Properties

Label 3467.2.a.b.1.14
Level $3467$
Weight $2$
Character 3467.1
Self dual yes
Analytic conductor $27.684$
Analytic rank $1$
Dimension $126$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3467,2,Mod(1,3467)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3467.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3467, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3467 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3467.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [126] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.6841343808\)
Analytic rank: \(1\)
Dimension: \(126\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 3467.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.30915 q^{2} -2.10535 q^{3} +3.33217 q^{4} +0.0313740 q^{5} +4.86157 q^{6} +0.850976 q^{7} -3.07619 q^{8} +1.43250 q^{9} -0.0724474 q^{10} -3.50044 q^{11} -7.01539 q^{12} +3.38018 q^{13} -1.96503 q^{14} -0.0660534 q^{15} +0.439028 q^{16} +2.50571 q^{17} -3.30786 q^{18} -0.483045 q^{19} +0.104544 q^{20} -1.79160 q^{21} +8.08304 q^{22} +0.00571689 q^{23} +6.47645 q^{24} -4.99902 q^{25} -7.80535 q^{26} +3.30013 q^{27} +2.83560 q^{28} +5.87591 q^{29} +0.152527 q^{30} -2.04497 q^{31} +5.13859 q^{32} +7.36966 q^{33} -5.78606 q^{34} +0.0266986 q^{35} +4.77334 q^{36} -5.34220 q^{37} +1.11542 q^{38} -7.11647 q^{39} -0.0965124 q^{40} +3.80047 q^{41} +4.13708 q^{42} -8.46884 q^{43} -11.6641 q^{44} +0.0449434 q^{45} -0.0132012 q^{46} +7.93374 q^{47} -0.924308 q^{48} -6.27584 q^{49} +11.5435 q^{50} -5.27540 q^{51} +11.2634 q^{52} -12.8979 q^{53} -7.62051 q^{54} -0.109823 q^{55} -2.61776 q^{56} +1.01698 q^{57} -13.5684 q^{58} +9.96089 q^{59} -0.220101 q^{60} -3.99035 q^{61} +4.72215 q^{62} +1.21902 q^{63} -12.7438 q^{64} +0.106050 q^{65} -17.0176 q^{66} +7.75691 q^{67} +8.34945 q^{68} -0.0120361 q^{69} -0.0616510 q^{70} +3.20846 q^{71} -4.40664 q^{72} -12.3791 q^{73} +12.3359 q^{74} +10.5247 q^{75} -1.60959 q^{76} -2.97879 q^{77} +16.4330 q^{78} +5.27340 q^{79} +0.0137741 q^{80} -11.2454 q^{81} -8.77585 q^{82} -3.52953 q^{83} -5.96993 q^{84} +0.0786142 q^{85} +19.5558 q^{86} -12.3708 q^{87} +10.7680 q^{88} +8.06800 q^{89} -0.103781 q^{90} +2.87645 q^{91} +0.0190497 q^{92} +4.30539 q^{93} -18.3202 q^{94} -0.0151551 q^{95} -10.8185 q^{96} -8.39578 q^{97} +14.4919 q^{98} -5.01439 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 126 q - 11 q^{2} - 25 q^{3} + 99 q^{4} - 32 q^{5} - 15 q^{6} - 27 q^{7} - 27 q^{8} + 93 q^{9} - 46 q^{10} - 6 q^{11} - 67 q^{12} - 137 q^{13} - 17 q^{14} - 15 q^{15} + 49 q^{16} - 30 q^{17} - 37 q^{18}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.30915 −1.63282 −0.816408 0.577476i \(-0.804038\pi\)
−0.816408 + 0.577476i \(0.804038\pi\)
\(3\) −2.10535 −1.21552 −0.607762 0.794119i \(-0.707933\pi\)
−0.607762 + 0.794119i \(0.707933\pi\)
\(4\) 3.33217 1.66609
\(5\) 0.0313740 0.0140309 0.00701545 0.999975i \(-0.497767\pi\)
0.00701545 + 0.999975i \(0.497767\pi\)
\(6\) 4.86157 1.98473
\(7\) 0.850976 0.321639 0.160819 0.986984i \(-0.448586\pi\)
0.160819 + 0.986984i \(0.448586\pi\)
\(8\) −3.07619 −1.08760
\(9\) 1.43250 0.477500
\(10\) −0.0724474 −0.0229099
\(11\) −3.50044 −1.05542 −0.527711 0.849424i \(-0.676950\pi\)
−0.527711 + 0.849424i \(0.676950\pi\)
\(12\) −7.01539 −2.02517
\(13\) 3.38018 0.937494 0.468747 0.883332i \(-0.344706\pi\)
0.468747 + 0.883332i \(0.344706\pi\)
\(14\) −1.96503 −0.525176
\(15\) −0.0660534 −0.0170549
\(16\) 0.439028 0.109757
\(17\) 2.50571 0.607724 0.303862 0.952716i \(-0.401724\pi\)
0.303862 + 0.952716i \(0.401724\pi\)
\(18\) −3.30786 −0.779670
\(19\) −0.483045 −0.110818 −0.0554090 0.998464i \(-0.517646\pi\)
−0.0554090 + 0.998464i \(0.517646\pi\)
\(20\) 0.104544 0.0233767
\(21\) −1.79160 −0.390960
\(22\) 8.08304 1.72331
\(23\) 0.00571689 0.00119205 0.000596027 1.00000i \(-0.499810\pi\)
0.000596027 1.00000i \(0.499810\pi\)
\(24\) 6.47645 1.32200
\(25\) −4.99902 −0.999803
\(26\) −7.80535 −1.53076
\(27\) 3.30013 0.635111
\(28\) 2.83560 0.535878
\(29\) 5.87591 1.09113 0.545564 0.838069i \(-0.316315\pi\)
0.545564 + 0.838069i \(0.316315\pi\)
\(30\) 0.152527 0.0278475
\(31\) −2.04497 −0.367288 −0.183644 0.982993i \(-0.558789\pi\)
−0.183644 + 0.982993i \(0.558789\pi\)
\(32\) 5.13859 0.908383
\(33\) 7.36966 1.28289
\(34\) −5.78606 −0.992301
\(35\) 0.0266986 0.00451288
\(36\) 4.77334 0.795557
\(37\) −5.34220 −0.878253 −0.439126 0.898425i \(-0.644712\pi\)
−0.439126 + 0.898425i \(0.644712\pi\)
\(38\) 1.11542 0.180945
\(39\) −7.11647 −1.13955
\(40\) −0.0965124 −0.0152599
\(41\) 3.80047 0.593534 0.296767 0.954950i \(-0.404092\pi\)
0.296767 + 0.954950i \(0.404092\pi\)
\(42\) 4.13708 0.638365
\(43\) −8.46884 −1.29149 −0.645743 0.763555i \(-0.723452\pi\)
−0.645743 + 0.763555i \(0.723452\pi\)
\(44\) −11.6641 −1.75843
\(45\) 0.0449434 0.00669976
\(46\) −0.0132012 −0.00194640
\(47\) 7.93374 1.15725 0.578627 0.815592i \(-0.303589\pi\)
0.578627 + 0.815592i \(0.303589\pi\)
\(48\) −0.924308 −0.133412
\(49\) −6.27584 −0.896549
\(50\) 11.5435 1.63249
\(51\) −5.27540 −0.738703
\(52\) 11.2634 1.56195
\(53\) −12.8979 −1.77167 −0.885834 0.464003i \(-0.846413\pi\)
−0.885834 + 0.464003i \(0.846413\pi\)
\(54\) −7.62051 −1.03702
\(55\) −0.109823 −0.0148085
\(56\) −2.61776 −0.349813
