} -25.9692 q^{72} +6.51527 q^{73} +13.2528 q^{74} +1.91010 q^{75} +12.2428 q^{76} -19.6203 q^{77} -19.3732 q^{78} +1.24316 q^{79} -6.87072 q^{80} +8.58944 q^{81} -6.40331 q^{82} +0.923598 q^{83} +40.8610 q^{84} -10.2248 q^{85} -17.6524 q^{86} +4.87900 q^{87} +23.8738 q^{88} -13.4653 q^{89} +34.0773 q^{90} +9.62813 q^{91} -9.08494 q^{92} +2.37827 q^{93} -16.7198 q^{94} -7.63101 q^{95} +5.23306 q^{96} +8.34606 q^{97} -14.0963 q^{98} -32.5913 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 162 q + 9 q^{2} + 24 q^{3} + 189 q^{4} + 32 q^{5} + 9 q^{6} + 23 q^{7} + 27 q^{8} + 196 q^{9} + 50 q^{10} + 12 q^{11} + 69 q^{12} + 144 q^{13} + 11 q^{14} + 17 q^{15} + 223 q^{16} + 33 q^{17} + 39 q^{18}+ \cdots - 25 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.41030 −1.70434 −0.852169 0.523266i \(-0.824713\pi\)
−0.852169 + 0.523266i \(0.824713\pi\)
\(3\) 2.99235 1.72763 0.863817 0.503806i \(-0.168068\pi\)
0.863817 + 0.503806i \(0.168068\pi\)
\(4\) 3.80954 1.90477
\(5\) −2.37452 −1.06192 −0.530958 0.847398i \(-0.678168\pi\)
−0.530958 + 0.847398i \(0.678168\pi\)
\(6\) −7.21245 −2.94447
\(7\) 3.58446 1.35480 0.677399 0.735615i \(-0.263107\pi\)
0.677399 + 0.735615i \(0.263107\pi\)
\(8\) −4.36154 −1.54204
\(9\) 5.95415 1.98472
\(10\) 5.72329 1.80986
\(11\) −5.47371 −1.65039 −0.825193 0.564851i \(-0.808934\pi\)
−0.825193 + 0.564851i \(0.808934\pi\)
\(12\) 11.3995 3.29075
\(13\) 2.68607 0.744983 0.372492 0.928036i \(-0.378504\pi\)
0.372492 + 0.928036i \(0.378504\pi\)
\(14\) −8.63962 −2.30904
\(15\) −7.10538 −1.83460
\(16\) 2.89353 0.723381
\(17\) 4.30605 1.04437 0.522185 0.852832i \(-0.325117\pi\)
0.522185 + 0.852832i \(0.325117\pi\)
\(18\) −14.3513 −3.38263
\(19\) 3.21371 0.737276 0.368638 0.929573i \(-0.379824\pi\)
0.368638 + 0.929573i \(0.379824\pi\)
\(20\) −9.04582 −2.02271
\(21\) 10.7260 2.34060
\(22\) 13.1933 2.81282
\(23\) −2.38479 −0.497262 −0.248631 0.968598i \(-0.579981\pi\)
−0.248631 + 0.968598i \(0.579981\pi\)
\(24\) −13.0512 −2.66407
\(25\) 0.638327 0.127665
\(26\) −6.47424 −1.26970
\(27\) 8.83984 1.70123
\(28\) 13.6552 2.58058
\(29\) 1.63049 0.302775 0.151387 0.988474i \(-0.451626\pi\)
0.151387 + 0.988474i \(0.451626\pi\)
\(30\) 17.1261 3.12678
\(31\) 0.794782 0.142747 0.0713735 0.997450i \(-0.477262\pi\)
0.0713735 + 0.997450i \(0.477262\pi\)
\(32\) 1.74881 0.309149
\(33\) −16.3793 −2.85126
\(34\) −10.3789 −1.77996
\(35\) −8.51136 −1.43868
\(36\) 22.6826 3.78043
\(37\) −5.49840 −0.903932 −0.451966 0.892035i \(-0.649277\pi\)
−0.451966 + 0.892035i \(0.649277\pi\)
\(38\) −7.74600 −1.25657
\(39\) 8.03767 1.28706
\(40\) 10.3565 1.63751
\(41\) 2.65665 0.414899 0.207449 0.978246i \(-0.433484\pi\)
0.207449 + 0.978246i \(0.433484\pi\)
\(42\) −25.8528 −3.98917
\(43\) 7.32376 1.11686 0.558431 0.829551i \(-0.311403\pi\)
0.558431 + 0.829551i \(0.311403\pi\)
\(44\) −20.8523 −3.14361
\(45\) −14.1382 −2.10760
\(46\) 5.74805 0.847503
\(47\) 6.93681 1.01184 0.505919 0.862581i \(-0.331154\pi\)
0.505919 + 0.862581i \(0.331154\pi\)
\(48\) 8.65844 1.24974
\(49\) 5.84836 0.835480
\(50\) −1.53856 −0.217585
\(51\) 12.8852 1.80429
\(52\) 10.2327 1.41902
\(53\) 0.702901 0.0965509 0.0482755 0.998834i \(-0.484627\pi\)
0.0482755 + 0.998834i \(0.484627\pi\)
\(54\) −21.3067 −2.89947
\(55\) 12.9974 1.75257
\(56\) −15.6338 −2.08915
\(57\) 9.61654 1.27374
\(58\) −3.92998 −0.516031
\(59\) 9.07114 1.18096 0.590481 0.807052i \(-0.298938\pi\)
0.590481 + 0.807052i \(0.298938\pi\)
\(60\) −27.0682 −3.49449
\(61\) 6.59025 0.843795 0.421897 0.906644i \(-0.361364\pi\)
0.421897 + 0.906644i \(0.361364\pi\)
\(62\) −1.91566 −0.243289
\(63\) 21.3424 2.68889
\(64\) −10.0022 −1.25028
\(65\) −6.37813 −0.791109
\(66\) 39.4789 4.85952
\(67\) −12.9929 −1.58733 −0.793665 0.608355i \(-0.791830\pi\)
−0.793665 + 0.608355i \(0.791830\pi\)
\(68\) 16.4041 1.98929
\(69\) −7.13611 −0.859087
\(70\) 20.5149 2.45200
\(71\) −6.48396 −0.769505 −0.384753 0.923020i \(-0.625713\pi\)
−0.384753 + 0.923020i \(0.625713\pi\)
\(72\) −25.9692 −3.06050
\(73\) 6.51527 0.762555 0.381277 0.924461i \(-0.375484\pi\)
0.381277 + 0.924461i \(0.375484\pi\)
\(74\) 13.2528 1.54061
\(75\) 1.91010 0.220559
\(76\) 12.2428 1.40434
\(77\) −19.6203 −2.23594
\(78\) −19.3732 −2.19358
\(79\) 1.24316 0.139866 0.0699330 0.997552i \(-0.477721\pi\)
0.0699330 + 0.997552i \(0.477721\pi\)
\(80\) −6.87072 −0.768170
\(81\) 8.58944 0.954382
\(82\) −6.40331 −0.707128
\(83\) 0.923598 0.101378 0.0506890 0.998714i \(-0.483858\pi\)
0.0506890 + 0.998714i \(0.483858\pi\)
\(84\) 40.8610 4.45830
\(85\) −10.2248 −1.10903
\(86\) −17.6524 −1.90351
\(87\) 4.87900 0.523084
\(88\) 23.8738 2.54496
\(89\) −13.4653 −1.42732 −0.713658 0.700494i \(-0.752963\pi\)
−0.713658 + 0.700494i \(0.752963\pi\)
\(90\) 34.0773 3.59207
\(91\) 9.62813 1.00930
\(92\) −9.08494 −0.947171
\(93\) 2.37827 0.246615
\(94\) −16.7198 −1.72451
\(95\) −7.63101 −0.782925
\(96\) 5.23306 0.534097
