Properties

Label 3456.2.p.e.575.1
Level $3456$
Weight $2$
Character 3456.575
Analytic conductor $27.596$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3456,2,Mod(575,3456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3456.575"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3456, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3456 = 2^{7} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3456.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.5962989386\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.9349208943630483456.9
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 642 x^{12} - 1668 x^{11} + 3580 x^{10} - 6328 x^{9} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 1152)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 575.1
Root \(0.500000 + 1.00333i\) of defining polynomial
Character \(\chi\) \(=\) 3456.575
Dual form 3456.2.p.e.2879.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.57313 - 2.72474i) q^{5} +(-2.21650 - 1.27970i) q^{7} +(2.02166 + 1.16721i) q^{11} +(2.59808 - 1.50000i) q^{13} +4.24264i q^{17} +8.08665 q^{19} +(-0.642559 - 1.11295i) q^{23} +(-2.44949 + 4.24264i) q^{25} +(-1.18386 + 2.05051i) q^{29} +(7.64580 - 4.41431i) q^{31} +8.05254i q^{35} +7.34847i q^{37} +(8.17423 - 4.71940i) q^{41} +(-1.11295 + 1.92768i) q^{43} +(4.78674 - 8.29088i) q^{47} +(-0.224745 - 0.389270i) q^{49} -8.34242 q^{53} -7.34468i q^{55} +(-1.11295 + 0.642559i) q^{59} +(7.79423 + 4.50000i) q^{61} +(-8.17423 - 4.71940i) q^{65} +(-0.204229 - 0.353736i) q^{67} -14.5841 q^{71} -1.55051 q^{73} +(-2.98735 - 5.17423i) q^{77} +(8.93092 + 5.15627i) q^{79} +(2.93038 + 1.69185i) q^{83} +(11.5601 - 6.67423i) q^{85} +6.14966i q^{89} -7.67819 q^{91} +(-12.7214 - 22.0341i) q^{95} +(6.62372 - 11.4726i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 72 q^{41} + 16 q^{49} - 72 q^{65} - 64 q^{73} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3456\mathbb{Z}\right)^\times\).

\(n\) \(2053\) \(2431\) \(2945\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.57313 2.72474i −0.703526 1.21854i −0.967221 0.253937i \(-0.918274\pi\)
0.263695 0.964606i \(-0.415059\pi\)
\(6\) 0 0
\(7\) −2.21650 1.27970i −0.837759 0.483680i 0.0187428 0.999824i \(-0.494034\pi\)
−0.856502 + 0.516144i \(0.827367\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.02166 + 1.16721i 0.609554 + 0.351926i 0.772791 0.634661i \(-0.218860\pi\)
−0.163237 + 0.986587i \(0.552193\pi\)
\(12\) 0 0
\(13\) 2.59808 1.50000i 0.720577 0.416025i −0.0943882 0.995535i \(-0.530089\pi\)
0.814965 + 0.579510i \(0.196756\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.24264i 1.02899i 0.857493 + 0.514496i \(0.172021\pi\)
−0.857493 + 0.514496i \(0.827979\pi\)
\(18\) 0 0
\(19\) 8.08665 1.85520 0.927602 0.373570i \(-0.121866\pi\)
0.927602 + 0.373570i \(0.121866\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.642559 1.11295i −0.133983 0.232065i 0.791226 0.611524i \(-0.209443\pi\)
−0.925208 + 0.379459i \(0.876110\pi\)
\(24\) 0 0
\(25\) −2.44949 + 4.24264i −0.489898 + 0.848528i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.18386 + 2.05051i −0.219838 + 0.380770i −0.954758 0.297383i \(-0.903886\pi\)
0.734920 + 0.678153i \(0.237219\pi\)
\(30\) 0 0
\(31\) 7.64580 4.41431i 1.37323 0.792833i 0.381894 0.924206i \(-0.375272\pi\)
0.991333 + 0.131374i \(0.0419387\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.05254i 1.36113i
\(36\) 0 0
\(37\) 7.34847i 1.20808i 0.796954 + 0.604040i \(0.206443\pi\)
−0.796954 + 0.604040i \(0.793557\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.17423 4.71940i 1.27660 0.737046i 0.300379 0.953820i \(-0.402887\pi\)
0.976222 + 0.216774i \(0.0695535\pi\)
\(42\) 0 0
\(43\) −1.11295 + 1.92768i −0.169723 + 0.293968i −0.938322 0.345762i \(-0.887621\pi\)
0.768600 + 0.639730i \(0.220954\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.78674 8.29088i 0.698218 1.20935i −0.270866 0.962617i \(-0.587310\pi\)
0.969084 0.246732i \(-0.0793566\pi\)
\(48\) 0 0
\(49\) −0.224745 0.389270i −0.0321064 0.0556099i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.34242 −1.14592 −0.572960 0.819584i \(-0.694205\pi\)
−0.572960 + 0.819584i \(0.694205\pi\)
\(54\) 0 0
\(55\) 7.34468i 0.990357i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.11295 + 0.642559i −0.144893 + 0.0836541i −0.570694 0.821163i \(-0.693326\pi\)
0.425801 + 0.904817i \(0.359992\pi\)
\(60\) 0 0
\(61\) 7.79423 + 4.50000i 0.997949 + 0.576166i 0.907641 0.419748i \(-0.137882\pi\)
0.0903080 + 0.995914i \(0.471215\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.17423 4.71940i −1.01389 0.585369i
\(66\) 0 0
\(67\) −0.204229 0.353736i −0.0249506 0.0432157i 0.853281 0.521452i \(-0.174610\pi\)