\(57\) 1.01698 0.134702
\(58\) −13.5684 −1.78161
\(59\) 9.96089 1.29680 0.648399 0.761301i \(-0.275439\pi\)
0.648399 + 0.761301i \(0.275439\pi\)
\(60\) −0.220101 −0.0284149
\(61\) −3.99035 −0.510912 −0.255456 0.966821i \(-0.582226\pi\)
−0.255456 + 0.966821i \(0.582226\pi\)
\(62\) 4.72215 0.599714
\(63\) 1.21902 0.153583
\(64\) −12.7438 −1.59298
\(65\) 0.106050 0.0131539
\(66\) −17.0176 −2.09473
\(67\) 7.75691 0.947658 0.473829 0.880617i \(-0.342872\pi\)
0.473829 + 0.880617i \(0.342872\pi\)
\(68\) 8.34945 1.01252
\(69\) −0.0120361 −0.00144897
\(70\) −0.0616510 −0.00736870
\(71\) 3.20846 0.380774 0.190387 0.981709i \(-0.439026\pi\)
0.190387 + 0.981709i \(0.439026\pi\)
\(72\) −4.40664 −0.519327
\(73\) −12.3791 −1.44886 −0.724432 0.689347i \(-0.757898\pi\)
−0.724432 + 0.689347i \(0.757898\pi\)
\(74\) 12.3359 1.43402
\(75\) 10.5247 1.21529
\(76\) −1.60959 −0.184632
\(77\) −2.97879 −0.339465
\(78\) 16.4330 1.86067
\(79\) 5.27340 0.593304 0.296652 0.954986i \(-0.404130\pi\)
0.296652 + 0.954986i \(0.404130\pi\)
\(80\) 0.0137741 0.00153999
\(81\) −11.2454 −1.24949
\(82\) −8.77585 −0.969131
\(83\) −3.52953 −0.387416 −0.193708 0.981059i \(-0.562051\pi\)
−0.193708 + 0.981059i \(0.562051\pi\)
\(84\) −5.96993 −0.651373
\(85\) 0.0786142 0.00852691
\(86\) 19.5558 2.10876
\(87\) −12.3708 −1.32629
\(88\) 10.7680 1.14787
\(89\) 8.06800 0.855206 0.427603 0.903967i \(-0.359358\pi\)
0.427603 + 0.903967i \(0.359358\pi\)
\(90\) −0.103781 −0.0109395
\(91\) 2.87645 0.301534
\(92\) 0.0190497 0.00198606
\(93\) 4.30539 0.446448
\(94\) −18.3202 −1.88958
\(95\) −0.0151551 −0.00155488
\(96\) −10.8185 −1.10416
\(97\) −8.39578 −0.852463 −0.426231 0.904614i \(-0.640159\pi\)
−0.426231 + 0.904614i \(0.640159\pi\)
\(98\) 14.4919 1.46390
\(99\) −5.01439 −0.503965
\(100\) −16.6576 −1.66576
\(101\) 5.83991 0.581093 0.290546 0.956861i \(-0.406163\pi\)
0.290546 + 0.956861i \(0.406163\pi\)
\(102\) 12.1817 1.20617
\(103\) 11.2647 1.10994 0.554971 0.831870i \(-0.312729\pi\)
0.554971 + 0.831870i \(0.312729\pi\)
\(104\) −10.3981 −1.01962
\(105\) −0.0562098 −0.00548552
\(106\) 29.7833 2.89281
\(107\) 13.0070 1.25743 0.628715 0.777636i \(-0.283581\pi\)
0.628715 + 0.777636i \(0.283581\pi\)
\(108\) 10.9966 1.05815
\(109\) −1.78442 −0.170916 −0.0854580 0.996342i \(-0.527235\pi\)
−0.0854580 + 0.996342i \(0.527235\pi\)
\(110\) 0.253598 0.0241796
\(111\) 11.2472 1.06754
\(112\) 0.373602 0.0353021
\(113\) 1.32158 0.124324 0.0621620 0.998066i \(-0.480200\pi\)
0.0621620 + 0.998066i \(0.480200\pi\)
\(114\) −2.34835 −0.219944
\(115\) 0.000179362 0 1.67256e−5 0
\(116\) 19.5795 1.81791
\(117\) 4.84212 0.447654
\(118\) −23.0012 −2.11743
\(119\) 2.13230 0.195467
\(120\) 0.203192 0.0185488
\(121\) 1.25309 0.113917
\(122\) 9.21432 0.834225
\(123\) −8.00132 −0.721455
\(124\) −6.81421 −0.611934
\(125\) −0.313710 −0.0280590
\(126\) −2.81491 −0.250772
\(127\) 1.69589 0.150485 0.0752427 0.997165i \(-0.476027\pi\)
0.0752427 + 0.997165i \(0.476027\pi\)
\(128\) 19.1502 1.69266
\(129\) 17.8299 1.56983
\(130\) −0.244885 −0.0214779
\(131\) 11.2330 0.981430 0.490715 0.871320i \(-0.336736\pi\)
0.490715 + 0.871320i \(0.336736\pi\)
\(132\) 24.5570 2.13741
\(133\) −0.411059 −0.0356434
\(134\) −17.9119 −1.54735
\(135\) 0.103539 0.00891118
\(136\) −7.70803 −0.660958
\(137\) −4.31501 −0.368656 −0.184328 0.982865i \(-0.559011\pi\)
−0.184328 + 0.982865i \(0.559011\pi\)
\(138\) 0.0277931 0.00236590
\(139\) 8.97101 0.760911 0.380456 0.924799i \(-0.375767\pi\)
0.380456 + 0.924799i \(0.375767\pi\)
\(140\) 0.0889642 0.00751885
\(141\) −16.7033 −1.40667
\(142\) −7.40881 −0.621733
\(143\) −11.8321 −0.989453
\(144\) 0.628908 0.0524090
\(145\) 0.184351 0.0153095
\(146\) 28.5852 2.36573
\(147\) 13.2128 1.08978
\(148\) −17.8011 −1.46324
\(149\) −1.07918 −0.0884100 −0.0442050 0.999022i \(-0.514075\pi\)
−0.0442050 + 0.999022i \(0.514075\pi\)
\(150\) −24.3031 −1.98434
\(151\) −0.474939 −0.0386500 −0.0193250 0.999813i \(-0.506152\pi\)
−0.0193250 + 0.999813i \(0.506152\pi\)
\(152\) 1.48593 0.120525
\(153\) 3.58943 0.290188
\(154\) 6.87847 0.554283
\(155\) −0.0641591 −0.00515338
\(156\) −23.7133 −1.89858
\(157\) 12.4231 0.991468 0.495734 0.868474i \(-0.334899\pi\)
0.495734 + 0.868474i \(0.334899\pi\)
\(158\) −12.1771 −0.968756
\(159\) 27.1547 2.15351
\(160\) 0.161218 0.0127454
\(161\) 0.00486494 0.000383411 0
\(162\) 25.9674 2.04019
\(163\) −8.79161 −0.688612 −0.344306 0.938858i \(-0.611886\pi\)
−0.344306 + 0.938858i \(0.611886\pi\)
\(164\) 12.6638 0.988878
\(165\) 0.231216 0.0180001
\(166\) 8.15021 0.632579
\(167\) 16.8378 1.30295 0.651474 0.758671i \(-0.274151\pi\)
0.651474 + 0.758671i \(0.274151\pi\)
\(168\) 5.51130 0.425206
\(169\) −1.57435 −0.121104
\(170\) −0.181532 −0.0139229
\(171\) −0.691962 −0.0529156
\(172\) −28.2196 −2.15173
\(173\) −16.4974 −1.25427 −0.627137 0.778909i \(-0.715773\pi\)
−0.627137 + 0.778909i \(0.715773\pi\)
\(174\) 28.5661 2.16559
\(175\) −4.25404 −0.321575
\(176\) −1.53679 −0.115840
\(177\) −20.9712 −1.57629
\(178\) −18.6302 −1.39639
\(179\) −3.51042 −0.262381 −0.131191 0.991357i \(-0.541880\pi\)
−0.131191 + 0.991357i \(0.541880\pi\)
\(180\) 0.149759 0.0111624
\(181\) 11.9668 0.889487 0.444743 0.895658i \(-0.353295\pi\)
0.444743 + 0.895658i \(0.353295\pi\)
