Properties

Label 344.1.l
Level $344$
Weight $1$
Character orbit 344.l
Rep. character $\chi_{344}(251,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $6$
Newform subspaces $2$
Sturm bound $44$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 344 = 2^{3} \cdot 43 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 344.l (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 344 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(44\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(344, [\chi])\).

Total New Old
Modular forms 10 10 0
Cusp forms 6 6 0
Eisenstein series 4 4 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 4 0 0

Trace form

\( 6 q + 2 q^{2} - 2 q^{4} - 2 q^{6} + 2 q^{8} - 3 q^{9} - 2 q^{10} - 2 q^{11} - 4 q^{12} - 2 q^{14} + 6 q^{16} - q^{17} - 3 q^{18} - q^{19} - 2 q^{22} - 2 q^{24} - q^{25} + 2 q^{26} + 12 q^{27} + 2 q^{30}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(344, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
344.1.l.a 344.l 344.l $2$ $0.172$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-2}) \) None 344.1.l.a \(2\) \(-2\) \(0\) \(0\) \(q+q^{2}-\zeta_{6}q^{3}+q^{4}-2\zeta_{6}q^{6}+q^{8}+\cdots\)
344.1.l.b 344.l 344.l $4$ $0.172$ \(\Q(\zeta_{12})\) $A_{4}$ None None 344.1.l.b \(0\) \(2\) \(0\) \(0\) \(q-\zeta_{12}^{3}q^{2}-\zeta_{12}^{4}q^{3}-q^{4}-\zeta_{12}q^{5}+\cdots\)