\(97\) 8.34606 0.847414 0.423707 0.905799i \(-0.360729\pi\)
0.423707 + 0.905799i \(0.360729\pi\)
\(98\) −14.0963 −1.42394
\(99\) −32.5913 −3.27555
\(100\) 2.43173 0.243173
\(101\) 11.4644 1.14075 0.570374 0.821385i \(-0.306798\pi\)
0.570374 + 0.821385i \(0.306798\pi\)
\(102\) −31.0572 −3.07512
\(103\) 8.22340 0.810275 0.405138 0.914256i \(-0.367224\pi\)
0.405138 + 0.914256i \(0.367224\pi\)
\(104\) −11.7154 −1.14879
\(105\) −25.4690 −2.48552
\(106\) −1.69420 −0.164556
\(107\) −10.6095 −1.02566 −0.512829 0.858491i \(-0.671403\pi\)
−0.512829 + 0.858491i \(0.671403\pi\)
\(108\) 33.6757 3.24045
\(109\) 5.66573 0.542679 0.271339 0.962484i \(-0.412533\pi\)
0.271339 + 0.962484i \(0.412533\pi\)
\(110\) −31.3277 −2.98698
\(111\) −16.4531 −1.56166
\(112\) 10.3717 0.980036
\(113\) 12.9836 1.22139 0.610696 0.791865i \(-0.290890\pi\)
0.610696 + 0.791865i \(0.290890\pi\)
\(114\) −23.1787 −2.17089
\(115\) 5.66271 0.528051
\(116\) 6.21143 0.576717
\(117\) 15.9933 1.47858
\(118\) −21.8642 −2.01276
\(119\) 15.4349 1.41491
\(120\) 30.9904 2.82902
\(121\) 18.9615 1.72377
\(122\) −15.8845 −1.43811
\(123\) 7.94961 0.716792
\(124\) 3.02776 0.271901
\(125\) 10.3569 0.926346
\(126\) −51.4416 −4.58278
\(127\) 10.1043 0.896608 0.448304 0.893881i \(-0.352028\pi\)
0.448304 + 0.893881i \(0.352028\pi\)
\(128\) 20.6107 1.82175
\(129\) 21.9152 1.92953
\(130\) 15.3732 1.34832
\(131\) 3.60847 0.315274 0.157637 0.987497i \(-0.449612\pi\)
0.157637 + 0.987497i \(0.449612\pi\)
\(132\) −62.3974 −5.43100
\(133\) 11.5194 0.998860
\(134\) 31.3167 2.70535
\(135\) −20.9903 −1.80656
\(136\) −18.7810 −1.61046
\(137\) −2.89660 −0.247473 −0.123737 0.992315i \(-0.539488\pi\)
−0.123737 + 0.992315i \(0.539488\pi\)
\(138\) 17.2002 1.46417
\(139\) 10.3809 0.880500 0.440250 0.897875i \(-0.354890\pi\)
0.440250 + 0.897875i \(0.354890\pi\)
\(140\) −32.4244 −2.74036
\(141\) 20.7573 1.74808
\(142\) 15.6283 1.31150
\(143\) −14.7028 −1.22951
\(144\) 17.2285 1.43571
\(145\) −3.87163 −0.321522
\(146\) −15.7038 −1.29965
\(147\) 17.5003 1.44340
\(148\) −20.9464 −1.72178
\(149\) −5.21007 −0.426826 −0.213413 0.976962i \(-0.568458\pi\)
−0.213413 + 0.976962i \(0.568458\pi\)
\(150\) −4.60391 −0.375907
\(151\) −1.73870 −0.141493 −0.0707467 0.997494i \(-0.522538\pi\)
−0.0707467 + 0.997494i \(0.522538\pi\)
\(152\) −14.0167 −1.13691
\(153\) 25.6389 2.07278
\(154\) 47.2908 3.81080
\(155\) −1.88722 −0.151585
\(156\) 30.6198 2.45155
\(157\) −12.6385 −1.00866 −0.504332 0.863510i \(-0.668261\pi\)
−0.504332 + 0.863510i \(0.668261\pi\)
\(158\) −2.99638 −0.238379
\(159\) 2.10333 0.166805
\(160\) −4.15258 −0.328291
\(161\) −8.54817 −0.673690
\(162\) −20.7031 −1.62659
\(163\) 7.18808 0.563014 0.281507 0.959559i \(-0.409166\pi\)
0.281507 + 0.959559i \(0.409166\pi\)
\(164\) 10.1206 0.790287
\(165\) 38.8928 3.02780
\(166\) −2.22615 −0.172783
\(167\) −21.6023 −1.67164 −0.835818 0.549006i \(-0.815006\pi\)
−0.835818 + 0.549006i \(0.815006\pi\)
\(168\) −46.7817 −3.60928
\(169\) −5.78500 −0.445000
\(170\) 24.6448 1.89017
\(171\) 19.1349 1.46328
\(172\) 27.9002 2.12737
\(173\) 21.8458 1.66091 0.830455 0.557086i \(-0.188081\pi\)
0.830455 + 0.557086i \(0.188081\pi\)
\(174\) −11.7599 −0.891512
\(175\) 2.28806 0.172961
\(176\) −15.8383 −1.19386
\(177\) 27.1440 2.04027
\(178\) 32.4553 2.43263
\(179\) −2.84643 −0.212752 −0.106376 0.994326i \(-0.533925\pi\)
−0.106376 + 0.994326i \(0.533925\pi\)
\(180\) −53.8602 −4.01450
\(181\) 16.0974 1.19651 0.598257 0.801305i \(-0.295860\pi\)
0.598257 + 0.801305i \(0.295860\pi\)
\(182\) −23.2067 −1.72019
\(183\) 19.7203 1.45777
\(184\) 10.4013 0.766796
\(185\) 13.0560 0.959899
\(186\) −5.73233 −0.420315
\(187\) −23.5701 −1.72361
\(188\) 26.4261 1.92732
\(189\) 31.6861 2.30482
\(190\) 18.3930 1.33437
\(191\) 17.7808 1.28657 0.643285 0.765627i \(-0.277571\pi\)
0.643285 + 0.765627i \(0.277571\pi\)
\(192\) −29.9301 −2.16002
\(193\) −20.7767 −1.49554 −0.747769 0.663959i \(-0.768875\pi\)
−0.747769 + 0.663959i \(0.768875\pi\)
\(194\) −20.1165 −1.44428
\(195\) −19.0856 −1.36675
\(196\) 22.2796 1.59140
\(197\) −2.25573 −0.160714 −0.0803569 0.996766i \(-0.525606\pi\)
−0.0803569 + 0.996766i \(0.525606\pi\)
\(198\) 78.5548 5.58264
\(199\) −9.36237 −0.663681 −0.331840 0.943336i \(-0.607670\pi\)
−0.331840 + 0.943336i \(0.607670\pi\)
\(200\) −2.78409 −0.196865
\(201\) −38.8792 −2.74233
\(202\) −27.6326 −1.94422
\(203\) 5.84444 0.410199
\(204\) 49.0867 3.43676
\(205\) −6.30825 −0.440587
\(206\) −19.8208 −1.38098
\(207\) −14.1994 −0.986924
\(208\) 7.77223 0.538907
\(209\) −17.5909 −1.21679
\(210\) 61.3878 4.23616
\(211\) 24.2441 1.66903 0.834516 0.550984i \(-0.185747\pi\)
0.834516 + 0.550984i \(0.185747\pi\)
\(212\) 2.67773 0.183907
\(213\) −19.4023 −1.32942
\(214\) 25.5721 1.74807
\(215\) −17.3904 −1.18601
\(216\) −38.5553 −2.62336
\(217\) 2.84887 0.193394
\(218\) −13.6561 −0.924909
\(219\) 19.4960 1.31741