\(182\) −6.64217 −0.492350
\(183\) 8.40109 0.621026
\(184\) −0.0175862 −0.00129647
\(185\) −0.167606 −0.0123227
\(186\) −9.94178 −0.728967
\(187\) −8.77109 −0.641405
\(188\) 26.4366 1.92809
\(189\) 2.80833 0.204276
\(190\) 0.0349953 0.00253883
\(191\) 17.5167 1.26746 0.633732 0.773552i \(-0.281522\pi\)
0.633732 + 0.773552i \(0.281522\pi\)
\(192\) 26.8302 1.93630
\(193\) 6.18314 0.445072 0.222536 0.974924i \(-0.428567\pi\)
0.222536 + 0.974924i \(0.428567\pi\)
\(194\) 19.3871 1.39191
\(195\) −0.223273 −0.0159889
\(196\) −20.9122 −1.49373
\(197\) −14.8597 −1.05871 −0.529355 0.848401i \(-0.677566\pi\)
−0.529355 + 0.848401i \(0.677566\pi\)
\(198\) 11.5790 0.822881
\(199\) −5.54256 −0.392901 −0.196451 0.980514i \(-0.562942\pi\)
−0.196451 + 0.980514i \(0.562942\pi\)
\(200\) 15.3779 1.08738
\(201\) −16.3310 −1.15190
\(202\) −13.4852 −0.948817
\(203\) 5.00026 0.350949
\(204\) −17.5785 −1.23074
\(205\) 0.119236 0.00832781
\(206\) −26.0118 −1.81233
\(207\) 0.00818945 0.000569206 0
\(208\) 1.48400 0.102897
\(209\) 1.69087 0.116960
\(210\) 0.129797 0.00895684
\(211\) 16.4168 1.13018 0.565089 0.825030i \(-0.308842\pi\)
0.565089 + 0.825030i \(0.308842\pi\)
\(212\) −42.9781 −2.95175
\(213\) −6.75493 −0.462840
\(214\) −30.0350 −2.05315
\(215\) −0.265702 −0.0181207
\(216\) −10.1518 −0.690744
\(217\) −1.74022 −0.118134
\(218\) 4.12048 0.279074
\(219\) 26.0623 1.76113
\(220\) −0.365949 −0.0246723
\(221\) 8.46976 0.569738
\(222\) −25.9715 −1.74309
\(223\) 10.0930 0.675880 0.337940 0.941168i \(-0.390270\pi\)
0.337940 + 0.941168i \(0.390270\pi\)
\(224\) 4.37281 0.292171
\(225\) −7.16110 −0.477406
\(226\) −3.05173 −0.202998
\(227\) −29.1594 −1.93538 −0.967690 0.252142i \(-0.918865\pi\)
−0.967690 + 0.252142i \(0.918865\pi\)
\(228\) 3.38875 0.224425
\(229\) 0.688399 0.0454907 0.0227454 0.999741i \(-0.492759\pi\)
0.0227454 + 0.999741i \(0.492759\pi\)
\(230\) −0.000414174 0 −2.73098e−5 0
\(231\) 6.27140 0.412628
\(232\) −18.0754 −1.18671
\(233\) −5.57374 −0.365148 −0.182574 0.983192i \(-0.558443\pi\)
−0.182574 + 0.983192i \(0.558443\pi\)
\(234\) −11.1812 −0.730936
\(235\) 0.248913 0.0162373
\(236\) 33.1914 2.16058
\(237\) −11.1024 −0.721176
\(238\) −4.92379 −0.319162
\(239\) −7.54397 −0.487979 −0.243989 0.969778i \(-0.578456\pi\)
−0.243989 + 0.969778i \(0.578456\pi\)
\(240\) −0.0289993 −0.00187190
\(241\) −10.1273 −0.652354 −0.326177 0.945309i \(-0.605761\pi\)
−0.326177 + 0.945309i \(0.605761\pi\)
\(242\) −2.89357 −0.186006
\(243\) 13.7752 0.883679
\(244\) −13.2965 −0.851224
\(245\) −0.196899 −0.0125794
\(246\) 18.4763 1.17800
\(247\) −1.63278 −0.103891
\(248\) 6.29072 0.399461
\(249\) 7.43089 0.470914
\(250\) 0.724402 0.0458152
\(251\) 16.4740 1.03983 0.519915 0.854218i \(-0.325964\pi\)
0.519915 + 0.854218i \(0.325964\pi\)
\(252\) 4.06200 0.255882
\(253\) −0.0200116 −0.00125812
\(254\) −3.91605 −0.245715
\(255\) −0.165511 −0.0103647
\(256\) −18.7331 −1.17082
\(257\) −2.82751 −0.176375 −0.0881877 0.996104i \(-0.528108\pi\)
−0.0881877 + 0.996104i \(0.528108\pi\)
\(258\) −41.1718 −2.56325
\(259\) −4.54608 −0.282480
\(260\) 0.353377 0.0219155
\(261\) 8.41725 0.521014
\(262\) −25.9386 −1.60249
\(263\) −30.5709 −1.88508 −0.942541 0.334090i \(-0.891571\pi\)
−0.942541 + 0.334090i \(0.891571\pi\)
\(264\) −22.6704 −1.39527
\(265\) −0.404660 −0.0248581
\(266\) 0.949197 0.0581990
\(267\) −16.9860 −1.03952
\(268\) 25.8474 1.57888
\(269\) −15.5972 −0.950978 −0.475489 0.879722i \(-0.657729\pi\)
−0.475489 + 0.879722i \(0.657729\pi\)
\(270\) −0.239086 −0.0145503
\(271\) −2.99917 −0.182186 −0.0910932 0.995842i \(-0.529036\pi\)
−0.0910932 + 0.995842i \(0.529036\pi\)
\(272\) 1.10008 0.0667019
\(273\) −6.05595 −0.366523
\(274\) 9.96400 0.601948
\(275\) 17.4988 1.05522
\(276\) −0.0401062 −0.00241411
\(277\) −15.0480 −0.904149 −0.452074 0.891980i \(-0.649316\pi\)
−0.452074 + 0.891980i \(0.649316\pi\)
\(278\) −20.7154 −1.24243
\(279\) −2.92943 −0.175380
\(280\) −0.0821297 −0.00490819
\(281\) 11.3460 0.676846 0.338423 0.940994i \(-0.390107\pi\)
0.338423 + 0.940994i \(0.390107\pi\)
\(282\) 38.5704 2.29683
\(283\) −22.4749 −1.33599 −0.667996 0.744165i \(-0.732848\pi\)
−0.667996 + 0.744165i \(0.732848\pi\)
\(284\) 10.6911 0.634402
\(285\) 0.0319067 0.00188999
\(286\) 27.3222 1.61559
\(287\) 3.23411 0.190903
\(288\) 7.36103 0.433753
\(289\) −10.7214 −0.630672
\(290\) −0.425694 −0.0249976
\(291\) 17.6761 1.03619
\(292\) −41.2493 −2.41393
\(293\) −16.0381 −0.936956 −0.468478 0.883475i \(-0.655198\pi\)
−0.468478 + 0.883475i \(0.655198\pi\)
\(294\) −30.5104 −1.77940
\(295\) 0.312514 0.0181952
\(296\) 16.4336 0.955184
\(297\) −11.5519 −0.670311
\(298\) 2.49199 0.144357
\(299\) 0.0193241 0.00111754
\(300\) 35.0701 2.02477
\(301\) −7.20678 −0.415392
\(302\) 1.09671 0.0631084
\(303\) −12.2951 −0.706333
\(304\) −0.212070 −0.0121631
\(305\) −0.125194 −0.00716856
\(306\) −8.28853 −0.473824
\(307\) −6.96631 −0.397588 −0.198794 0.980041i \(-0.563703\pi\)
−0.198794 + 0.980041i \(0.563703\pi\)
\(308\) −9.92584 −0.565577
\(309\) −23.7161 −1.34916
\(310\) 0.148153 0.00841453
\(311\) −13.4057 −0.760170 −0.380085 0.924952i \(-0.624105\pi\)
−0.380085 + 0.924952i \(0.624105\pi\)
\(312\) 21.8916 1.23937
\(313\) 34.7186 1.96241 0.981207 0.192958i \(-0.0618081\pi\)
0.981207 + 0.192958i \(0.0618081\pi\)