−0.878231 + 0.478237i \(0.841276\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −14.5841 −1.73082 −0.865409 0.501066i \(-0.832941\pi\)
−0.865409 + 0.501066i \(0.832941\pi\)
\(72\) 0 0
\(73\) −1.55051 −0.181473 −0.0907367 0.995875i \(-0.528922\pi\)
−0.0907367 + 0.995875i \(0.528922\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.98735 5.17423i −0.340440 0.589659i
\(78\) 0 0
\(79\) 8.93092 + 5.15627i 1.00481 + 0.580126i 0.909667 0.415338i \(-0.136337\pi\)
0.0951401 + 0.995464i \(0.469670\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.93038 + 1.69185i 0.321651 + 0.185705i 0.652128 0.758109i \(-0.273876\pi\)
−0.330477 + 0.943814i \(0.607210\pi\)
\(84\) 0 0
\(85\) 11.5601 6.67423i 1.25387 0.723922i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.14966i 0.651863i 0.945393 + 0.325932i \(0.105678\pi\)
−0.945393 + 0.325932i \(0.894322\pi\)
\(90\) 0 0
\(91\) −7.67819 −0.804893
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −12.7214 22.0341i −1.30518 2.26065i
\(96\) 0 0
\(97\) 6.62372 11.4726i 0.672537 1.16487i −0.304645 0.952466i \(-0.598538\pi\)
0.977182 0.212403i \(-0.0681289\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.57313 2.72474i 0.156533 0.271122i −0.777083 0.629398i \(-0.783302\pi\)
0.933616 + 0.358275i \(0.116635\pi\)
\(102\) 0 0
\(103\) 7.35698 4.24755i 0.724905 0.418524i −0.0916506 0.995791i \(-0.529214\pi\)
0.816555 + 0.577267i \(0.195881\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.2037i 1.75981i −0.475145 0.879907i \(-0.657604\pi\)
0.475145 0.879907i \(-0.342396\pi\)
\(108\) 0 0
\(109\) 1.34847i 0.129160i 0.997913 + 0.0645800i \(0.0205708\pi\)
−0.997913 + 0.0645800i \(0.979429\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.50000 + 2.59808i −0.423324 + 0.244406i −0.696499 0.717558i \(-0.745260\pi\)
0.273174 + 0.961965i \(0.411926\pi\)
\(114\) 0 0
\(115\) −2.02166 + 3.50162i −0.188521 + 0.326528i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.42930 9.40382i 0.497703 0.862047i
\(120\) 0 0
\(121\) −2.77526 4.80688i −0.252296 0.436989i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.317837 −0.0284282
\(126\) 0 0
\(127\) 21.2921i 1.88937i −0.327983 0.944684i \(-0.606369\pi\)
0.327983 0.944684i \(-0.393631\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.52140 0.878383i 0.132926 0.0767447i −0.432063 0.901844i \(-0.642214\pi\)
0.564988 + 0.825099i \(0.308881\pi\)
\(132\) 0 0
\(133\) −17.9241 10.3485i −1.55421 0.897326i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −15.5227 8.96204i −1.32619 0.765679i −0.341485 0.939887i \(-0.610930\pi\)
−0.984709 + 0.174209i \(0.944263\pi\)
\(138\) 0 0
\(139\) −8.79114 15.2267i −0.745654 1.29151i −0.949888 0.312589i \(-0.898804\pi\)
0.204234 0.978922i \(-0.434530\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 7.00324 0.585641
\(144\) 0 0
\(145\) 7.44949 0.618646
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.74434 + 9.94949i 0.470595 + 0.815094i 0.999434 0.0336278i \(-0.0107061\pi\)
−0.528840 + 0.848722i \(0.677373\pi\)
\(150\) 0 0
\(151\) 4.49792 + 2.59687i 0.366035 + 0.211331i 0.671725 0.740801i \(-0.265554\pi\)
−0.305690 + 0.952131i \(0.598887\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −24.0557 13.8886i −1.93220 1.11556i
\(156\) 0 0
\(157\) −6.62642 + 3.82577i −0.528846 + 0.305329i −0.740546 0.672005i \(-0.765433\pi\)
0.211700 + 0.977335i \(0.432100\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.28913i 0.259220i
\(162\) 0 0
\(163\) 3.63487 0.284705 0.142352 0.989816i \(-0.454533\pi\)
0.142352 + 0.989816i \(0.454533\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.07186 10.5168i −0.469855 0.813812i 0.529551 0.848278i \(-0.322360\pi\)
−0.999406 + 0.0344659i \(0.989027\pi\)
\(168\) 0 0
\(169\) −2.00000 + 3.46410i −0.153846 + 0.266469i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.52664 4.37628i 0.192097 0.332722i −0.753848 0.657049i \(-0.771804\pi\)
0.945945 + 0.324327i \(0.105138\pi\)
\(174\) 0 0
\(175\) 10.8586 6.26922i 0.820833 0.473908i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.04189i 0.227361i −0.993517 0.113681i \(-0.963736\pi\)
0.993517 0.113681i \(-0.0362641\pi\)
\(180\) 0 0
\(181\) 19.3485i 1.43816i 0.694927 + 0.719080i \(0.255437\pi\)
−0.694927 + 0.719080i \(0.744563\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 20.0227 11.5601i 1.47210 0.849916i
\(186\) 0 0
\(187\) −4.95204 + 8.57719i −0.362129 + 0.627226i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.36439 + 9.29139i −0.388153 + 0.672302i −0.992201 0.124647i \(-0.960220\pi\)
0.604048 + 0.796948i \(0.293554\pi\)
\(192\) 0 0
\(193\) 3.72474 + 6.45145i 0.268113 + 0.464385i 0.968375 0.249501i \(-0.0802666\pi\)
−0.700262 + 0.713886i \(0.746933\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.6848 1.18875 0.594373 0.804190i \(-0.297400\pi\)
