Defining parameters
Level: | \( N \) | = | \( 345 = 3 \cdot 5 \cdot 23 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 12 \) | ||
Newform subspaces: | \( 35 \) | ||
Sturm bound: | \(16896\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(345))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4576 | 3019 | 1557 |
Cusp forms | 3873 | 2771 | 1102 |
Eisenstein series | 703 | 248 | 455 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(345))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
345.2.a | \(\chi_{345}(1, \cdot)\) | 345.2.a.a | 1 | 1 |
345.2.a.b | 1 | |||
345.2.a.c | 1 | |||
345.2.a.d | 1 | |||
345.2.a.e | 1 | |||
345.2.a.f | 1 | |||
345.2.a.g | 2 | |||
345.2.a.h | 2 | |||
345.2.a.i | 2 | |||
345.2.a.j | 3 | |||
345.2.b | \(\chi_{345}(139, \cdot)\) | 345.2.b.a | 2 | 1 |
345.2.b.b | 2 | |||
345.2.b.c | 6 | |||
345.2.b.d | 14 | |||
345.2.c | \(\chi_{345}(206, \cdot)\) | 345.2.c.a | 16 | 1 |
345.2.c.b | 16 | |||
345.2.h | \(\chi_{345}(344, \cdot)\) | 345.2.h.a | 4 | 1 |
345.2.h.b | 8 | |||
345.2.h.c | 8 | |||
345.2.h.d | 24 | |||
345.2.i | \(\chi_{345}(47, \cdot)\) | 345.2.i.a | 4 | 2 |
345.2.i.b | 4 | |||
345.2.i.c | 80 | |||
345.2.j | \(\chi_{345}(22, \cdot)\) | 345.2.j.a | 48 | 2 |
345.2.m | \(\chi_{345}(16, \cdot)\) | 345.2.m.a | 30 | 10 |
345.2.m.b | 30 | |||
345.2.m.c | 50 | |||
345.2.m.d | 50 | |||
345.2.n | \(\chi_{345}(14, \cdot)\) | 345.2.n.a | 40 | 10 |
345.2.n.b | 400 | |||
345.2.s | \(\chi_{345}(11, \cdot)\) | 345.2.s.a | 160 | 10 |
345.2.s.b | 160 | |||
345.2.t | \(\chi_{345}(4, \cdot)\) | 345.2.t.a | 240 | 10 |
345.2.w | \(\chi_{345}(7, \cdot)\) | 345.2.w.a | 480 | 20 |
345.2.x | \(\chi_{345}(2, \cdot)\) | 345.2.x.a | 880 | 20 |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(345))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(345)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(115))\)\(^{\oplus 2}\)