\(314\) −28.6867 −1.61888
\(315\) 0.0382457 0.00215490
\(316\) 17.5719 0.988496
\(317\) −32.1515 −1.80581 −0.902905 0.429840i \(-0.858570\pi\)
−0.902905 + 0.429840i \(0.858570\pi\)
\(318\) −62.7042 −3.51628
\(319\) −20.5683 −1.15160
\(320\) −0.399826 −0.0223509
\(321\) −27.3842 −1.52844
\(322\) −0.0112339 −0.000626039 0
\(323\) −1.21037 −0.0673467
\(324\) −37.4718 −2.08176
\(325\) −16.8976 −0.937310
\(326\) 20.3011 1.12438
\(327\) 3.75682 0.207753
\(328\) −11.6910 −0.645525
\(329\) 6.75142 0.372218
\(330\) −0.533912 −0.0293909
\(331\) −24.8668 −1.36680 −0.683401 0.730044i \(-0.739500\pi\)
−0.683401 + 0.730044i \(0.739500\pi\)
\(332\) −11.7610 −0.645468
\(333\) −7.65271 −0.419366
\(334\) −38.8810 −2.12747
\(335\) 0.243366 0.0132965
\(336\) −0.786564 −0.0429106
\(337\) −14.4171 −0.785349 −0.392674 0.919678i \(-0.628450\pi\)
−0.392674 + 0.919678i \(0.628450\pi\)
\(338\) 3.63542 0.197741
\(339\) −2.78239 −0.151119
\(340\) 0.261956 0.0142066
\(341\) 7.15831 0.387644
\(342\) 1.59784 0.0864015
\(343\) −11.2974 −0.610003
\(344\) 26.0517 1.40461
\(345\) −0.000377620 0 −2.03304e−5 0
\(346\) 38.0949 2.04800
\(347\) −32.3591 −1.73713 −0.868563 0.495578i \(-0.834956\pi\)
−0.868563 + 0.495578i \(0.834956\pi\)
\(348\) −41.2218 −2.20972
\(349\) −5.73602 −0.307042 −0.153521 0.988145i \(-0.549061\pi\)
−0.153521 + 0.988145i \(0.549061\pi\)
\(350\) 9.82322 0.525073
\(351\) 11.1551 0.595413
\(352\) −17.9873 −0.958728
\(353\) 12.2471 0.651848 0.325924 0.945396i \(-0.394325\pi\)
0.325924 + 0.945396i \(0.394325\pi\)
\(354\) 48.4256 2.57379
\(355\) 0.100662 0.00534260
\(356\) 26.8840 1.42485
\(357\) −4.48923 −0.237595
\(358\) 8.10608 0.428420
\(359\) 28.5202 1.50524 0.752618 0.658457i \(-0.228791\pi\)
0.752618 + 0.658457i \(0.228791\pi\)
\(360\) −0.138254 −0.00728663
\(361\) −18.7667 −0.987719
\(362\) −27.6332 −1.45237
\(363\) −2.63819 −0.138469
\(364\) 9.58484 0.502382
\(365\) −0.388382 −0.0203289
\(366\) −19.3994 −1.01402
\(367\) 32.3879 1.69064 0.845319 0.534263i \(-0.179411\pi\)
0.845319 + 0.534263i \(0.179411\pi\)
\(368\) 0.00250988 0.000130836 0
\(369\) 5.44418 0.283413
\(370\) 0.387028 0.0201207
\(371\) −10.9758 −0.569837
\(372\) 14.3463 0.743821
\(373\) 5.82162 0.301432 0.150716 0.988577i \(-0.451842\pi\)
0.150716 + 0.988577i \(0.451842\pi\)
\(374\) 20.2538 1.04730
\(375\) 0.660469 0.0341065
\(376\) −24.4056 −1.25863
\(377\) 19.8617 1.02293
\(378\) −6.48487 −0.333545
\(379\) −33.5658 −1.72416 −0.862080 0.506772i \(-0.830839\pi\)
−0.862080 + 0.506772i \(0.830839\pi\)
\(380\) −0.0504993 −0.00259056
\(381\) −3.57043 −0.182919
\(382\) −40.4487 −2.06954
\(383\) −34.3158 −1.75346 −0.876729 0.480985i \(-0.840279\pi\)
−0.876729 + 0.480985i \(0.840279\pi\)
\(384\) −40.3179 −2.05747
\(385\) −0.0934567 −0.00476300
\(386\) −14.2778 −0.726720
\(387\) −12.1316 −0.616685
\(388\) −27.9762 −1.42028
\(389\) −4.49554 −0.227933 −0.113966 0.993485i \(-0.536356\pi\)
−0.113966 + 0.993485i \(0.536356\pi\)
\(390\) 0.515570 0.0261069
\(391\) 0.0143249 0.000724439 0
\(392\) 19.3056 0.975083
\(393\) −23.6494 −1.19295
\(394\) 34.3133 1.72868
\(395\) 0.165448 0.00832459
\(396\) −16.7088 −0.839649
\(397\) 21.3964 1.07386 0.536928 0.843628i \(-0.319584\pi\)
0.536928 + 0.843628i \(0.319584\pi\)
\(398\) 12.7986 0.641535
\(399\) 0.865424 0.0433254
\(400\) −2.19471 −0.109735
\(401\) −13.1318 −0.655769 −0.327885 0.944718i \(-0.606336\pi\)
−0.327885 + 0.944718i \(0.606336\pi\)
\(402\) 37.7108 1.88084
\(403\) −6.91239 −0.344331
\(404\) 19.4596 0.968151
\(405\) −0.352815 −0.0175315
\(406\) −11.5463 −0.573035
\(407\) 18.7001 0.926928
\(408\) 16.2281 0.803410
\(409\) 27.2151 1.34570 0.672850 0.739779i \(-0.265070\pi\)
0.672850 + 0.739779i \(0.265070\pi\)
\(410\) −0.275334 −0.0135978
\(411\) 9.08461 0.448111
\(412\) 37.5358 1.84926
\(413\) 8.47648 0.417100
\(414\) −0.0189107 −0.000929409 0
\(415\) −0.110736 −0.00543580
\(416\) 17.3694 0.851604
\(417\) −18.8871 −0.924906
\(418\) −3.90447 −0.190974
\(419\) 19.8345 0.968978 0.484489 0.874797i \(-0.339006\pi\)
0.484489 + 0.874797i \(0.339006\pi\)
\(420\) −0.187301 −0.00913934
\(421\) −2.89331 −0.141011 −0.0705057 0.997511i \(-0.522461\pi\)
−0.0705057 + 0.997511i \(0.522461\pi\)
\(422\) −37.9088 −1.84537
\(423\) 11.3651 0.552589
\(424\) 39.6764 1.92686
\(425\) −12.5261 −0.607604
\(426\) 15.5981 0.755732
\(427\) −3.39569 −0.164329
\(428\) 43.3414 2.09499
\(429\) 24.9108 1.20270
\(430\) 0.613545 0.0295878
\(431\) −24.6017 −1.18502 −0.592512 0.805562i \(-0.701864\pi\)
−0.592512 + 0.805562i \(0.701864\pi\)
\(432\) 1.44885 0.0697079
\(433\) 8.63694 0.415065 0.207532 0.978228i \(-0.433457\pi\)
0.207532 + 0.978228i \(0.433457\pi\)
\(434\) 4.01844 0.192891
\(435\) −0.388124 −0.0186091
\(436\) −5.94598 −0.284761
\(437\) −0.00276151 −0.000132101 0
\(438\) −60.1818 −2.87560
\(439\) 10.4518 0.498837 0.249418 0.968396i \(-0.419761\pi\)
0.249418 + 0.968396i \(0.419761\pi\)
\(440\) 0.337836 0.0161057
\(441\) −8.99015 −0.428102
\(442\) −19.5579 −0.930276
\(443\) −32.2811 −1.53372 −0.766860 0.641815i \(-0.778182\pi\)
−0.766860 + 0.641815i \(0.778182\pi\)
\(444\) 37.4776 1.77861
\(445\) 0.253126 0.0119993
\(446\) −23.3063 −1.10359
\(447\) 2.27205 0.107464
\(448\) −10.8447 −0.512363
\(449\) −11.1492 −0.526163 −0.263082 0.964774i \(-0.584739\pi\)