0.594373 + 0.804190i \(0.297400\pi\)
\(198\) 0 0
\(199\) 16.5068i 1.17014i −0.810984 0.585068i \(-0.801068\pi\)
0.810984 0.585068i \(-0.198932\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.24807 3.02997i 0.368342 0.212662i
\(204\) 0 0
\(205\) −25.7183 14.8485i −1.79624 1.03706i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 16.3485 + 9.43879i 1.13085 + 0.652895i
\(210\) 0 0
\(211\) 3.83909 + 6.64951i 0.264294 + 0.457771i 0.967378 0.253336i \(-0.0815277\pi\)
−0.703084 + 0.711107i \(0.748194\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.00324 0.477617
\(216\) 0 0
\(217\) −22.5959 −1.53391
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.36396 + 11.0227i 0.428086 + 0.741467i
\(222\) 0 0
\(223\) −16.8006 9.69985i −1.12505 0.649550i −0.182367 0.983230i \(-0.558376\pi\)
−0.942686 + 0.333680i \(0.891709\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 20.4208 + 11.7900i 1.35538 + 0.782529i 0.988997 0.147936i \(-0.0472629\pi\)
0.366382 + 0.930464i \(0.380596\pi\)
\(228\) 0 0
\(229\) 21.6900 12.5227i 1.43331 0.827524i 0.435941 0.899975i \(-0.356416\pi\)
0.997372 + 0.0724517i \(0.0230823\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.48528i 0.555889i 0.960597 + 0.277945i \(0.0896532\pi\)
−0.960597 + 0.277945i \(0.910347\pi\)
\(234\) 0 0
\(235\) −30.1207 −1.96486
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −0.642559 1.11295i −0.0415637 0.0719905i 0.844495 0.535563i \(-0.179901\pi\)
−0.886059 + 0.463573i \(0.846567\pi\)
\(240\) 0 0
\(241\) −6.84847 + 11.8619i −0.441149 + 0.764092i −0.997775 0.0666710i \(-0.978762\pi\)
0.556626 + 0.830763i \(0.312096\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.707107 + 1.22474i −0.0451754 + 0.0782461i
\(246\) 0 0
\(247\) 21.0097 12.1300i 1.33682 0.771812i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.71071i 0.486696i 0.969939 + 0.243348i \(0.0782457\pi\)
−0.969939 + 0.243348i \(0.921754\pi\)
\(252\) 0 0
\(253\) 3.00000i 0.188608i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.8485 + 6.84072i −0.739087 + 0.426712i −0.821737 0.569866i \(-0.806995\pi\)
0.0826501 + 0.996579i \(0.473662\pi\)
\(258\) 0 0
\(259\) 9.40382 16.2879i 0.584325 1.01208i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.0788 20.9211i 0.744811 1.29005i −0.205472 0.978663i \(-0.565873\pi\)
0.950283 0.311388i \(-0.100794\pi\)
\(264\) 0 0
\(265\) 13.1237 + 22.7310i 0.806184 + 1.39635i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.32124 0.202499 0.101250 0.994861i \(-0.467716\pi\)
0.101250 + 0.994861i \(0.467716\pi\)
\(270\) 0 0
\(271\) 13.2054i 0.802173i 0.916040 + 0.401087i \(0.131367\pi\)
−0.916040 + 0.401087i \(0.868633\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −9.90408 + 5.71812i −0.597239 + 0.344816i
\(276\) 0 0
\(277\) −21.6900 12.5227i −1.30322 0.752416i −0.322268 0.946649i \(-0.604445\pi\)
−0.980956 + 0.194232i \(0.937778\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 13.8712 + 8.00853i 0.827485 + 0.477749i 0.852991 0.521926i \(-0.174786\pi\)
−0.0255059 + 0.999675i \(0.508120\pi\)
\(282\) 0 0
\(283\) 7.38216 + 12.7863i 0.438824 + 0.760065i 0.997599 0.0692539i \(-0.0220618\pi\)
−0.558775 + 0.829319i \(0.688729\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −24.1576 −1.42598
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.89097 3.27526i −0.110472 0.191342i 0.805489 0.592611i \(-0.201903\pi\)
−0.915961 + 0.401268i \(0.868569\pi\)
\(294\) 0 0
\(295\) 3.50162 + 2.02166i 0.203872 + 0.117706i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.33884 1.92768i −0.193090 0.111481i
\(300\) 0 0
\(301\) 4.93369 2.84847i 0.284373 0.164183i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 28.3164i 1.62139i
\(306\) 0 0
\(307\) 23.4430 1.33796 0.668982 0.743279i \(-0.266730\pi\)
0.668982 + 0.743279i \(0.266730\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10.7937 18.6952i −0.612054 1.06011i −0.990894 0.134646i \(-0.957010\pi\)
0.378840 0.925462i \(-0.376323\pi\)
\(312\) 0 0
\(313\) 8.94949 15.5010i 0.505855 0.876167i −0.494122 0.869393i \(-0.664510\pi\)
0.999977 0.00677410i \(-0.00215628\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.69445 + 6.39898i −0.207501 + 0.359402i −0.950927 0.309416i \(-0.899866\pi\)
0.743426 + 0.668819i \(0.233200\pi\)
\(318\) 0 0
\(319\) −4.78674 + 2.76363i −0.268006 + 0.154733i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 34.3087i 1.90899i
\(324\) 0 0
\(325\) 14.6969i 0.815239i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −21.2196 + 12.2512i −1.16988 + 0.675429i
\(330\) 0 0
\(331\) 9.69985 16.8006i 0.533152 0.923446i −0.466098 0.884733i \(-0.654341\pi\)
0.999250 0.0387135i \(-0.0123260\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.642559 + 1.11295i −0.0351068 + 0.0608067i