\(220\) 49.5142 3.33825
\(221\) 11.5664 0.778038
\(222\) 39.6570 2.66160
\(223\) −27.9252 −1.87001 −0.935006 0.354631i \(-0.884606\pi\)
−0.935006 + 0.354631i \(0.884606\pi\)
\(224\) 6.26855 0.418835
\(225\) 3.80070 0.253380
\(226\) −31.2943 −2.08166
\(227\) −3.96899 −0.263431 −0.131716 0.991288i \(-0.542049\pi\)
−0.131716 + 0.991288i \(0.542049\pi\)
\(228\) 36.6346 2.42619
\(229\) 24.2322 1.60131 0.800653 0.599128i \(-0.204486\pi\)
0.800653 + 0.599128i \(0.204486\pi\)
\(230\) −13.6488 −0.899977
\(231\) −58.7108 −3.86289
\(232\) −7.11146 −0.466890
\(233\) 13.9551 0.914227 0.457113 0.889408i \(-0.348883\pi\)
0.457113 + 0.889408i \(0.348883\pi\)
\(234\) −38.5486 −2.52000
\(235\) −16.4716 −1.07449
\(236\) 34.5569 2.24946
\(237\) 3.71995 0.241637
\(238\) −37.2026 −2.41149
\(239\) 5.53496 0.358027 0.179013 0.983847i \(-0.442709\pi\)
0.179013 + 0.983847i \(0.442709\pi\)
\(240\) −20.5596 −1.32712
\(241\) −29.0642 −1.87219 −0.936093 0.351752i \(-0.885586\pi\)
−0.936093 + 0.351752i \(0.885586\pi\)
\(242\) −45.7029 −2.93790
\(243\) −0.816925 −0.0524058
\(244\) 25.1058 1.60724
\(245\) −13.8870 −0.887209
\(246\) −19.1609 −1.22166
\(247\) 8.63226 0.549258
\(248\) −3.46647 −0.220121
\(249\) 2.76373 0.175144
\(250\) −24.9631 −1.57881
\(251\) −19.4535 −1.22789 −0.613946 0.789348i \(-0.710419\pi\)
−0.613946 + 0.789348i \(0.710419\pi\)
\(252\) 81.3048 5.12172
\(253\) 13.0536 0.820675
\(254\) −24.3543 −1.52812
\(255\) −30.5961 −1.91600
\(256\) −29.6735 −1.85460
\(257\) −13.6034 −0.848555 −0.424277 0.905532i \(-0.639472\pi\)
−0.424277 + 0.905532i \(0.639472\pi\)
\(258\) −52.8223 −3.28857
\(259\) −19.7088 −1.22465
\(260\) −24.2977 −1.50688
\(261\) 9.70820 0.600922
\(262\) −8.69750 −0.537333
\(263\) −28.1842 −1.73791 −0.868957 0.494887i \(-0.835209\pi\)
−0.868957 + 0.494887i \(0.835209\pi\)
\(264\) 71.4387 4.39675
\(265\) −1.66905 −0.102529
\(266\) −27.7652 −1.70240
\(267\) −40.2928 −2.46588
\(268\) −49.4969 −3.02350
\(269\) 27.7199 1.69011 0.845055 0.534680i \(-0.179568\pi\)
0.845055 + 0.534680i \(0.179568\pi\)
\(270\) 50.5930 3.07899
\(271\) 13.0678 0.793811 0.396906 0.917859i \(-0.370084\pi\)
0.396906 + 0.917859i \(0.370084\pi\)
\(272\) 12.4597 0.755478
\(273\) 28.8107 1.74370
\(274\) 6.98167 0.421778
\(275\) −3.49402 −0.210697
\(276\) −27.1853 −1.63636
\(277\) −16.3227 −0.980736 −0.490368 0.871516i \(-0.663138\pi\)
−0.490368 + 0.871516i \(0.663138\pi\)
\(278\) −25.0212 −1.50067
\(279\) 4.73225 0.283312
\(280\) 37.1226 2.21850
\(281\) 26.4348 1.57697 0.788484 0.615056i \(-0.210866\pi\)
0.788484 + 0.615056i \(0.210866\pi\)
\(282\) −50.0314 −2.97933
\(283\) −14.3471 −0.852845 −0.426423 0.904524i \(-0.640226\pi\)
−0.426423 + 0.904524i \(0.640226\pi\)
\(284\) −24.7009 −1.46573
\(285\) −22.8346 −1.35261
\(286\) 35.4381 2.09550
\(287\) 9.52265 0.562104
\(288\) 10.4127 0.613574
\(289\) 1.54206 0.0907092
\(290\) 9.33179 0.547982
\(291\) 24.9743 1.46402
\(292\) 24.8202 1.45249
\(293\) 31.2285 1.82439 0.912195 0.409756i \(-0.134386\pi\)
0.912195 + 0.409756i \(0.134386\pi\)
\(294\) −42.1810 −2.46005
\(295\) −21.5396 −1.25408
\(296\) 23.9815 1.39390
\(297\) −48.3867 −2.80768
\(298\) 12.5578 0.727456
\(299\) −6.40571 −0.370452
\(300\) 7.27660 0.420114
\(301\) 26.2517 1.51312
\(302\) 4.19079 0.241153
\(303\) 34.3054 1.97079
\(304\) 9.29895 0.533331
\(305\) −15.6486 −0.896039
\(306\) −61.7973 −3.53272
\(307\) 14.5301 0.829275 0.414638 0.909987i \(-0.363908\pi\)
0.414638 + 0.909987i \(0.363908\pi\)
\(308\) −74.7444 −4.25896
\(309\) 24.6073 1.39986
\(310\) 4.54877 0.258353
\(311\) −7.14700 −0.405269 −0.202634 0.979254i \(-0.564950\pi\)
−0.202634 + 0.979254i \(0.564950\pi\)
\(312\) −35.0566 −1.98469
\(313\) −17.1075 −0.966970 −0.483485 0.875353i \(-0.660629\pi\)
−0.483485 + 0.875353i \(0.660629\pi\)
\(314\) 30.4626 1.71910
\(315\) −50.6779 −2.85538
\(316\) 4.73585 0.266413
\(317\) −3.91600 −0.219945 −0.109972 0.993935i \(-0.535076\pi\)
−0.109972 + 0.993935i \(0.535076\pi\)
\(318\) −5.06964 −0.284292
\(319\) −8.92485 −0.499696
\(320\) 23.7504 1.32769
\(321\) −31.7473 −1.77196
\(322\) 20.6037 1.14820
\(323\) 13.8384 0.769989
\(324\) 32.7218 1.81788
\(325\) 1.71459 0.0951086
\(326\) −17.3254 −0.959567
\(327\) 16.9538 0.937550
\(328\) −11.5871 −0.639789
\(329\) 24.8647 1.37084
\(330\) −93.7433 −5.16040
\(331\) 11.7296 0.644717 0.322358 0.946618i \(-0.395524\pi\)
0.322358 + 0.946618i \(0.395524\pi\)
\(332\) 3.51849 0.193102
\(333\) −32.7383 −1.79405
\(334\) 52.0680 2.84903
\(335\) 30.8518 1.68561
\(336\) 31.0358 1.69314
\(337\) 18.4279 1.00383 0.501915 0.864917i \(-0.332629\pi\)
0.501915 + 0.864917i \(0.332629\pi\)
\(338\) 13.9436 0.758431
\(339\) 38.8514 2.11012
\(340\) −38.9517 −2.11245
\(341\) −4.35041 −0.235588
\(342\) −46.1208 −2.49393
\(343\) −4.12802 −0.222892
\(344\) −31.9428 −1.72224
\(345\) 16.9448 0.912278
\(346\) −52.6550 −2.83075
\(347\) −26.9522 −1.44687 −0.723436 0.690391i \(-0.757438\pi\)