−0.263082 + 0.964774i \(0.584739\pi\)
\(450\) 16.5360 0.779516
\(451\) −13.3033 −0.626429
\(452\) 4.40374 0.207134
\(453\) 0.999914 0.0469801
\(454\) 67.3335 3.16012
\(455\) 0.0902460 0.00423080
\(456\) −3.12841 −0.146501
\(457\) −15.5700 −0.728336 −0.364168 0.931333i \(-0.618647\pi\)
−0.364168 + 0.931333i \(0.618647\pi\)
\(458\) −1.58962 −0.0742779
\(459\) 8.26918 0.385972
\(460\) 0.000597665 0 2.78663e−5 0
\(461\) −2.93696 −0.136788 −0.0683940 0.997658i \(-0.521787\pi\)
−0.0683940 + 0.997658i \(0.521787\pi\)
\(462\) −14.4816 −0.673745
\(463\) −23.9879 −1.11481 −0.557407 0.830239i \(-0.688204\pi\)
−0.557407 + 0.830239i \(0.688204\pi\)
\(464\) 2.57969 0.119759
\(465\) 0.135077 0.00626407
\(466\) 12.8706 0.596219
\(467\) 3.77256 0.174573 0.0872867 0.996183i \(-0.472180\pi\)
0.0872867 + 0.996183i \(0.472180\pi\)
\(468\) 16.1348 0.745830
\(469\) 6.60094 0.304803
\(470\) −0.574778 −0.0265126
\(471\) −26.1549 −1.20515
\(472\) −30.6416 −1.41039
\(473\) 29.6447 1.36306
\(474\) 25.6370 1.17755
\(475\) 2.41475 0.110796
\(476\) 7.10518 0.325666
\(477\) −18.4763 −0.845972
\(478\) 17.4201 0.796779
\(479\) 29.8844 1.36545 0.682726 0.730674i \(-0.260794\pi\)
0.682726 + 0.730674i \(0.260794\pi\)
\(480\) −0.339421 −0.0154924
\(481\) −18.0576 −0.823357
\(482\) 23.3854 1.06517
\(483\) −0.0102424 −0.000466045 0
\(484\) 4.17551 0.189796
\(485\) −0.263410 −0.0119608
\(486\) −31.8090 −1.44289
\(487\) −14.1002 −0.638939 −0.319470 0.947597i \(-0.603505\pi\)
−0.319470 + 0.947597i \(0.603505\pi\)
\(488\) 12.2751 0.555666
\(489\) 18.5094 0.837025
\(490\) 0.454668 0.0205398
\(491\) −35.0558 −1.58205 −0.791023 0.611787i \(-0.790451\pi\)
−0.791023 + 0.611787i \(0.790451\pi\)
\(492\) −26.6618 −1.20201
\(493\) 14.7233 0.663105
\(494\) 3.77033 0.169635
\(495\) −0.157322 −0.00707108
\(496\) −0.897801 −0.0403125
\(497\) 2.73032 0.122472
\(498\) −17.1590 −0.768915
\(499\) 14.9534 0.669407 0.334704 0.942323i \(-0.391364\pi\)
0.334704 + 0.942323i \(0.391364\pi\)
\(500\) −1.04533 −0.0467488
\(501\) −35.4495 −1.58377
\(502\) −38.0410 −1.69785
\(503\) −2.06959 −0.0922786 −0.0461393 0.998935i \(-0.514692\pi\)
−0.0461393 + 0.998935i \(0.514692\pi\)
\(504\) −3.74994 −0.167036
\(505\) 0.183222 0.00815325
\(506\) 0.0462099 0.00205428
\(507\) 3.31457 0.147205
\(508\) 5.65098 0.250722
\(509\) −16.2756 −0.721405 −0.360703 0.932681i \(-0.617463\pi\)
−0.360703 + 0.932681i \(0.617463\pi\)
\(510\) 0.382189 0.0169236
\(511\) −10.5343 −0.466010
\(512\) 4.95705 0.219073
\(513\) −1.59411 −0.0703818
\(514\) 6.52915 0.287988
\(515\) 0.353418 0.0155735
\(516\) 59.4122 2.61548
\(517\) −27.7716 −1.22139
\(518\) 10.4976 0.461238
\(519\) 34.7328 1.52460
\(520\) −0.326230 −0.0143061
\(521\) 45.1948 1.98002 0.990010 0.141000i \(-0.0450316\pi\)
0.990010 + 0.141000i \(0.0450316\pi\)
\(522\) −19.4367 −0.850720
\(523\) 2.41891 0.105772 0.0528858 0.998601i \(-0.483158\pi\)
0.0528858 + 0.998601i \(0.483158\pi\)
\(524\) 37.4302 1.63515
\(525\) 8.95625 0.390883
\(526\) 70.5928 3.07799
\(527\) −5.12411 −0.223210
\(528\) 3.23549 0.140806
\(529\) −23.0000 −0.999999
\(530\) 0.934421 0.0405887
\(531\) 14.2690 0.619221
\(532\) −1.36972 −0.0593849
\(533\) 12.8463 0.556435
\(534\) 39.2231 1.69735
\(535\) 0.408081 0.0176429
\(536\) −23.8617 −1.03067
\(537\) 7.39066 0.318931
\(538\) 36.0163 1.55277
\(539\) 21.9682 0.946238
\(540\) 0.345008 0.0148468
\(541\) 27.8204 1.19609 0.598046 0.801462i \(-0.295944\pi\)
0.598046 + 0.801462i \(0.295944\pi\)
\(542\) 6.92553 0.297477
\(543\) −25.1944 −1.08119
\(544\) 12.8758 0.552046
\(545\) −0.0559843 −0.00239811
\(546\) 13.9841 0.598464
\(547\) −9.01289 −0.385363 −0.192682 0.981261i \(-0.561718\pi\)
−0.192682 + 0.981261i \(0.561718\pi\)
\(548\) −14.3784 −0.614213
\(549\) −5.71618 −0.243961
\(550\) −40.4073 −1.72297
\(551\) −2.83833 −0.120917
\(552\) 0.0370252 0.00157590
\(553\) 4.48754 0.190830
\(554\) 34.7482 1.47631
\(555\) 0.352870 0.0149785
\(556\) 29.8930 1.26774
\(557\) −22.9196 −0.971134 −0.485567 0.874199i \(-0.661387\pi\)
−0.485567 + 0.874199i \(0.661387\pi\)
\(558\) 6.76449 0.286364
\(559\) −28.6262 −1.21076
\(560\) 0.0117214 0.000495320 0
\(561\) 18.4662 0.779644
\(562\) −26.1996 −1.10516
\(563\) 5.76141 0.242814 0.121407 0.992603i \(-0.461259\pi\)
0.121407 + 0.992603i \(0.461259\pi\)
\(564\) −55.6583 −2.34364
\(565\) 0.0414634 0.00174438
\(566\) 51.8978 2.18143
\(567\) −9.56960 −0.401885
\(568\) −9.86981 −0.414128
\(569\) −17.2528 −0.723274 −0.361637 0.932319i \(-0.617782\pi\)
−0.361637 + 0.932319i \(0.617782\pi\)
\(570\) −0.0736774 −0.00308601
\(571\) −29.8928 −1.25097 −0.625487 0.780235i \(-0.715100\pi\)
−0.625487 + 0.780235i \(0.715100\pi\)
\(572\) −39.4267 −1.64851
\(573\) −36.8788 −1.54063
\(574\) −7.46804 −0.311710
\(575\) −0.0285788 −0.00119182
\(576\) −18.2555 −0.760648
\(577\) −24.4489 −1.01782 −0.508910 0.860820i \(-0.669951\pi\)
−0.508910 + 0.860820i \(0.669951\pi\)
\(578\) 24.7574 1.02977
\(579\) −13.0177 −0.540996
\(580\) 0.614289 0.0255070
\(581\) −3.00354 −0.124608
\(582\) −40.8167 −1.69191
\(583\) 45.1485 1.86986
\(584\) 38.0804 1.57578
\(585\) 0.151917 0.00628099
\(586\) 37.0344 1.52988
\(587\) 29.5460 1.21950 0.609748 0.792595i \(-0.291271\pi\)
0.609748 + 0.792595i \(0.291271\pi\)