\(336\) 0 0
\(337\) −13.8485 23.9863i −0.754374 1.30661i −0.945685 0.325085i \(-0.894607\pi\)
0.191311 0.981530i \(-0.438726\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 20.6096 1.11607
\(342\) 0 0
\(343\) 19.0662i 1.02948i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.47344 3.73745i 0.347513 0.200637i −0.316077 0.948734i \(-0.602366\pi\)
0.663589 + 0.748097i \(0.269032\pi\)
\(348\) 0 0
\(349\) 1.43027 + 0.825765i 0.0765605 + 0.0442022i 0.537792 0.843078i \(-0.319259\pi\)
−0.461231 + 0.887280i \(0.652592\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.82577 + 5.67291i 0.522973 + 0.301938i 0.738150 0.674637i \(-0.235700\pi\)
−0.215177 + 0.976575i \(0.569033\pi\)
\(354\) 0 0
\(355\) 22.9428 + 39.7380i 1.21768 + 2.10908i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.57024 0.135652 0.0678260 0.997697i \(-0.478394\pi\)
0.0678260 + 0.997697i \(0.478394\pi\)
\(360\) 0 0
\(361\) 46.3939 2.44178
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.43916 + 4.22474i 0.127671 + 0.221133i
\(366\) 0 0
\(367\) 2.50533 + 1.44645i 0.130777 + 0.0755041i 0.563961 0.825801i \(-0.309277\pi\)
−0.433184 + 0.901305i \(0.642610\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 18.4910 + 10.6758i 0.960004 + 0.554259i
\(372\) 0 0
\(373\) −0.262459 + 0.151531i −0.0135896 + 0.00784597i −0.506779 0.862076i \(-0.669164\pi\)
0.493190 + 0.869922i \(0.335831\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.10318i 0.365832i
\(378\) 0 0
\(379\) 6.26922 0.322028 0.161014 0.986952i \(-0.448524\pi\)
0.161014 + 0.986952i \(0.448524\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.78674 + 8.29088i 0.244591 + 0.423644i 0.962017 0.272991i \(-0.0880130\pi\)
−0.717426 + 0.696635i \(0.754680\pi\)
\(384\) 0 0
\(385\) −9.39898 + 16.2795i −0.479016 + 0.829681i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −11.0119 + 19.0732i −0.558327 + 0.967050i 0.439310 + 0.898336i \(0.355223\pi\)
−0.997636 + 0.0687146i \(0.978110\pi\)
\(390\) 0 0
\(391\) 4.72183 2.72615i 0.238793 0.137867i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 32.4460i 1.63253i
\(396\) 0 0
\(397\) 28.0454i 1.40756i 0.710419 + 0.703779i \(0.248506\pi\)
−0.710419 + 0.703779i \(0.751494\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −11.4773 + 6.62642i −0.573149 + 0.330908i −0.758406 0.651782i \(-0.774022\pi\)
0.185257 + 0.982690i \(0.440688\pi\)
\(402\) 0 0
\(403\) 13.2429 22.9374i 0.659677 1.14259i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −8.57719 + 14.8561i −0.425155 + 0.736391i
\(408\) 0 0
\(409\) −13.2980 23.0327i −0.657542 1.13890i −0.981250 0.192739i \(-0.938263\pi\)
0.323708 0.946157i \(-0.395070\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.28913 0.161847
\(414\) 0 0
\(415\) 10.6460i 0.522594i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −13.7432 + 7.93463i −0.671398 + 0.387632i −0.796606 0.604499i \(-0.793373\pi\)
0.125208 + 0.992131i \(0.460040\pi\)
\(420\) 0 0
\(421\) −15.3260 8.84847i −0.746943 0.431248i 0.0776450 0.996981i \(-0.475260\pi\)
−0.824588 + 0.565733i \(0.808593\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −18.0000 10.3923i −0.873128 0.504101i
\(426\) 0 0
\(427\) −11.5173 19.9485i −0.557360 0.965377i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.57024 0.123804 0.0619020 0.998082i \(-0.480283\pi\)
0.0619020 + 0.998082i \(0.480283\pi\)
\(432\) 0 0
\(433\) −22.4495 −1.07885 −0.539427 0.842032i \(-0.681359\pi\)
−0.539427 + 0.842032i \(0.681359\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.19615 9.00000i −0.248566 0.430528i
\(438\) 0 0
\(439\) 13.9416 + 8.04917i 0.665395 + 0.384166i 0.794330 0.607487i \(-0.207822\pi\)
−0.128935 + 0.991653i \(0.541156\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.0165 + 5.78304i 0.475899 + 0.274760i 0.718706 0.695314i \(-0.244735\pi\)
−0.242807 + 0.970075i \(0.578068\pi\)
\(444\) 0 0
\(445\) 16.7563 9.67423i 0.794323 0.458603i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.6055i 1.49156i −0.666194 0.745778i \(-0.732078\pi\)
0.666194 0.745778i \(-0.267922\pi\)
\(450\) 0 0
\(451\) 22.0341 1.03754
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 12.0788 + 20.9211i 0.566263 + 0.980797i
\(456\) 0 0
\(457\) −0.926786 + 1.60524i −0.0433532 + 0.0750900i −0.886888 0.461985i \(-0.847137\pi\)
0.843535 + 0.537075i \(0.180471\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.1797 21.0959i 0.567267 0.982535i −0.429568 0.903034i \(-0.641334\pi\)
0.996835 0.0795004i \(-0.0253325\pi\)
\(462\) 0 0
\(463\) −21.6523 + 12.5010i −1.00627 + 0.580969i −0.910097 0.414396i \(-0.863993\pi\)
−0.0961706 + 0.995365i \(0.530659\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.9144i 1.19917i 0.800309 + 0.599587i \(0.204669\pi\)
