Properties

Label 344.1
Level 344
Weight 1
Dimension 30
Nonzero newspaces 5
Newform subspaces 7
Sturm bound 7392
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 344 = 2^{3} \cdot 43 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 5 \)
Newform subspaces: \( 7 \)
Sturm bound: \(7392\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(344))\).

Total New Old
Modular forms 284 112 172
Cusp forms 32 30 2
Eisenstein series 252 82 170

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 24 4 2 0

Trace form

\( 30 q - q^{2} - q^{4} - 4 q^{6} - q^{8} - 3 q^{9} - 4 q^{10} - 4 q^{11} - 4 q^{12} + 2 q^{13} - 2 q^{14} - 8 q^{15} + 7 q^{16} - 8 q^{17} - 3 q^{18} - 4 q^{19} + 4 q^{21} - 2 q^{22} - 4 q^{24} - q^{25}+ \cdots + 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(344))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
344.1.b \(\chi_{344}(257, \cdot)\) 344.1.b.a 2 1
344.1.d \(\chi_{344}(87, \cdot)\) None 0 1
344.1.f \(\chi_{344}(259, \cdot)\) None 0 1
344.1.h \(\chi_{344}(85, \cdot)\) 344.1.h.a 2 1
344.1.h.b 2
344.1.j \(\chi_{344}(37, \cdot)\) None 0 2
344.1.l \(\chi_{344}(251, \cdot)\) 344.1.l.a 2 2
344.1.l.b 4
344.1.n \(\chi_{344}(79, \cdot)\) None 0 2
344.1.p \(\chi_{344}(209, \cdot)\) None 0 2
344.1.r \(\chi_{344}(45, \cdot)\) None 0 6
344.1.s \(\chi_{344}(11, \cdot)\) 344.1.s.a 6 6
344.1.u \(\chi_{344}(47, \cdot)\) None 0 6
344.1.w \(\chi_{344}(65, \cdot)\) None 0 6
344.1.ba \(\chi_{344}(33, \cdot)\) None 0 12
344.1.bc \(\chi_{344}(15, \cdot)\) None 0 12
344.1.be \(\chi_{344}(67, \cdot)\) 344.1.be.a 12 12
344.1.bf \(\chi_{344}(5, \cdot)\) None 0 12

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(344))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(344)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(43))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(86))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(172))\)\(^{\oplus 2}\)