\(588\) 44.0275 1.81566
\(589\) 0.987814 0.0407022
\(590\) −0.721641 −0.0297095
\(591\) 31.2849 1.28689
\(592\) −2.34538 −0.0963944
\(593\) −8.66498 −0.355828 −0.177914 0.984046i \(-0.556935\pi\)
−0.177914 + 0.984046i \(0.556935\pi\)
\(594\) 26.6751 1.09449
\(595\) 0.0668988 0.00274258
\(596\) −3.59602 −0.147299
\(597\) 11.6690 0.477581
\(598\) −0.0446223 −0.00182474
\(599\) −37.6852 −1.53977 −0.769887 0.638180i \(-0.779687\pi\)
−0.769887 + 0.638180i \(0.779687\pi\)
\(600\) −32.3759 −1.32174
\(601\) −0.819509 −0.0334285 −0.0167142 0.999860i \(-0.505321\pi\)
−0.0167142 + 0.999860i \(0.505321\pi\)
\(602\) 16.6415 0.678258
\(603\) 11.1118 0.452507
\(604\) −1.58258 −0.0643943
\(605\) 0.0393145 0.00159836
\(606\) 28.3911 1.15331
\(607\) −12.9692 −0.526402 −0.263201 0.964741i \(-0.584778\pi\)
−0.263201 + 0.964741i \(0.584778\pi\)
\(608\) −2.48217 −0.100665
\(609\) −10.5273 −0.426587
\(610\) 0.289091 0.0117049
\(611\) 26.8175 1.08492
\(612\) 11.9606 0.483479
\(613\) −12.5116 −0.505338 −0.252669 0.967553i \(-0.581308\pi\)
−0.252669 + 0.967553i \(0.581308\pi\)
\(614\) 16.0863 0.649189
\(615\) −0.251034 −0.0101227
\(616\) 9.16331 0.369200
\(617\) −38.8652 −1.56465 −0.782327 0.622868i \(-0.785967\pi\)
−0.782327 + 0.622868i \(0.785967\pi\)
\(618\) 54.7640 2.20293
\(619\) −2.49439 −0.100258 −0.0501290 0.998743i \(-0.515963\pi\)
−0.0501290 + 0.998743i \(0.515963\pi\)
\(620\) −0.213789 −0.00858598
\(621\) 0.0188665 0.000757087 0
\(622\) 30.9559 1.24122
\(623\) 6.86567 0.275067
\(624\) −3.12433 −0.125073
\(625\) 24.9852 0.999409
\(626\) −80.1706 −3.20426
\(627\) −3.55987 −0.142168
\(628\) 41.3958 1.65187
\(629\) −13.3860 −0.533735
\(630\) −0.0883151 −0.00351856
\(631\) 1.84167 0.0733156 0.0366578 0.999328i \(-0.488329\pi\)
0.0366578 + 0.999328i \(0.488329\pi\)
\(632\) −16.2220 −0.645275
\(633\) −34.5631 −1.37376
\(634\) 74.2427 2.94856
\(635\) 0.0532068 0.00211145
\(636\) 90.4840 3.58793
\(637\) −21.2135 −0.840509
\(638\) 47.4952 1.88035
\(639\) 4.59612 0.181820
\(640\) 0.600820 0.0237495
\(641\) 12.6011 0.497712 0.248856 0.968540i \(-0.419945\pi\)
0.248856 + 0.968540i \(0.419945\pi\)
\(642\) 63.2342 2.49566
\(643\) 8.69311 0.342823 0.171411 0.985200i \(-0.445167\pi\)
0.171411 + 0.985200i \(0.445167\pi\)
\(644\) 0.0162108 0.000638795 0
\(645\) 0.559395 0.0220262
\(646\) 2.79492 0.109965
\(647\) 29.2401 1.14955 0.574773 0.818313i \(-0.305090\pi\)
0.574773 + 0.818313i \(0.305090\pi\)
\(648\) 34.5931 1.35894
\(649\) −34.8675 −1.36867
\(650\) 39.0191 1.53045
\(651\) 3.66378 0.143595
\(652\) −29.2951 −1.14729
\(653\) −11.4327 −0.447396 −0.223698 0.974658i \(-0.571813\pi\)
−0.223698 + 0.974658i \(0.571813\pi\)
\(654\) −8.67506 −0.339222
\(655\) 0.352424 0.0137704
\(656\) 1.66851 0.0651445
\(657\) −17.7331 −0.691833
\(658\) −15.5900 −0.607763
\(659\) −10.8036 −0.420848 −0.210424 0.977610i \(-0.567484\pi\)
−0.210424 + 0.977610i \(0.567484\pi\)
\(660\) 0.770451 0.0299898
\(661\) 32.1299 1.24971 0.624853 0.780742i \(-0.285159\pi\)
0.624853 + 0.780742i \(0.285159\pi\)
\(662\) 57.4211 2.23173
\(663\) −17.8318 −0.692530
\(664\) 10.8575 0.421352
\(665\) −0.0128966 −0.000500108 0
\(666\) 17.6713 0.684747
\(667\) 0.0335919 0.00130068
\(668\) 56.1064 2.17082
\(669\) −21.2494 −0.821548
\(670\) −0.561968 −0.0217107
\(671\) 13.9680 0.539228
\(672\) −9.20631 −0.355141
\(673\) −19.4205 −0.748604 −0.374302 0.927307i \(-0.622118\pi\)
−0.374302 + 0.927307i \(0.622118\pi\)
\(674\) 33.2912 1.28233
\(675\) −16.4974 −0.634986
\(676\) −5.24602 −0.201770
\(677\) 10.2595 0.394304 0.197152 0.980373i \(-0.436831\pi\)
0.197152 + 0.980373i \(0.436831\pi\)
\(678\) 6.42496 0.246749
\(679\) −7.14461 −0.274185
\(680\) −0.241832 −0.00927383
\(681\) 61.3909 2.35250
\(682\) −16.5296 −0.632952
\(683\) −39.9611 −1.52907 −0.764534 0.644584i \(-0.777031\pi\)
−0.764534 + 0.644584i \(0.777031\pi\)
\(684\) −2.30574 −0.0881620
\(685\) −0.135379 −0.00517258
\(686\) 26.0874 0.996023
\(687\) −1.44932 −0.0552951
\(688\) −3.71806 −0.141750
\(689\) −43.5974 −1.66093
\(690\) 0.000871981 0 3.31957e−5 0
\(691\) −43.7881 −1.66578 −0.832889 0.553440i \(-0.813315\pi\)
−0.832889 + 0.553440i \(0.813315\pi\)
\(692\) −54.9721 −2.08973
\(693\) −4.26712 −0.162095
\(694\) 74.7220 2.83641
\(695\) 0.281457 0.0106763
\(696\) 38.0550 1.44247
\(697\) 9.52287 0.360704
\(698\) 13.2453 0.501343
\(699\) 11.7347 0.443846
\(700\) −14.1752 −0.535772
\(701\) −37.8684 −1.43027 −0.715135 0.698987i \(-0.753635\pi\)
−0.715135 + 0.698987i \(0.753635\pi\)
\(702\) −25.7587 −0.972200
\(703\) 2.58052 0.0973262
\(704\) 44.6090 1.68127
\(705\) −0.524050 −0.0197369
\(706\) −28.2804 −1.06435
\(707\) 4.96962 0.186902
\(708\) −69.8796 −2.62623
\(709\) 4.39983 0.165239 0.0826196 0.996581i \(-0.473671\pi\)
0.0826196 + 0.996581i \(0.473671\pi\)
\(710\) −0.232444 −0.00872348
\(711\) 7.55416 0.283303
\(712\) −24.8187 −0.930119
\(713\) −0.0116909 −0.000437827 0
\(714\) 10.3663 0.387950
\(715\) −0.371222 −0.0138829
\(716\) −11.6973 −0.437149
\(717\) 15.8827 0.593150
\(718\) −65.8573 −2.45777
\(719\) 47.5950 1.77500 0.887498 0.460812i \(-0.152442\pi\)
0.887498 + 0.460812i \(0.152442\pi\)
\(720\) 0.0197314 0.000735346 0
\(721\) 9.58596 0.357000
\(722\) 43.3350 1.61276
\(723\) 21.3214 0.792953
\(724\) 39.8755 1.48196
