Defining parameters
| Level: | \( N \) | \(=\) | \( 345 = 3 \cdot 5 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 345.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(96\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(345, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 52 | 24 | 28 |
| Cusp forms | 44 | 24 | 20 |
| Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(345, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 345.2.b.a | $2$ | $2.755$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+i q^{2}+i q^{3}+q^{4}+(2 i+1)q^{5}+\cdots\) |
| 345.2.b.b | $2$ | $2.755$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(4\) | \(0\) | \(q+i q^{2}-i q^{3}+q^{4}+(-i+2)q^{5}+\cdots\) |
| 345.2.b.c | $6$ | $2.755$ | 6.0.350464.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{5}q^{2}-\beta _{3}q^{3}+(-1+\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\) |
| 345.2.b.d | $14$ | $2.755$ | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+\beta _{5}q^{2}-\beta _{2}q^{3}+(-2-\beta _{8}+\beta _{9}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(345, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(345, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 2}\)