−0.723436 + 0.690391i \(0.757438\pi\)
\(348\) 18.5868 0.996355
\(349\) −19.0325 −1.01879 −0.509394 0.860533i \(-0.670130\pi\)
−0.509394 + 0.860533i \(0.670130\pi\)
\(350\) −5.51491 −0.294784
\(351\) 23.7445 1.26739
\(352\) −9.57249 −0.510216
\(353\) 24.5262 1.30540 0.652699 0.757617i \(-0.273637\pi\)
0.652699 + 0.757617i \(0.273637\pi\)
\(354\) −65.4252 −3.47731
\(355\) 15.3963 0.817150
\(356\) −51.2965 −2.71871
\(357\) 46.1865 2.44445
\(358\) 6.86076 0.362602
\(359\) 32.3445 1.70708 0.853538 0.521030i \(-0.174452\pi\)
0.853538 + 0.521030i \(0.174452\pi\)
\(360\) 61.6644 3.25000
\(361\) −8.67207 −0.456425
\(362\) −38.7996 −2.03926
\(363\) 56.7395 2.97805
\(364\) 36.6788 1.92249
\(365\) −15.4706 −0.809769
\(366\) −47.5319 −2.48453
\(367\) −18.4750 −0.964390 −0.482195 0.876064i \(-0.660160\pi\)
−0.482195 + 0.876064i \(0.660160\pi\)
\(368\) −6.90044 −0.359710
\(369\) 15.8181 0.823456
\(370\) −31.4690 −1.63599
\(371\) 2.51952 0.130807
\(372\) 9.06010 0.469744
\(373\) 11.6829 0.604920 0.302460 0.953162i \(-0.402192\pi\)
0.302460 + 0.953162i \(0.402192\pi\)
\(374\) 56.8109 2.93762
\(375\) 30.9913 1.60039
\(376\) −30.2551 −1.56029
\(377\) 4.37963 0.225562
\(378\) −76.3729 −3.92820
\(379\) −8.77391 −0.450686 −0.225343 0.974280i \(-0.572350\pi\)
−0.225343 + 0.974280i \(0.572350\pi\)
\(380\) −29.0706 −1.49129
\(381\) 30.2355 1.54901
\(382\) −42.8569 −2.19275
\(383\) −23.9733 −1.22498 −0.612489 0.790479i \(-0.709831\pi\)
−0.612489 + 0.790479i \(0.709831\pi\)
\(384\) 61.6744 3.14731
\(385\) 46.5887 2.37438
\(386\) 50.0780 2.54890
\(387\) 43.6068 2.21666
\(388\) 31.7947 1.61413
\(389\) −15.5334 −0.787574 −0.393787 0.919202i \(-0.628835\pi\)
−0.393787 + 0.919202i \(0.628835\pi\)
\(390\) 46.0020 2.32940
\(391\) −10.2690 −0.519326
\(392\) −25.5078 −1.28834
\(393\) 10.7978 0.544678
\(394\) 5.43697 0.273911
\(395\) −2.95189 −0.148526
\(396\) −124.158 −6.23917
\(397\) 12.5788 0.631311 0.315655 0.948874i \(-0.397776\pi\)
0.315655 + 0.948874i \(0.397776\pi\)
\(398\) 22.5661 1.13114
\(399\) 34.4701 1.72566
\(400\) 1.84702 0.0923508
\(401\) 6.72108 0.335635 0.167817 0.985818i \(-0.446328\pi\)
0.167817 + 0.985818i \(0.446328\pi\)
\(402\) 93.7104 4.67385
\(403\) 2.13484 0.106344
\(404\) 43.6740 2.17286
\(405\) −20.3958 −1.01347
\(406\) −14.0868 −0.699118
\(407\) 30.0967 1.49184
\(408\) −56.1993 −2.78228
\(409\) −0.438323 −0.0216737 −0.0108368 0.999941i \(-0.503450\pi\)
−0.0108368 + 0.999941i \(0.503450\pi\)
\(410\) 15.2048 0.750910
\(411\) −8.66764 −0.427543
\(412\) 31.3274 1.54339
\(413\) 32.5151 1.59997
\(414\) 34.2247 1.68205
\(415\) −2.19310 −0.107655
\(416\) 4.69744 0.230311
\(417\) 31.0634 1.52118
\(418\) 42.3994 2.07382
\(419\) 24.9550 1.21913 0.609566 0.792735i \(-0.291344\pi\)
0.609566 + 0.792735i \(0.291344\pi\)
\(420\) −97.0250 −4.73434
\(421\) −10.3555 −0.504694 −0.252347 0.967637i \(-0.581202\pi\)
−0.252347 + 0.967637i \(0.581202\pi\)
\(422\) −58.4355 −2.84460
\(423\) 41.3028 2.00821
\(424\) −3.06573 −0.148885
\(425\) 2.74867 0.133330
\(426\) 46.7653 2.26579
\(427\) 23.6225 1.14317
\(428\) −40.4173 −1.95365
\(429\) −43.9959 −2.12414
\(430\) 41.9160 2.02137
\(431\) 25.0805 1.20809 0.604043 0.796952i \(-0.293555\pi\)
0.604043 + 0.796952i \(0.293555\pi\)
\(432\) 25.5783 1.23064
\(433\) 35.6851 1.71491 0.857457 0.514555i \(-0.172043\pi\)
0.857457 + 0.514555i \(0.172043\pi\)
\(434\) −6.86662 −0.329608
\(435\) −11.5853 −0.555471
\(436\) 21.5838 1.03368
\(437\) −7.66401 −0.366619
\(438\) −46.9911 −2.24532
\(439\) 24.6016 1.17417 0.587084 0.809526i \(-0.300276\pi\)
0.587084 + 0.809526i \(0.300276\pi\)
\(440\) −56.6887 −2.70253
\(441\) 34.8220 1.65819
\(442\) −27.8784 −1.32604
\(443\) 14.9974 0.712546 0.356273 0.934382i \(-0.384047\pi\)
0.356273 + 0.934382i \(0.384047\pi\)
\(444\) −62.6789 −2.97461
\(445\) 31.9735 1.51569
\(446\) 67.3082 3.18713
\(447\) −15.5904 −0.737398
\(448\) −35.8525 −1.69387
\(449\) −21.1084 −0.996166 −0.498083 0.867129i \(-0.665963\pi\)
−0.498083 + 0.867129i \(0.665963\pi\)
\(450\) −9.16081 −0.431845
\(451\) −14.5417 −0.684743
\(452\) 49.4614 2.32647
\(453\) −5.20280 −0.244449
\(454\) 9.56646 0.448976
\(455\) −22.8621 −1.07179
\(456\) −41.9429 −1.96416
\(457\) −39.3856 −1.84238 −0.921191 0.389110i \(-0.872783\pi\)
−0.921191 + 0.389110i \(0.872783\pi\)
\(458\) −58.4068 −2.72917
\(459\) 38.0648 1.77671
\(460\) 21.5723 1.00582
\(461\) −10.9460 −0.509805 −0.254903 0.966967i \(-0.582043\pi\)
−0.254903 + 0.966967i \(0.582043\pi\)
\(462\) 141.511 6.58367
\(463\) 11.0524 0.513651 0.256825 0.966458i \(-0.417324\pi\)
0.256825 + 0.966458i \(0.417324\pi\)
\(464\) 4.71787 0.219022
\(465\) −5.64723 −0.261884
\(466\) −33.6359 −1.55815
\(467\) −11.6032 −0.536931 −0.268466 0.963289i \(-0.586517\pi\)
−0.268466 + 0.963289i \(0.586517\pi\)
\(468\) 60.9271 2.81636
\(469\) −46.5724 −2.15051
\(470\) 39.7014 1.83129
\(471\) −37.8188 −1.74260