\(725\) −29.3738 −1.09091
\(726\) 6.09199 0.226095
\(727\) −38.7897 −1.43863 −0.719315 0.694684i \(-0.755544\pi\)
−0.719315 + 0.694684i \(0.755544\pi\)
\(728\) −8.84851 −0.327948
\(729\) 4.73471 0.175360
\(730\) 0.896833 0.0331933
\(731\) −21.2204 −0.784866
\(732\) 27.9939 1.03468
\(733\) −36.3333 −1.34200 −0.671001 0.741456i \(-0.734135\pi\)
−0.671001 + 0.741456i \(0.734135\pi\)
\(734\) −74.7886 −2.76050
\(735\) 0.414540 0.0152906
\(736\) 0.0293768 0.00108284
\(737\) −27.1526 −1.00018
\(738\) −12.5714 −0.462760
\(739\) 2.59369 0.0954104 0.0477052 0.998861i \(-0.484809\pi\)
0.0477052 + 0.998861i \(0.484809\pi\)
\(740\) −0.558494 −0.0205306
\(741\) 3.43757 0.126282
\(742\) 25.3448 0.930438
\(743\) 34.8933 1.28011 0.640056 0.768328i \(-0.278911\pi\)
0.640056 + 0.768328i \(0.278911\pi\)
\(744\) −13.2442 −0.485555
\(745\) −0.0338583 −0.00124047
\(746\) −13.4430 −0.492183
\(747\) −5.05605 −0.184991
\(748\) −29.2268 −1.06864
\(749\) 11.0686 0.404438
\(750\) −1.52512 −0.0556895
\(751\) 43.4881 1.58690 0.793451 0.608634i \(-0.208282\pi\)
0.793451 + 0.608634i \(0.208282\pi\)
\(752\) 3.48313 0.127017
\(753\) −34.6836 −1.26394
\(754\) −45.8635 −1.67025
\(755\) −0.0149008 −0.000542295 0
\(756\) 9.35786 0.340342
\(757\) 22.9586 0.834443 0.417222 0.908805i \(-0.363004\pi\)
0.417222 + 0.908805i \(0.363004\pi\)
\(758\) 77.5085 2.81524
\(759\) 0.0421315 0.00152928
\(760\) 0.0466198 0.00169108
\(761\) 7.51600 0.272455 0.136227 0.990678i \(-0.456502\pi\)
0.136227 + 0.990678i \(0.456502\pi\)
\(762\) 8.24466 0.298673
\(763\) −1.51849 −0.0549732
\(764\) 58.3687 2.11171
\(765\) 0.112615 0.00407160
\(766\) 79.2404 2.86307
\(767\) 33.6697 1.21574
\(768\) 39.4397 1.42316
\(769\) −44.6033 −1.60843 −0.804217 0.594335i \(-0.797415\pi\)
−0.804217 + 0.594335i \(0.797415\pi\)
\(770\) 0.215806 0.00777709
\(771\) 5.95290 0.214389
\(772\) 20.6033 0.741528
\(773\) −17.8751 −0.642924 −0.321462 0.946922i \(-0.604174\pi\)
−0.321462 + 0.946922i \(0.604174\pi\)
\(774\) 28.0137 1.00693
\(775\) 10.2229 0.367216
\(776\) 25.8270 0.927135
\(777\) 9.57110 0.343361
\(778\) 10.3809 0.372172
\(779\) −1.83580 −0.0657742
\(780\) −0.743983 −0.0266389
\(781\) −11.2310 −0.401877
\(782\) −0.0330783 −0.00118288
\(783\) 19.3913 0.692988
\(784\) −2.75527 −0.0984025
\(785\) 0.389762 0.0139112
\(786\) 54.6099 1.94787
\(787\) −29.6328 −1.05629 −0.528147 0.849153i \(-0.677113\pi\)
−0.528147 + 0.849153i \(0.677113\pi\)
\(788\) −49.5151 −1.76390
\(789\) 64.3625 2.29136
\(790\) −0.382044 −0.0135925
\(791\) 1.12463 0.0399874
\(792\) 15.4252 0.548110
\(793\) −13.4881 −0.478977
\(794\) −49.4076 −1.75341
\(795\) 0.851952 0.0302156
\(796\) −18.4688 −0.654608
\(797\) 30.8240 1.09184 0.545921 0.837837i \(-0.316180\pi\)
0.545921 + 0.837837i \(0.316180\pi\)
\(798\) −1.99839 −0.0707423
\(799\) 19.8796 0.703291
\(800\) −25.6879 −0.908204
\(801\) 11.5574 0.408361
\(802\) 30.3232 1.07075
\(803\) 43.3323 1.52916
\(804\) −54.4178 −1.91917
\(805\) 0.000152633 0 5.37960e−6 0
\(806\) 15.9617 0.562228
\(807\) 32.8376 1.15594
\(808\) −17.9646 −0.631994
\(809\) 44.3153 1.55804 0.779021 0.626998i \(-0.215717\pi\)
0.779021 + 0.626998i \(0.215717\pi\)
\(810\) 0.814703 0.0286257
\(811\) −3.98585 −0.139962 −0.0699810 0.997548i \(-0.522294\pi\)
−0.0699810 + 0.997548i \(0.522294\pi\)
\(812\) 16.6617 0.584712
\(813\) 6.31430 0.221452
\(814\) −43.1812 −1.51350
\(815\) −0.275828 −0.00966184
\(816\) −2.31605 −0.0810779
\(817\) 4.09083 0.143120
\(818\) −62.8438 −2.19728
\(819\) 4.12052 0.143983
\(820\) 0.397315 0.0138749
\(821\) 2.11376 0.0737708 0.0368854 0.999320i \(-0.488256\pi\)
0.0368854 + 0.999320i \(0.488256\pi\)
\(822\) −20.9777 −0.731682
\(823\) −21.8687 −0.762296 −0.381148 0.924514i \(-0.624471\pi\)
−0.381148 + 0.924514i \(0.624471\pi\)
\(824\) −34.6522 −1.20717
\(825\) −36.8410 −1.28264
\(826\) −19.5735 −0.681048
\(827\) 23.8993 0.831060 0.415530 0.909579i \(-0.363596\pi\)
0.415530 + 0.909579i \(0.363596\pi\)
\(828\) 0.0272887 0.000948347 0
\(829\) 21.0239 0.730191 0.365095 0.930970i \(-0.381036\pi\)
0.365095 + 0.930970i \(0.381036\pi\)
\(830\) 0.255705 0.00887565
\(831\) 31.6814 1.09902
\(832\) −43.0765 −1.49341
\(833\) −15.7254 −0.544854
\(834\) 43.6132 1.51020
\(835\) 0.528270 0.0182815
\(836\) 5.63427 0.194865
\(837\) −6.74869 −0.233269
\(838\) −45.8008 −1.58216
\(839\) 31.6822 1.09379 0.546895 0.837201i \(-0.315810\pi\)
0.546895 + 0.837201i \(0.315810\pi\)
\(840\) 0.172912 0.00596602
\(841\) 5.52630 0.190562
\(842\) 6.68109 0.230246
\(843\) −23.8873 −0.822722
\(844\) 54.7035 1.88297
\(845\) −0.0493938 −0.00169920
\(846\) −26.2437 −0.902276
\(847\) 1.06635 0.0366402
\(848\) −5.66255 −0.194453
\(849\) 47.3174 1.62393
\(850\) 28.9246 0.992105
\(851\) −0.0305408 −0.00104692
\(852\) −22.5086 −0.771131
\(853\) 6.97227 0.238726 0.119363 0.992851i \(-0.461915\pi\)
0.119363 + 0.992851i \(0.461915\pi\)
\(854\) 7.84116 0.268319
\(855\) −0.0217096 −0.000742454 0
\(856\) −40.0118 −1.36758
\(857\) −12.5886 −0.430018 −0.215009 0.976612i \(-0.568978\pi\)
−0.215009 + 0.976612i \(0.568978\pi\)
\(858\) −57.5228 −1.96379
\(859\) −23.7901 −0.811707 −0.405854 0.913938i \(-0.633026\pi\)
−0.405854 + 0.913938i \(0.633026\pi\)
\(860\) −0.885364 −0.0301907
\(861\) −6.80893 −0.232048
\(862\) 56.8091 1.93492