−0.800309 + 0.599587i \(0.795331\pi\)
\(468\) 0 0
\(469\) 1.04541i 0.0482724i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.50000 + 2.59808i −0.206910 + 0.119460i
\(474\) 0 0
\(475\) −19.8082 + 34.3087i −0.908861 + 1.57419i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.22021 2.11346i 0.0557527 0.0965665i −0.836802 0.547506i \(-0.815577\pi\)
0.892555 + 0.450939i \(0.148911\pi\)
\(480\) 0 0
\(481\) 11.0227 + 19.0919i 0.502592 + 0.870515i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −41.6800 −1.89259
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7.97422 4.60392i 0.359871 0.207772i −0.309153 0.951012i \(-0.600046\pi\)
0.669024 + 0.743240i \(0.266712\pi\)
\(492\) 0 0
\(493\) −8.69958 5.02270i −0.391809 0.226211i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 32.3258 + 18.6633i 1.45001 + 0.837163i
\(498\) 0 0
\(499\) −9.19959 15.9342i −0.411830 0.713311i 0.583260 0.812286i \(-0.301777\pi\)
−0.995090 + 0.0989747i \(0.968444\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20.8799 0.930989 0.465494 0.885051i \(-0.345877\pi\)
0.465494 + 0.885051i \(0.345877\pi\)
\(504\) 0 0
\(505\) −9.89898 −0.440499
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11.2262 19.4444i −0.497594 0.861857i 0.502403 0.864634i \(-0.332450\pi\)
−0.999996 + 0.00277650i \(0.999116\pi\)
\(510\) 0 0
\(511\) 3.43671 + 1.98419i 0.152031 + 0.0877752i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −23.1470 13.3639i −1.01998 0.588885i
\(516\) 0 0
\(517\) 19.3543 11.1742i 0.851203 0.491442i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18.8776i 0.827042i −0.910495 0.413521i \(-0.864299\pi\)
0.910495 0.413521i \(-0.135701\pi\)
\(522\) 0 0
\(523\) −22.4425 −0.981343 −0.490671 0.871345i \(-0.663248\pi\)
−0.490671 + 0.871345i \(0.663248\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18.7283 + 32.4384i 0.815818 + 1.41304i
\(528\) 0 0
\(529\) 10.6742 18.4883i 0.464097 0.803840i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 14.1582 24.5227i 0.613259 1.06220i
\(534\) 0 0
\(535\) −49.6003 + 28.6368i −2.14441 + 1.23808i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.04930i 0.0451963i
\(540\) 0 0
\(541\) 8.69694i 0.373911i 0.982368 + 0.186955i \(0.0598620\pi\)
−0.982368 + 0.186955i \(0.940138\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.67423 2.12132i 0.157387 0.0908674i
\(546\) 0 0
\(547\) −7.88242 + 13.6527i −0.337028 + 0.583749i −0.983872 0.178873i \(-0.942755\pi\)
0.646844 + 0.762622i \(0.276088\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −9.57348 + 16.5818i −0.407844 + 0.706407i
\(552\) 0 0
\(553\) −13.1969 22.8578i −0.561191 0.972011i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −20.6417 −0.874619 −0.437309 0.899311i \(-0.644069\pi\)
−0.437309 + 0.899311i \(0.644069\pi\)
\(558\) 0 0
\(559\) 6.67767i 0.282436i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.5941 21.1276i 1.54226 0.890424i 0.543564 0.839368i \(-0.317075\pi\)
0.998696 0.0510558i \(-0.0162586\pi\)
\(564\) 0 0
\(565\) 14.1582 + 8.17423i 0.595640 + 0.343893i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −13.5000 7.79423i −0.565949 0.326751i 0.189580 0.981865i \(-0.439287\pi\)
−0.755530 + 0.655114i \(0.772621\pi\)
\(570\) 0 0
\(571\) −6.47344 11.2123i −0.270905 0.469222i 0.698189 0.715914i \(-0.253990\pi\)
−0.969094 + 0.246692i \(0.920656\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.29577 0.262552
\(576\) 0 0
\(577\) 9.34847 0.389182 0.194591 0.980884i \(-0.437662\pi\)
0.194591 + 0.980884i \(0.437662\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.33013 7.50000i −0.179644 0.311152i
\(582\) 0 0
\(583\) −16.8655 9.73733i −0.698500 0.403279i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −16.2857 9.40257i −0.672184 0.388086i 0.124720 0.992192i \(-0.460197\pi\)
−0.796904 + 0.604106i \(0.793530\pi\)
\(588\) 0 0
\(589\) 61.8289 35.6969i 2.54762 1.47087i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25.0273i 1.02775i −0.857866 0.513873i \(-0.828210\pi\)
0.857866 0.513873i \(-0.171790\pi\)
\(594\) 0 0
\(595\) −34.1640 −1.40059
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 15.6453 + 27.0985i 0.639251 + 1.10722i 0.985597 + 0.169109i \(0.0540889\pi\)
−0.346346 + 0.938107i \(0.612578\pi\)
\(600\) 0 0
\(601\) −0.623724 + 1.08032i −0.0254422 + 0.0440673i −0.878466 0.477805i \(-0.841433\pi\)
0.853024 + 0.521872i \(0.174766\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −8.73169 + 15.1237i −0.354994 + 0.614867i
\(606\) 0 0
\(607\) −10.5049 + 6.06499i −0.426379 + 0.246170i −0.697803 0.716290i \(-0.745839\pi\)
0.271424 + 0.962460i \(0.412506\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 28.7204i 1.16190i
\(612\) 0 0