\(472\) −39.5641 −1.82109
\(473\) −40.0881 −1.84325
\(474\) −8.96620 −0.411831
\(475\) 2.05140 0.0941246
\(476\) 58.7998 2.69508
\(477\) 4.18518 0.191626
\(478\) −13.3409 −0.610199
\(479\) −31.1938 −1.42528 −0.712641 0.701528i \(-0.752501\pi\)
−0.712641 + 0.701528i \(0.752501\pi\)
\(480\) −12.4260 −0.567166
\(481\) −14.7691 −0.673414
\(482\) 70.0533 3.19084
\(483\) −25.5791 −1.16389
\(484\) 72.2347 3.28340
\(485\) −19.8179 −0.899883
\(486\) 1.96903 0.0893172
\(487\) 11.4483 0.518774 0.259387 0.965774i \(-0.416480\pi\)
0.259387 + 0.965774i \(0.416480\pi\)
\(488\) −28.7436 −1.30116
\(489\) 21.5093 0.972682
\(490\) 33.4719 1.51211
\(491\) 27.0498 1.22074 0.610371 0.792116i \(-0.291020\pi\)
0.610371 + 0.792116i \(0.291020\pi\)
\(492\) 30.2844 1.36533
\(493\) 7.02098 0.316209
\(494\) −20.8063 −0.936121
\(495\) 77.3886 3.47836
\(496\) 2.29972 0.103261
\(497\) −23.2415 −1.04252
\(498\) −6.66141 −0.298505
\(499\) 21.6714 0.970146 0.485073 0.874474i \(-0.338793\pi\)
0.485073 + 0.874474i \(0.338793\pi\)
\(500\) 39.4549 1.76448
\(501\) −64.6416 −2.88797
\(502\) 46.8887 2.09275
\(503\) −24.7566 −1.10384 −0.551921 0.833896i \(-0.686105\pi\)
−0.551921 + 0.833896i \(0.686105\pi\)
\(504\) −93.0857 −4.14637
\(505\) −27.2223 −1.21138
\(506\) −31.4632 −1.39871
\(507\) −17.3107 −0.768797
\(508\) 38.4926 1.70783
\(509\) 28.2808 1.25353 0.626763 0.779210i \(-0.284380\pi\)
0.626763 + 0.779210i \(0.284380\pi\)
\(510\) 73.7458 3.26552
\(511\) 23.3537 1.03311
\(512\) 30.3007 1.33911
\(513\) 28.4087 1.25427
\(514\) 32.7882 1.44622
\(515\) −19.5266 −0.860444
\(516\) 83.4870 3.67531
\(517\) −37.9701 −1.66992
\(518\) 47.5041 2.08721
\(519\) 65.3704 2.86944
\(520\) 27.8184 1.21992
\(521\) −14.7141 −0.644636 −0.322318 0.946631i \(-0.604462\pi\)
−0.322318 + 0.946631i \(0.604462\pi\)
\(522\) −23.3997 −1.02418
\(523\) 2.00236 0.0875570 0.0437785 0.999041i \(-0.486060\pi\)
0.0437785 + 0.999041i \(0.486060\pi\)
\(524\) 13.7466 0.600524
\(525\) 6.84667 0.298813
\(526\) 67.9324 2.96200
\(527\) 3.42237 0.149081
\(528\) −47.3938 −2.06255
\(529\) −17.3128 −0.752730
\(530\) 4.02291 0.174744
\(531\) 54.0109 2.34387
\(532\) 43.8837 1.90260
\(533\) 7.13595 0.309092
\(534\) 97.1176 4.20269
\(535\) 25.1924 1.08916
\(536\) 56.6689 2.44772
\(537\) −8.51752 −0.367558
\(538\) −66.8131 −2.88052
\(539\) −32.0122 −1.37886
\(540\) −79.9636 −3.44109
\(541\) 7.37487 0.317070 0.158535 0.987353i \(-0.449323\pi\)
0.158535 + 0.987353i \(0.449323\pi\)
\(542\) −31.4973 −1.35292
\(543\) 48.1691 2.06714
\(544\) 7.53047 0.322866
\(545\) −13.4534 −0.576279
\(546\) −69.4424 −2.97186
\(547\) 38.7908 1.65857 0.829287 0.558823i \(-0.188747\pi\)
0.829287 + 0.558823i \(0.188747\pi\)
\(548\) −11.0347 −0.471380
\(549\) 39.2393 1.67469
\(550\) 8.42163 0.359100
\(551\) 5.23993 0.223229
\(552\) 31.1244 1.32474
\(553\) 4.45604 0.189490
\(554\) 39.3426 1.67151
\(555\) 39.0682 1.65835
\(556\) 39.5466 1.67715
\(557\) −18.6669 −0.790943 −0.395471 0.918478i \(-0.629419\pi\)
−0.395471 + 0.918478i \(0.629419\pi\)
\(558\) −11.4061 −0.482860
\(559\) 19.6722 0.832044
\(560\) −24.6278 −1.04072
\(561\) −70.5299 −2.97777
\(562\) −63.7158 −2.68769
\(563\) 34.1575 1.43957 0.719784 0.694198i \(-0.244241\pi\)
0.719784 + 0.694198i \(0.244241\pi\)
\(564\) 79.0760 3.32970
\(565\) −30.8297 −1.29701
\(566\) 34.5807 1.45354
\(567\) 30.7885 1.29300
\(568\) 28.2801 1.18660
\(569\) −3.23760 −0.135727 −0.0678636 0.997695i \(-0.521618\pi\)
−0.0678636 + 0.997695i \(0.521618\pi\)
\(570\) 55.0383 2.30530
\(571\) −14.4006 −0.602647 −0.301323 0.953522i \(-0.597428\pi\)
−0.301323 + 0.953522i \(0.597428\pi\)
\(572\) −56.0109 −2.34193
\(573\) 53.2062 2.22272
\(574\) −22.9524 −0.958016
\(575\) −1.52227 −0.0634832
\(576\) −59.5547 −2.48144
\(577\) 34.0788 1.41872 0.709360 0.704846i \(-0.248984\pi\)
0.709360 + 0.704846i \(0.248984\pi\)
\(578\) −3.71682 −0.154599
\(579\) −62.1710 −2.58374
\(580\) −14.7491 −0.612425
\(581\) 3.31060 0.137347
\(582\) −60.1956 −2.49519
\(583\) −3.84748 −0.159346
\(584\) −28.4166 −1.17589
\(585\) −37.9763 −1.57013
\(586\) −75.2701 −3.10938
\(587\) 0.490115 0.0202292 0.0101146 0.999949i \(-0.496780\pi\)
0.0101146 + 0.999949i \(0.496780\pi\)
\(588\) 66.6682 2.74935
\(589\) 2.55420 0.105244
\(590\) 51.9168 2.13738
\(591\) −6.74992 −0.277654
\(592\) −15.9098 −0.653887
\(593\) 21.2146 0.871179 0.435589 0.900145i \(-0.356540\pi\)
0.435589 + 0.900145i \(0.356540\pi\)
\(594\) 116.627 4.78524
\(595\) −36.6503 −1.50252
\(596\) −19.8480 −0.813005
\(597\) −28.0155 −1.14660
\(598\) 15.4397 0.631376
\(599\) 22.6521 0.925538 0.462769 0.886479i \(-0.346856\pi\)
0.462769 + 0.886479i \(0.346856\pi\)
\(600\) −8.33096 −0.340110
\(601\) −23.7438 −0.968530 −0.484265 0.874922i \(-0.660913\pi\)
−0.484265 + 0.874922i \(0.660913\pi\)
\(602\) −63.2745 −2.57888
\(603\) −77.3614 −3.15040
\(604\) −6.62365 −0.269513
\(605\) −45.0244 −1.83050
\(606\) −82.6863 −3.35890