\(863\) 8.43989 0.287297 0.143649 0.989629i \(-0.454117\pi\)
0.143649 + 0.989629i \(0.454117\pi\)
\(864\) 16.9580 0.576924
\(865\) −0.517590 −0.0175986
\(866\) −19.9440 −0.677724
\(867\) 22.5724 0.766597
\(868\) −5.79872 −0.196822
\(869\) −18.4592 −0.626187
\(870\) 0.896235 0.0303852
\(871\) 26.2198 0.888424
\(872\) 5.48919 0.185888
\(873\) −12.0270 −0.407051
\(874\) 0.00637675 0.000215697 0
\(875\) −0.266959 −0.00902487
\(876\) 86.8442 2.93419
\(877\) −35.0556 −1.18374 −0.591871 0.806033i \(-0.701610\pi\)
−0.591871 + 0.806033i \(0.701610\pi\)
\(878\) −24.1348 −0.814509
\(879\) 33.7658 1.13889
\(880\) −0.0482154 −0.00162534
\(881\) 25.3400 0.853725 0.426863 0.904316i \(-0.359619\pi\)
0.426863 + 0.904316i \(0.359619\pi\)
\(882\) 20.7596 0.699012
\(883\) 5.99355 0.201699 0.100849 0.994902i \(-0.467844\pi\)
0.100849 + 0.994902i \(0.467844\pi\)
\(884\) 28.2227 0.949232
\(885\) −0.657951 −0.0221168
\(886\) 74.5418 2.50428
\(887\) −41.2741 −1.38585 −0.692924 0.721011i \(-0.743678\pi\)
−0.692924 + 0.721011i \(0.743678\pi\)
\(888\) −34.5985 −1.16105
\(889\) 1.44316 0.0484019
\(890\) −0.584505 −0.0195927
\(891\) 39.3640 1.31874
\(892\) 33.6317 1.12607
\(893\) −3.83235 −0.128245
\(894\) −5.24651 −0.175470
\(895\) −0.110136 −0.00368144
\(896\) 16.2964 0.544424
\(897\) −0.0406841 −0.00135840
\(898\) 25.7452 0.859127
\(899\) −12.0161 −0.400759
\(900\) −23.8620 −0.795400
\(901\) −32.3185 −1.07668
\(902\) 30.7194 1.02284
\(903\) 15.1728 0.504919
\(904\) −4.06543 −0.135214
\(905\) 0.375448 0.0124803
\(906\) −2.30895 −0.0767098
\(907\) −7.58946 −0.252004 −0.126002 0.992030i \(-0.540215\pi\)
−0.126002 + 0.992030i \(0.540215\pi\)
\(908\) −97.1643 −3.22451
\(909\) 8.36568 0.277472
\(910\) −0.208392 −0.00690811
\(911\) 24.4133 0.808847 0.404424 0.914572i \(-0.367472\pi\)
0.404424 + 0.914572i \(0.367472\pi\)
\(912\) 0.446482 0.0147845
\(913\) 12.3549 0.408888
\(914\) 35.9535 1.18924
\(915\) 0.263576 0.00871356
\(916\) 2.29387 0.0757915
\(917\) 9.55900 0.315666
\(918\) −19.0948 −0.630221
\(919\) −17.8182 −0.587769 −0.293885 0.955841i \(-0.594948\pi\)
−0.293885 + 0.955841i \(0.594948\pi\)
\(920\) −0.000551751 0 −1.81907e−5 0
\(921\) 14.6665 0.483279
\(922\) 6.78189 0.223350
\(923\) 10.8452 0.356973
\(924\) 20.8974 0.687473
\(925\) 26.7057 0.878080
\(926\) 55.3918 1.82029
\(927\) 16.1367 0.529997
\(928\) 30.1939 0.991163
\(929\) 31.5496 1.03511 0.517555 0.855650i \(-0.326842\pi\)
0.517555 + 0.855650i \(0.326842\pi\)
\(930\) −0.311914 −0.0102281
\(931\) 3.03151 0.0993538
\(932\) −18.5726 −0.608367
\(933\) 28.2238 0.924005
\(934\) −8.71142 −0.285046
\(935\) −0.275185 −0.00899950
\(936\) −14.8953 −0.486867
\(937\) −53.3153 −1.74174 −0.870868 0.491518i \(-0.836442\pi\)
−0.870868 + 0.491518i \(0.836442\pi\)
\(938\) −15.2426 −0.497687
\(939\) −73.0949 −2.38536
\(940\) 0.829422 0.0270528
\(941\) 55.2514 1.80114 0.900571 0.434708i \(-0.143149\pi\)
0.900571 + 0.434708i \(0.143149\pi\)
\(942\) 60.3956 1.96779
\(943\) 0.0217269 0.000707524 0
\(944\) 4.37311 0.142333
\(945\) 0.0881088 0.00286618
\(946\) −68.4540 −2.22563
\(947\) 17.5276 0.569570 0.284785 0.958591i \(-0.408078\pi\)
0.284785 + 0.958591i \(0.408078\pi\)
\(948\) −36.9950 −1.20154
\(949\) −41.8436 −1.35830
\(950\) −5.57601 −0.180910
\(951\) 67.6903 2.19501
\(952\) −6.55934 −0.212590
\(953\) −9.63561 −0.312128 −0.156064 0.987747i \(-0.549881\pi\)
−0.156064 + 0.987747i \(0.549881\pi\)
\(954\) 42.6645 1.38132
\(955\) 0.549570 0.0177837
\(956\) −25.1378 −0.813015
\(957\) 43.3034 1.39980
\(958\) −69.0075 −2.22953
\(959\) −3.67197 −0.118574
\(960\) 0.841773 0.0271681
\(961\) −26.8181 −0.865099
\(962\) 41.6978 1.34439
\(963\) 18.6325 0.600423
\(964\) −33.7458 −1.08688
\(965\) 0.193990 0.00624476
\(966\) 0.0236512 0.000760966 0
\(967\) 48.8910 1.57223 0.786114 0.618081i \(-0.212090\pi\)
0.786114 + 0.618081i \(0.212090\pi\)
\(968\) −3.85474 −0.123896
\(969\) 2.54825 0.0818616
\(970\) 0.608252 0.0195298
\(971\) −59.9879 −1.92510 −0.962552 0.271097i \(-0.912614\pi\)
−0.962552 + 0.271097i \(0.912614\pi\)
\(972\) 45.9013 1.47229
\(973\) 7.63411 0.244738
\(974\) 32.5594 1.04327
\(975\) 35.5754 1.13932
\(976\) −1.75188 −0.0560762
\(977\) 38.5937 1.23472 0.617360 0.786680i \(-0.288202\pi\)
0.617360 + 0.786680i \(0.288202\pi\)
\(978\) −42.7410 −1.36671
\(979\) −28.2416 −0.902604
\(980\) −0.656100 −0.0209583
\(981\) −2.55618 −0.0816125
\(982\) 80.9491 2.58319
\(983\) 0.452103 0.0144199 0.00720993 0.999974i \(-0.497705\pi\)
0.00720993 + 0.999974i \(0.497705\pi\)
\(984\) 24.6136 0.784651
\(985\) −0.466209 −0.0148547
\(986\) −33.9983 −1.08273
\(987\) −14.2141 −0.452440
\(988\) −5.44070 −0.173092
\(989\) −0.0484154 −0.00153952
\(990\) 0.363279 0.0115458
\(991\) −51.9560 −1.65044 −0.825219 0.564813i \(-0.808948\pi\)
−0.825219 + 0.564813i \(0.808948\pi\)
\(992\) −10.5083 −0.333638
\(993\) 52.3533 1.66138
\(994\) −6.30472 −0.199973
\(995\) −0.173892 −0.00551276
\(996\) 24.7610 0.784583
\(997\) −8.48431 −0.268701 −0.134350 0.990934i \(-0.542895\pi\)
−0.134350 + 0.990934i \(0.542895\pi\)
\(998\) −34.5297 −1.09302
\(999\) −17.6300 −0.557788
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3467.2.a.b.1.14 126
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3467.2.a.b.1.14 126 1.1 even 1 trivial