\(613\) 40.0454i 1.61742i 0.588208 + 0.808709i \(0.299833\pi\)
−0.588208 + 0.808709i \(0.700167\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.8712 + 8.00853i −0.558432 + 0.322411i −0.752516 0.658574i \(-0.771160\pi\)
0.194084 + 0.980985i \(0.437827\pi\)
\(618\) 0 0
\(619\) −0.612688 + 1.06121i −0.0246260 + 0.0426535i −0.878076 0.478522i \(-0.841173\pi\)
0.853450 + 0.521175i \(0.174506\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7.86971 13.6307i 0.315293 0.546104i
\(624\) 0 0
\(625\) 12.7474 + 22.0792i 0.509898 + 0.883169i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −31.1769 −1.24310
\(630\) 0 0
\(631\) 2.96786i 0.118148i 0.998254 + 0.0590742i \(0.0188149\pi\)
−0.998254 + 0.0590742i \(0.981185\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −58.0155 + 33.4953i −2.30228 + 1.32922i
\(636\) 0 0
\(637\) −1.16781 0.674235i −0.0462703 0.0267141i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.1969 + 11.0834i 0.758233 + 0.437766i 0.828661 0.559751i \(-0.189103\pi\)
−0.0704277 + 0.997517i \(0.522436\pi\)
\(642\) 0 0
\(643\) −0.204229 0.353736i −0.00805402 0.0139500i 0.861970 0.506959i \(-0.169230\pi\)
−0.870024 + 0.493009i \(0.835897\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.1470 −0.752745 −0.376372 0.926468i \(-0.622829\pi\)
−0.376372 + 0.926468i \(0.622829\pi\)
\(648\) 0 0
\(649\) −3.00000 −0.117760
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 15.2546 + 26.4217i 0.596957 + 1.03396i 0.993267 + 0.115844i \(0.0369572\pi\)
−0.396310 + 0.918117i \(0.629710\pi\)
\(654\) 0 0
\(655\) −4.78674 2.76363i −0.187033 0.107984i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.20474 0.695560i −0.0469302 0.0270952i 0.476351 0.879255i \(-0.341959\pi\)
−0.523282 + 0.852160i \(0.675292\pi\)
\(660\) 0 0
\(661\) −8.96204 + 5.17423i −0.348583 + 0.201254i −0.664061 0.747678i \(-0.731168\pi\)
0.315478 + 0.948933i \(0.397835\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 65.1180i 2.52517i
\(666\) 0 0
\(667\) 3.04281 0.117818
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.5049 + 18.1950i 0.405536 + 0.702409i
\(672\) 0 0
\(673\) −9.62372 + 16.6688i −0.370967 + 0.642534i −0.989715 0.143056i \(-0.954307\pi\)
0.618747 + 0.785590i \(0.287640\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.18010 8.97219i 0.199087 0.344829i −0.749145 0.662406i \(-0.769536\pi\)
0.948233 + 0.317576i \(0.102869\pi\)
\(678\) 0 0
\(679\) −29.3630 + 16.9527i −1.12685 + 0.650586i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 31.7385i 1.21444i −0.794534 0.607220i \(-0.792285\pi\)
0.794534 0.607220i \(-0.207715\pi\)
\(684\) 0 0
\(685\) 56.3939i 2.15470i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −21.6742 + 12.5136i −0.825723 + 0.476731i
\(690\) 0 0
\(691\) −3.74730 + 6.49051i −0.142554 + 0.246911i −0.928458 0.371438i \(-0.878865\pi\)
0.785904 + 0.618349i \(0.212198\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −27.6592 + 47.9072i −1.04917 + 1.81722i
\(696\) 0 0
\(697\) 20.0227 + 34.6803i 0.758414 + 1.31361i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.76416 0.0666314 0.0333157 0.999445i \(-0.489393\pi\)
0.0333157 + 0.999445i \(0.489393\pi\)
\(702\) 0 0
\(703\) 59.4245i 2.24124i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.97370 + 4.02627i −0.262273 + 0.151423i
\(708\) 0 0
\(709\) 8.96204 + 5.17423i 0.336576 + 0.194322i 0.658757 0.752356i \(-0.271083\pi\)
−0.322181 + 0.946678i \(0.604416\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.82577 5.67291i −0.367978 0.212452i
\(714\) 0 0
\(715\) −11.0170 19.0820i −0.412013 0.713628i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 28.0130 1.04471 0.522354 0.852729i \(-0.325054\pi\)
0.522354 + 0.852729i \(0.325054\pi\)
\(720\) 0 0
\(721\) −21.7423 −0.809727
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.79972 10.0454i −0.215396 0.373077i
\(726\) 0 0
\(727\) −32.5109 18.7702i −1.20576 0.696147i −0.243931 0.969792i \(-0.578437\pi\)
−0.961831 + 0.273645i \(0.911771\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.17845 4.72183i −0.302491 0.174643i
\(732\) 0 0
\(733\) −12.9904 + 7.50000i −0.479811 + 0.277019i −0.720338 0.693624i \(-0.756013\pi\)
0.240527 + 0.970642i \(0.422680\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.953512i 0.0351231i
\(738\) 0 0
\(739\) −1.00052 −0.0368046 −0.0184023 0.999831i \(-0.505858\pi\)
−0.0184023 + 0.999831i \(0.505858\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.7932 + 32.5508i 0.689457 + 1.19417i 0.972014 + 0.234923i \(0.0754839\pi\)
−0.282557 + 0.959250i \(0.591183\pi\)
\(744\) 0 0
\(745\) 18.0732 31.3037i 0.662151 1.14688i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −23.2952 + 40.3485i −0.851188 + 1.47430i
\(750\) 0 0
\(751\) 14.8080 8.54943i 0.540353 0.311973i −0.204869 0.978789i \(-0.565677\pi\)