\(607\) −25.7742 −1.04614 −0.523072 0.852289i \(-0.675214\pi\)
−0.523072 + 0.852289i \(0.675214\pi\)
\(608\) 5.62018 0.227928
\(609\) 17.4886 0.708674
\(610\) 37.7179 1.52715
\(611\) 18.6328 0.753802
\(612\) 97.6723 3.94817
\(613\) −10.5489 −0.426067 −0.213034 0.977045i \(-0.568334\pi\)
−0.213034 + 0.977045i \(0.568334\pi\)
\(614\) −35.0218 −1.41337
\(615\) −18.8765 −0.761173
\(616\) 85.5747 3.44790
\(617\) 35.1490 1.41504 0.707522 0.706692i \(-0.249813\pi\)
0.707522 + 0.706692i \(0.249813\pi\)
\(618\) −59.3109 −2.38583
\(619\) −40.3930 −1.62353 −0.811766 0.583983i \(-0.801494\pi\)
−0.811766 + 0.583983i \(0.801494\pi\)
\(620\) −7.18946 −0.288735
\(621\) −21.0811 −0.845957
\(622\) 17.2264 0.690716
\(623\) −48.2657 −1.93373
\(624\) 23.2572 0.931033
\(625\) −27.7842 −1.11137
\(626\) 41.2341 1.64805
\(627\) −52.6382 −2.10217
\(628\) −48.1470 −1.92127
\(629\) −23.6764 −0.944039
\(630\) 122.149 4.86653
\(631\) 15.8057 0.629216 0.314608 0.949222i \(-0.398127\pi\)
0.314608 + 0.949222i \(0.398127\pi\)
\(632\) −5.42207 −0.215678
\(633\) 72.5468 2.88348
\(634\) 9.43874 0.374860
\(635\) −23.9927 −0.952122
\(636\) 8.01271 0.317725
\(637\) 15.7091 0.622418
\(638\) 21.5116 0.851650
\(639\) −38.6065 −1.52725
\(640\) −48.9404 −1.93454
\(641\) 8.48744 0.335234 0.167617 0.985852i \(-0.446393\pi\)
0.167617 + 0.985852i \(0.446393\pi\)
\(642\) 76.5205 3.02002
\(643\) −11.0349 −0.435175 −0.217587 0.976041i \(-0.569819\pi\)
−0.217587 + 0.976041i \(0.569819\pi\)
\(644\) −32.5646 −1.28323
\(645\) −52.0381 −2.04900
\(646\) −33.3547 −1.31232
\(647\) 13.9546 0.548611 0.274305 0.961643i \(-0.411552\pi\)
0.274305 + 0.961643i \(0.411552\pi\)
\(648\) −37.4632 −1.47169
\(649\) −49.6528 −1.94904
\(650\) −4.13269 −0.162097
\(651\) 8.52480 0.334113
\(652\) 27.3833 1.07241
\(653\) 18.3816 0.719326 0.359663 0.933082i \(-0.382892\pi\)
0.359663 + 0.933082i \(0.382892\pi\)
\(654\) −40.8638 −1.59790
\(655\) −8.56838 −0.334794
\(656\) 7.68708 0.300130
\(657\) 38.7929 1.51345
\(658\) −59.9314 −2.33637
\(659\) −14.5433 −0.566527 −0.283263 0.959042i \(-0.591417\pi\)
−0.283263 + 0.959042i \(0.591417\pi\)
\(660\) 148.164 5.76727
\(661\) −37.7961 −1.47010 −0.735049 0.678014i \(-0.762841\pi\)
−0.735049 + 0.678014i \(0.762841\pi\)
\(662\) −28.2718 −1.09882
\(663\) 34.6106 1.34416
\(664\) −4.02831 −0.156329
\(665\) −27.3530 −1.06071
\(666\) 78.9091 3.05767
\(667\) −3.88838 −0.150559
\(668\) −82.2949 −3.18408
\(669\) −83.5620 −3.23070
\(670\) −74.3620 −2.87285
\(671\) −36.0731 −1.39259
\(672\) 18.7577 0.723593
\(673\) −9.91444 −0.382174 −0.191087 0.981573i \(-0.561201\pi\)
−0.191087 + 0.981573i \(0.561201\pi\)
\(674\) −44.4166 −1.71087
\(675\) 5.64271 0.217188
\(676\) −22.0382 −0.847624
\(677\) −12.6376 −0.485703 −0.242851 0.970064i \(-0.578083\pi\)
−0.242851 + 0.970064i \(0.578083\pi\)
\(678\) −93.6434 −3.59635
\(679\) 29.9161 1.14808
\(680\) 44.5958 1.71017
\(681\) −11.8766 −0.455113
\(682\) 10.4858 0.401521
\(683\) −12.3352 −0.471994 −0.235997 0.971754i \(-0.575836\pi\)
−0.235997 + 0.971754i \(0.575836\pi\)
\(684\) 72.8952 2.78722
\(685\) 6.87802 0.262796
\(686\) 9.94975 0.379883
\(687\) 72.5111 2.76647
\(688\) 21.1915 0.807918
\(689\) 1.88805 0.0719288
\(690\) −40.8421 −1.55483
\(691\) 32.1220 1.22198 0.610989 0.791639i \(-0.290772\pi\)
0.610989 + 0.791639i \(0.290772\pi\)
\(692\) 83.2227 3.16365
\(693\) −116.822 −4.43771
\(694\) 64.9630 2.46596
\(695\) −24.6497 −0.935016
\(696\) −21.2800 −0.806614
\(697\) 11.4397 0.433308
\(698\) 45.8741 1.73636
\(699\) 41.7584 1.57945
\(700\) 8.71646 0.329451
\(701\) 30.6491 1.15760 0.578799 0.815470i \(-0.303521\pi\)
0.578799 + 0.815470i \(0.303521\pi\)
\(702\) −57.2313 −2.16006
\(703\) −17.6703 −0.666447
\(704\) 54.7492 2.06344
\(705\) −49.2886 −1.85632
\(706\) −59.1155 −2.22484
\(707\) 41.0936 1.54548
\(708\) 103.406 3.88624
\(709\) 17.8311 0.669663 0.334831 0.942278i \(-0.391321\pi\)
0.334831 + 0.942278i \(0.391321\pi\)
\(710\) −37.1096 −1.39270
\(711\) 7.40193 0.277594
\(712\) 58.7293 2.20097
\(713\) −1.89539 −0.0709827
\(714\) −111.323 −4.16617
\(715\) 34.9120 1.30564
\(716\) −10.8436 −0.405245
\(717\) 16.5625 0.618539
\(718\) −77.9599 −2.90944
\(719\) −1.29805 −0.0484090 −0.0242045 0.999707i \(-0.507705\pi\)
−0.0242045 + 0.999707i \(0.507705\pi\)
\(720\) −40.9093 −1.52460
\(721\) 29.4764 1.09776
\(722\) 20.9023 0.777902
\(723\) −86.9701 −3.23445
\(724\) 61.3239 2.27908
\(725\) 1.04079 0.0386539
\(726\) −136.759 −5.07561
\(727\) −34.2361 −1.26975 −0.634873 0.772617i \(-0.718948\pi\)
−0.634873 + 0.772617i \(0.718948\pi\)
\(728\) −41.9934 −1.55638
\(729\) −28.2128 −1.04492
\(730\) 37.2888 1.38012
\(731\) 31.5365 1.16642
\(732\) 75.1254 2.77671
\(733\) 38.7202 1.43016 0.715082 0.699041i \(-0.246390\pi\)
0.715082 + 0.699041i \(0.246390\pi\)
\(734\) 44.5304 1.64365
\(735\) −41.5548 −1.53277
\(736\) −4.17054 −0.153728
\(737\) 71.1192 2.61971
