Properties

Label 345.2.b
Level $345$
Weight $2$
Character orbit 345.b
Rep. character $\chi_{345}(139,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $4$
Sturm bound $96$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 345 = 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 345.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(96\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(345, [\chi])\).

Total New Old
Modular forms 52 24 28
Cusp forms 44 24 20
Eisenstein series 8 0 8

Trace form

\( 24 q - 28 q^{4} + 4 q^{5} + 4 q^{6} - 24 q^{9} - 8 q^{14} - 4 q^{15} + 36 q^{16} + 8 q^{19} + 4 q^{20} - 8 q^{21} - 12 q^{24} - 32 q^{26} + 12 q^{29} - 8 q^{30} + 20 q^{31} + 32 q^{34} - 36 q^{35} + 28 q^{36}+ \cdots + 28 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(345, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
345.2.b.a 345.b 5.b $2$ $2.755$ \(\Q(\sqrt{-1}) \) None 345.2.b.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+i q^{3}+q^{4}+(2 i+1)q^{5}+\cdots\)
345.2.b.b 345.b 5.b $2$ $2.755$ \(\Q(\sqrt{-1}) \) None 345.2.b.b \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-i q^{3}+q^{4}+(-i+2)q^{5}+\cdots\)
345.2.b.c 345.b 5.b $6$ $2.755$ 6.0.350464.1 None 345.2.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{2}-\beta _{3}q^{3}+(-1+\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\)
345.2.b.d 345.b 5.b $14$ $2.755$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 345.2.b.d \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{2}-\beta _{2}q^{3}+(-2-\beta _{8}+\beta _{9}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(345, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(345, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 2}\)