0.745222 + 0.666816i \(0.232343\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.3409i 0.594706i
\(756\) 0 0
\(757\) 12.0000i 0.436147i −0.975932 0.218074i \(-0.930023\pi\)
0.975932 0.218074i \(-0.0699773\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 42.5227 24.5505i 1.54145 0.889955i 0.542699 0.839927i \(-0.317402\pi\)
0.998748 0.0500275i \(-0.0159309\pi\)
\(762\) 0 0
\(763\) 1.72563 2.98889i 0.0624721 0.108205i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.92768 + 3.33884i −0.0696044 + 0.120558i
\(768\) 0 0
\(769\) −13.2980 23.0327i −0.479537 0.830582i 0.520188 0.854052i \(-0.325862\pi\)
−0.999725 + 0.0234700i \(0.992529\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 42.9192 1.54370 0.771848 0.635807i \(-0.219332\pi\)
0.771848 + 0.635807i \(0.219332\pi\)
\(774\) 0 0
\(775\) 43.2512i 1.55363i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 66.1022 38.1641i 2.36836 1.36737i
\(780\) 0 0
\(781\) −29.4842 17.0227i −1.05503 0.609120i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 20.8485 + 12.0369i 0.744114 + 0.429614i
\(786\) 0 0
\(787\) −19.1037 33.0885i −0.680972 1.17948i −0.974684 0.223585i \(-0.928224\pi\)
0.293712 0.955894i \(-0.405109\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 13.2990 0.472859
\(792\) 0 0
\(793\) 27.0000 0.958798
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −17.0902 29.6010i −0.605364 1.04852i −0.991994 0.126287i \(-0.959694\pi\)
0.386629 0.922235i \(-0.373639\pi\)
\(798\) 0 0
\(799\) 35.1752 + 20.3084i 1.24441 + 0.718460i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.13461 1.80977i −0.110618 0.0638653i
\(804\) 0 0
\(805\) 8.96204 5.17423i 0.315870 0.182368i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 14.6349i 0.514537i 0.966340 + 0.257269i \(0.0828225\pi\)
−0.966340 + 0.257269i \(0.917177\pi\)
\(810\) 0 0
\(811\) 20.6251 0.724244 0.362122 0.932131i \(-0.382052\pi\)
0.362122 + 0.932131i \(0.382052\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.71812 9.90408i −0.200297 0.346925i
\(816\) 0 0
\(817\) −9.00000 + 15.5885i −0.314870 + 0.545371i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −16.7402 + 28.9949i −0.584237 + 1.01193i 0.410733 + 0.911756i \(0.365273\pi\)
−0.994970 + 0.100173i \(0.968060\pi\)
\(822\) 0 0
\(823\) 8.80110 5.08132i 0.306787 0.177124i −0.338701 0.940894i \(-0.609987\pi\)
0.645488 + 0.763771i \(0.276654\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 29.1683i 1.01428i 0.861864 + 0.507140i \(0.169297\pi\)
−0.861864 + 0.507140i \(0.830703\pi\)
\(828\) 0 0
\(829\) 34.6515i 1.20350i −0.798685 0.601749i \(-0.794471\pi\)
0.798685 0.601749i \(-0.205529\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.65153 0.953512i 0.0572221 0.0330372i
\(834\) 0 0
\(835\) −19.1037 + 33.0885i −0.661110 + 1.14508i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.92397 + 5.06447i −0.100947 + 0.174845i −0.912075 0.410023i \(-0.865521\pi\)
0.811128 + 0.584868i \(0.198854\pi\)
\(840\) 0 0
\(841\) 11.6969 + 20.2597i 0.403343 + 0.698610i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.5851 0.432939
\(846\) 0 0
\(847\) 14.2060i 0.488122i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.17845 4.72183i 0.280354 0.161862i
\(852\) 0 0
\(853\) 15.8509 + 9.15153i 0.542725 + 0.313342i 0.746183 0.665741i \(-0.231885\pi\)
−0.203458 + 0.979084i \(0.565218\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −17.1742 9.91555i −0.586661 0.338709i 0.177115 0.984190i \(-0.443323\pi\)
−0.763776 + 0.645481i \(0.776657\pi\)
\(858\) 0 0
\(859\) 25.4647 + 44.1061i 0.868844 + 1.50488i 0.863179 + 0.504898i \(0.168470\pi\)
0.00566493 + 0.999984i \(0.498197\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 25.4427 0.866081 0.433040 0.901375i \(-0.357441\pi\)
0.433040 + 0.901375i \(0.357441\pi\)
\(864\) 0 0
\(865\) −15.8990 −0.540582
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 12.0369 + 20.8485i 0.408323 + 0.707236i
\(870\) 0 0
\(871\) −1.06121 0.612688i −0.0359576 0.0207601i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.704487 + 0.406736i 0.0238160 + 0.0137502i
\(876\) 0 0
\(877\) 12.4655 7.19694i 0.420929 0.243023i −0.274546 0.961574i \(-0.588528\pi\)
0.695475 + 0.718551i \(0.255194\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 26.9343i 0.907439i −0.891145 0.453719i \(-0.850097\pi\)
0.891145 0.453719i \(-0.149903\pi\)
\(882\) 0 0
\(883\) 15.3564 0.516783 0.258392 0.966040i \(-0.416808\pi\)
0.258392 + 0.966040i \(0.416808\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −22.2299 38.5034i −0.746408 1.29282i −0.949534 0.313664i \(-0.898443\pi\)
0.203126 0.979153i \(-0.434890\pi\)
\(888\) 0 0
\(889\) −27.2474 + 47.1940i −0.913850 + 1.58283i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 38.7087 67.0454i 1.29534 2.24359i