\(738\) −38.1263 −1.40345
\(739\) −49.3220 −1.81434 −0.907169 0.420767i \(-0.861761\pi\)
−0.907169 + 0.420767i \(0.861761\pi\)
\(740\) 49.7375 1.82839
\(741\) 25.8307 0.948916
\(742\) −6.07280 −0.222940
\(743\) −4.32261 −0.158581 −0.0792906 0.996852i \(-0.525266\pi\)
−0.0792906 + 0.996852i \(0.525266\pi\)
\(744\) −10.3729 −0.380289
\(745\) 12.3714 0.453253
\(746\) −28.1594 −1.03099
\(747\) 5.49924 0.201207
\(748\) −89.7912 −3.28309
\(749\) −38.0293 −1.38956
\(750\) −74.6984 −2.72760
\(751\) −5.24001 −0.191211 −0.0956054 0.995419i \(-0.530479\pi\)
−0.0956054 + 0.995419i \(0.530479\pi\)
\(752\) 20.0718 0.731944
\(753\) −58.2116 −2.12135
\(754\) −10.5562 −0.384434
\(755\) 4.12857 0.150254
\(756\) 120.709 4.39016
\(757\) 17.0577 0.619971 0.309986 0.950741i \(-0.399676\pi\)
0.309986 + 0.950741i \(0.399676\pi\)
\(758\) 21.1478 0.768121
\(759\) 39.0610 1.41782
\(760\) 33.2829 1.20730
\(761\) −51.5839 −1.86991 −0.934957 0.354761i \(-0.884562\pi\)
−0.934957 + 0.354761i \(0.884562\pi\)
\(762\) −72.8765 −2.64004
\(763\) 20.3086 0.735221
\(764\) 67.7365 2.45062
\(765\) −60.8799 −2.20112
\(766\) 57.7828 2.08778
\(767\) 24.3657 0.879796
\(768\) −88.7935 −3.20406
\(769\) −20.3063 −0.732263 −0.366131 0.930563i \(-0.619318\pi\)
−0.366131 + 0.930563i \(0.619318\pi\)
\(770\) −112.293 −4.04675
\(771\) −40.7060 −1.46599
\(772\) −79.1496 −2.84866
\(773\) −26.1670 −0.941163 −0.470581 0.882357i \(-0.655956\pi\)
−0.470581 + 0.882357i \(0.655956\pi\)
\(774\) −105.105 −3.77793
\(775\) 0.507331 0.0182239
\(776\) −36.4017 −1.30674
\(777\) −58.9756 −2.11574
\(778\) 37.4401 1.34229
\(779\) 8.53769 0.305895
\(780\) −72.7073 −2.60334
\(781\) 35.4914 1.26998
\(782\) 24.7514 0.885107
\(783\) 14.4133 0.515089
\(784\) 16.9224 0.604370
\(785\) 30.0104 1.07112
\(786\) −26.0260 −0.928315
\(787\) 11.0240 0.392963 0.196481 0.980508i \(-0.437049\pi\)
0.196481 + 0.980508i \(0.437049\pi\)
\(788\) −8.59328 −0.306123
\(789\) −84.3371 −3.00248
\(790\) 7.11495 0.253138
\(791\) 46.5391 1.65474
\(792\) 142.148 5.05101
\(793\) 17.7019 0.628613
\(794\) −30.3186 −1.07597
\(795\) −4.99438 −0.177132
\(796\) −35.6663 −1.26416
\(797\) 14.6481 0.518862 0.259431 0.965762i \(-0.416465\pi\)
0.259431 + 0.965762i \(0.416465\pi\)
\(798\) −83.0833 −2.94112
\(799\) 29.8702 1.05673
\(800\) 1.11631 0.0394677
\(801\) −80.1742 −2.83282
\(802\) −16.1998 −0.572035
\(803\) −35.6627 −1.25851
\(804\) −148.112 −5.22350
\(805\) 20.2978 0.715402
\(806\) −5.14561 −0.181246
\(807\) 82.9475 2.91989
\(808\) −50.0023 −1.75907
\(809\) −33.6797 −1.18411 −0.592057 0.805896i \(-0.701684\pi\)
−0.592057 + 0.805896i \(0.701684\pi\)
\(810\) 49.1599 1.72730
\(811\) −18.4325 −0.647252 −0.323626 0.946185i \(-0.604902\pi\)
−0.323626 + 0.946185i \(0.604902\pi\)
\(812\) 22.2646 0.781335
\(813\) 39.1034 1.37141
\(814\) −72.5420 −2.54259
\(815\) −17.0682 −0.597874
\(816\) 37.2836 1.30519
\(817\) 23.5364 0.823436
\(818\) 1.05649 0.0369393
\(819\) 57.3273 2.00318
\(820\) −24.0315 −0.839218
\(821\) −29.1734 −1.01816 −0.509080 0.860719i \(-0.670014\pi\)
−0.509080 + 0.860719i \(0.670014\pi\)
\(822\) 20.8916 0.728678
\(823\) 35.2009 1.22703 0.613514 0.789684i \(-0.289755\pi\)
0.613514 + 0.789684i \(0.289755\pi\)
\(824\) −35.8666 −1.24947
\(825\) −10.4553 −0.364008
\(826\) −78.3712 −2.72688
\(827\) 23.8691 0.830010 0.415005 0.909819i \(-0.363780\pi\)
0.415005 + 0.909819i \(0.363780\pi\)
\(828\) −54.0931 −1.87987
\(829\) 2.02759 0.0704213 0.0352106 0.999380i \(-0.488790\pi\)
0.0352106 + 0.999380i \(0.488790\pi\)
\(830\) 5.28602 0.183481
\(831\) −48.8432 −1.69435
\(832\) −26.8667 −0.931435
\(833\) 25.1833 0.872550
\(834\) −74.8720 −2.59261
\(835\) 51.2950 1.77514
\(836\) −67.0133 −2.31770
\(837\) 7.02575 0.242845
\(838\) −60.1490 −2.07781
\(839\) −47.5590 −1.64192 −0.820960 0.570986i \(-0.806561\pi\)
−0.820960 + 0.570986i \(0.806561\pi\)
\(840\) 111.084 3.83275
\(841\) −26.3415 −0.908327
\(842\) 24.9598 0.860170
\(843\) 79.1021 2.72442
\(844\) 92.3589 3.17912
\(845\) 13.7366 0.472553
\(846\) −99.5521 −3.42267
\(847\) 67.9668 2.33537
\(848\) 2.03386 0.0698432
\(849\) −42.9314 −1.47340
\(850\) −6.62511 −0.227239
\(851\) 13.1125 0.449491
\(852\) −73.9138 −2.53225
\(853\) −13.1715 −0.450983 −0.225491 0.974245i \(-0.572399\pi\)
−0.225491 + 0.974245i \(0.572399\pi\)
\(854\) −56.9372 −1.94835
\(855\) −45.4361 −1.55388
\(856\) 46.2737 1.58160
\(857\) −28.1725 −0.962355 −0.481178 0.876623i \(-0.659791\pi\)
−0.481178 + 0.876623i \(0.659791\pi\)
\(858\) 106.043 3.62026
\(859\) 8.64906 0.295102 0.147551 0.989054i \(-0.452861\pi\)
0.147551 + 0.989054i \(0.452861\pi\)
\(860\) −66.2494 −2.25909
\(861\) 28.4951 0.971110
\(862\) −60.4516 −2.05899
\(863\) 33.6894 1.14680 0.573401 0.819275i \(-0.305624\pi\)
0.573401 + 0.819275i \(0.305624\pi\)
\(864\) 15.4592 0.525934
\(865\) −51.8733 −1.76375
\(866\) −86.0117 −2.92280
\(867\) 4.61437 0.156712
\(868\) 10.8529 0.368370
\(869\) −6.80468 −0.230833
\(870\) 27.9240 0.946711
\(871\) −34.8998 −1.18253
\(872\) −24.7113 −0.836830
\(873\) 49.6937 1.68188
\(874\) 18.4726 0.624844
\(875\) 37.1238 1.25501
\(876\) 74.2707 2.50937
\(877\) 5.65402 0.190923 0.0954614 0.995433i \(-0.469567\pi\)
0.0954614 + 0.995433i \(0.469567\pi\)
\(878\) −59.2971 −2.00118
\(879\) 93.4466 3.15188
\(880\) 37.6084 1.26778
\(881\) 32.3309 1.08926 0.544628 0.838678i \(-0.316671\pi\)
0.544628 + 0.838678i \(0.316671\pi\)
\(882\) −83.9314 −2.82612
\(883\) −28.3254 −0.953224 −0.476612 0.879114i \(-0.658135\pi\)
−0.476612 + 0.879114i \(0.658135\pi\)
\(884\) 44.0626 1.48198
\(885\) −64.4539 −2.16659
\(886\) −36.1481 −1.21442
\(887\) 31.0824 1.04365 0.521823 0.853054i \(-0.325252\pi\)
0.521823 + 0.853054i \(0.325252\pi\)
\(888\) 71.7610 2.40814
\(889\) 36.2183 1.21472
\(890\) −77.0657 −2.58325
\(891\) −47.0161 −1.57510
\(892\) −106.382 −3.56195
\(893\) 22.2929 0.746003
\(894\) 37.5774 1.25678
\(895\) 6.75890 0.225925
\(896\) 73.8782 2.46810
\(897\) −19.1681 −0.640005
\(898\) 50.8775 1.69780
\(899\) 1.29589 0.0432202
\(900\) 14.4789 0.482630
\(901\) 3.02673 0.100835
\(902\) 35.0499 1.16703
\(903\) 78.5543 2.61412
\(904\) −56.6283 −1.88343
\(905\) −38.2236 −1.27060
\(906\) 12.5403 0.416623
\(907\) 2.49770 0.0829346 0.0414673 0.999140i \(-0.486797\pi\)
0.0414673 + 0.999140i \(0.486797\pi\)
\(908\) −15.1200 −0.501776
\(909\) 68.2606 2.26406
\(910\) 55.1046 1.82670
\(911\) −48.3836 −1.60302 −0.801509 0.597982i \(-0.795969\pi\)
−0.801509 + 0.597982i \(0.795969\pi\)
\(912\) 27.8257 0.921401
\(913\) −5.05551 −0.167313
\(914\) 94.9312 3.14004
\(915\) −46.8262 −1.54803
\(916\) 92.3135 3.05012
\(917\) 12.9344 0.427133
\(918\) −91.7475 −3.02812
\(919\) 28.1069 0.927162 0.463581 0.886055i \(-0.346564\pi\)
0.463581 + 0.886055i \(0.346564\pi\)
\(920\) −24.6981 −0.814273
\(921\) 43.4790 1.43268
\(922\) 26.3831 0.868881
\(923\) −17.4164 −0.573268
\(924\) −223.661 −7.35791
\(925\) −3.50978 −0.115401
\(926\) −26.6397 −0.875435
\(927\) 48.9633 1.60817
\(928\) 2.85143 0.0936026
\(929\) −34.5665 −1.13409 −0.567045 0.823687i \(-0.691913\pi\)
−0.567045 + 0.823687i \(0.691913\pi\)
\(930\) 13.6115 0.446339
\(931\) 18.7949 0.615979
\(932\) 53.1624 1.74139
\(933\) −21.3863 −0.700156
\(934\) 27.9671 0.915113
\(935\) 55.9675 1.83033
\(936\) −69.7553 −2.28002
\(937\) −2.77196 −0.0905561 −0.0452780 0.998974i \(-0.514417\pi\)
−0.0452780 + 0.998974i \(0.514417\pi\)
\(938\) 112.253 3.66520
\(939\) −51.1915 −1.67057
\(940\) −62.7491 −2.04665
\(941\) −2.36761 −0.0771819 −0.0385909 0.999255i \(-0.512287\pi\)
−0.0385909 + 0.999255i \(0.512287\pi\)
\(942\) 91.1547 2.96998
\(943\) −6.33553 −0.206313
\(944\) 26.2476 0.854285
\(945\) −75.2391 −2.44753
\(946\) 96.6244 3.14153
\(947\) −45.6424 −1.48318 −0.741590 0.670854i \(-0.765928\pi\)
−0.741590 + 0.670854i \(0.765928\pi\)
\(948\) 14.1713 0.460263
\(949\) 17.5005 0.568090
\(950\) −4.94448 −0.160420
\(951\) −11.7180 −0.379984
\(952\) −67.3197 −2.18184
\(953\) 15.1144 0.489604 0.244802 0.969573i \(-0.421277\pi\)
0.244802 + 0.969573i \(0.421277\pi\)
\(954\) −10.0875 −0.326596
\(955\) −42.2207 −1.36623
\(956\) 21.0857 0.681959
\(957\) −26.7063 −0.863291
\(958\) 75.1865 2.42916
\(959\) −10.3828 −0.335276
\(960\) 71.0695 2.29376
\(961\) −30.3683 −0.979623
\(962\) 35.5980 1.14773
\(963\) −63.1705 −2.03564
\(964\) −110.721 −3.56609
\(965\) 49.3345 1.58814
\(966\) 61.6533 1.98366
\(967\) −55.3288 −1.77925 −0.889627 0.456687i \(-0.849036\pi\)
−0.889627 + 0.456687i \(0.849036\pi\)
\(968\) −82.7014 −2.65812
\(969\) 41.4093 1.33026
\(970\) 47.7670 1.53370
\(971\) −51.3472 −1.64781 −0.823905 0.566728i \(-0.808209\pi\)
−0.823905 + 0.566728i \(0.808209\pi\)
\(972\) −3.11211 −0.0998210
\(973\) 37.2101 1.19290
\(974\) −27.5939 −0.884166
\(975\) 5.13066 0.164313
\(976\) 19.0690 0.610385
\(977\) −60.8298 −1.94612 −0.973059 0.230556i \(-0.925945\pi\)
−0.973059 + 0.230556i \(0.925945\pi\)
\(978\) −51.8437 −1.65778
\(979\) 73.7050 2.35562
\(980\) −52.9032 −1.68993
\(981\) 33.7346 1.07706
\(982\) −65.1982 −2.08056
\(983\) −52.9430 −1.68862 −0.844310 0.535854i \(-0.819990\pi\)
−0.844310 + 0.535854i \(0.819990\pi\)
\(984\) −34.6725 −1.10532
\(985\) 5.35626 0.170665
\(986\) −16.9227 −0.538927
\(987\) 74.4039 2.36830
\(988\) 32.8850 1.04621
\(989\) −17.4656 −0.555374
\(990\) −186.530 −5.92830
\(991\) −15.9377 −0.506277 −0.253138 0.967430i \(-0.581463\pi\)
−0.253138 + 0.967430i \(0.581463\pi\)
\(992\) 1.38992 0.0441302
\(993\) 35.0990 1.11383
\(994\) 56.0190 1.77682
\(995\) 22.2311 0.704773
\(996\) 10.5285 0.333609
\(997\) −38.5120 −1.21969 −0.609843 0.792522i \(-0.708767\pi\)
−0.609843 + 0.792522i \(0.708767\pi\)
\(998\) −52.2346 −1.65346
\(999\) −48.6050 −1.53779
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3467.2.a.c.1.16 162
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3467.2.a.c.1.16 162 1.1 even 1 trivial