\(894\) 0 0
\(895\) −8.28836 + 4.78529i −0.277049 + 0.159955i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 20.9037i 0.697178i
\(900\) 0 0
\(901\) 35.3939i 1.17914i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 52.7196 30.4377i 1.75246 1.01178i
\(906\) 0 0
\(907\) 22.3301 38.6768i 0.741458 1.28424i −0.210373 0.977621i \(-0.567468\pi\)
0.951831 0.306622i \(-0.0991988\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −20.3672 + 35.2770i −0.674794 + 1.16878i 0.301735 + 0.953392i \(0.402434\pi\)
−0.976529 + 0.215386i \(0.930899\pi\)
\(912\) 0 0
\(913\) 3.94949 + 6.84072i 0.130709 + 0.226395i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.49626 −0.148480
\(918\) 0 0
\(919\) 18.4741i 0.609406i 0.952447 + 0.304703i \(0.0985572\pi\)
−0.952447 + 0.304703i \(0.901443\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −37.8907 + 21.8762i −1.24719 + 0.720064i
\(924\) 0 0
\(925\) −31.1769 18.0000i −1.02509 0.591836i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −31.8712 18.4008i −1.04566 0.603712i −0.124228 0.992254i \(-0.539646\pi\)
−0.921431 + 0.388542i \(0.872979\pi\)
\(930\) 0 0
\(931\) −1.81743 3.14789i −0.0595640 0.103168i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 31.1609 1.01907
\(936\) 0 0
\(937\) −43.1464 −1.40953 −0.704766 0.709440i \(-0.748948\pi\)
−0.704766 + 0.709440i \(0.748948\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −22.5006 38.9722i −0.733499 1.27046i −0.955379 0.295383i \(-0.904553\pi\)
0.221880 0.975074i \(-0.428781\pi\)
\(942\) 0 0
\(943\) −10.5049 6.06499i −0.342085 0.197503i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15.1521 + 8.74810i 0.492379 + 0.284275i 0.725561 0.688158i \(-0.241580\pi\)
−0.233182 + 0.972433i \(0.574914\pi\)
\(948\) 0 0
\(949\) −4.02834 + 2.32577i −0.130766 + 0.0754975i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 18.4490i 0.597621i 0.954312 + 0.298811i \(0.0965899\pi\)
−0.954312 + 0.298811i \(0.903410\pi\)
\(954\) 0 0
\(955\) 33.7556 1.09230
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22.9374 + 39.7288i 0.740687 + 1.28291i
\(960\) 0 0
\(961\) 23.4722 40.6550i 0.757168 1.31145i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 11.7190 20.2980i 0.377249 0.653414i
\(966\) 0 0
\(967\) −22.8076 + 13.1680i −0.733442 + 0.423453i −0.819680 0.572821i \(-0.805849\pi\)
0.0862378 + 0.996275i \(0.472516\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 44.6957i 1.43435i 0.696892 + 0.717177i \(0.254566\pi\)
−0.696892 + 0.717177i \(0.745434\pi\)
\(972\) 0 0
\(973\) 45.0000i 1.44263i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −33.1515 + 19.1400i −1.06061 + 0.612344i −0.925601 0.378500i \(-0.876440\pi\)
−0.135010 + 0.990844i \(0.543107\pi\)
\(978\) 0 0
\(979\) −7.17793 + 12.4325i −0.229408 + 0.397346i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −8.93092 + 15.4688i −0.284852 + 0.493378i −0.972573 0.232597i \(-0.925278\pi\)
0.687721 + 0.725975i \(0.258611\pi\)
\(984\) 0 0
\(985\) −26.2474 45.4619i −0.836313 1.44854i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.86054 0.0909597
\(990\) 0 0
\(991\) 2.30084i 0.0730887i 0.999332 + 0.0365444i \(0.0116350\pi\)
−0.999332 + 0.0365444i \(0.988365\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −44.9768 + 25.9674i −1.42586 + 0.823221i
\(996\) 0 0
\(997\) −21.6900 12.5227i −0.686928 0.396598i 0.115532 0.993304i \(-0.463143\pi\)
−0.802460 + 0.596706i \(0.796476\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3456.2.p.e.575.1 16
3.2 odd 2 1152.2.p.e.191.2 yes 16
4.3 odd 2 inner 3456.2.p.e.575.2 16
8.3 odd 2 inner 3456.2.p.e.575.8 16
8.5 even 2 inner 3456.2.p.e.575.7 16
9.4 even 3 1152.2.p.e.959.1 yes 16
9.5 odd 6 inner 3456.2.p.e.2879.8 16
12.11 even 2 1152.2.p.e.191.8 yes 16
24.5 odd 2 1152.2.p.e.191.7 yes 16
24.11 even 2 1152.2.p.e.191.1 16
36.23 even 6 inner 3456.2.p.e.2879.7 16
36.31 odd 6 1152.2.p.e.959.7 yes 16
72.5 odd 6 inner 3456.2.p.e.2879.2 16
72.13 even 6 1152.2.p.e.959.8 yes 16
72.59 even 6 inner 3456.2.p.e.2879.1 16
72.67 odd 6 1152.2.p.e.959.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1152.2.p.e.191.1 16 24.11 even 2
1152.2.p.e.191.2 yes 16 3.2 odd 2
1152.2.p.e.191.7 yes 16 24.5 odd 2
1152.2.p.e.191.8 yes 16 12.11 even 2
1152.2.p.e.959.1 yes 16 9.4 even 3
1152.2.p.e.959.2 yes 16 72.67 odd 6
1152.2.p.e.959.7 yes 16 36.31 odd 6
1152.2.p.e.959.8 yes 16 72.13 even 6
3456.2.p.e.575.1 16 1.1 even 1 trivial
3456.2.p.e.575.2 16 4.3 odd 2 inner
3456.2.p.e.575.7 16 8.5 even 2 inner
3456.2.p.e.575.8 16 8.3 odd 2 inner
3456.2.p.e.2879.1 16 72.59 even 6 inner
3456.2.p.e.2879.2 16 72.5 odd 6 inner
3456.2.p.e.2879.7 16 36.23 even 6 inner
3456.2.p.e.2879.8 16 9.5 odd 6 inner