Properties

Label 3432.2.a.x.1.3
Level $3432$
Weight $2$
Character 3432.1
Self dual yes
Analytic conductor $27.405$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3432,2,Mod(1,3432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3432.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3432, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3432 = 2^{3} \cdot 3 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3432.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,5,0,1,0,-3,0,5,0,5,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.4046579737\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.46437524.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 20x^{3} + 8x^{2} + 70x + 28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.447720\) of defining polynomial
Character \(\chi\) \(=\) 3432.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -0.447720 q^{5} +3.31638 q^{7} +1.00000 q^{9} +1.00000 q^{11} +1.00000 q^{13} -0.447720 q^{15} +4.86866 q^{17} +3.83157 q^{19} +3.31638 q^{21} -5.31638 q^{23} -4.79955 q^{25} +1.00000 q^{27} +8.83664 q^{29} +1.93253 q^{31} +1.00000 q^{33} -1.48481 q^{35} -6.63276 q^{37} +1.00000 q^{39} -1.31638 q^{41} +7.24891 q^{43} -0.447720 q^{45} +4.48317 q^{47} +3.99836 q^{49} +4.86866 q^{51} -11.1159 q^{53} -0.447720 q^{55} +3.83157 q^{57} -5.63112 q^{59} +0.380248 q^{61} +3.31638 q^{63} -0.447720 q^{65} +2.44772 q^{67} -5.31638 q^{69} -7.25087 q^{71} +11.7995 q^{73} -4.79955 q^{75} +3.31638 q^{77} +13.9104 q^{79} +1.00000 q^{81} +0.895440 q^{83} -2.17979 q^{85} +8.83664 q^{87} -9.46072 q^{89} +3.31638 q^{91} +1.93253 q^{93} -1.71547 q^{95} -4.22048 q^{97} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{3} + q^{5} - 3 q^{7} + 5 q^{9} + 5 q^{11} + 5 q^{13} + q^{15} + 8 q^{17} + 10 q^{19} - 3 q^{21} - 7 q^{23} + 16 q^{25} + 5 q^{27} - 3 q^{29} - 4 q^{31} + 5 q^{33} + 3 q^{35} + 6 q^{37} + 5 q^{39}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −0.447720 −0.200226 −0.100113 0.994976i \(-0.531920\pi\)
−0.100113 + 0.994976i \(0.531920\pi\)
\(6\) 0 0
\(7\) 3.31638 1.25347 0.626736 0.779231i \(-0.284390\pi\)
0.626736 + 0.779231i \(0.284390\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) −0.447720 −0.115601
\(16\) 0 0
\(17\) 4.86866 1.18082 0.590411 0.807102i \(-0.298965\pi\)
0.590411 + 0.807102i \(0.298965\pi\)
\(18\) 0 0
\(19\) 3.83157 0.879022 0.439511 0.898237i \(-0.355152\pi\)
0.439511 + 0.898237i \(0.355152\pi\)
\(20\) 0 0
\(21\) 3.31638 0.723693
\(22\) 0 0
\(23\) −5.31638 −1.10854 −0.554271 0.832336i \(-0.687003\pi\)
−0.554271 + 0.832336i \(0.687003\pi\)
\(24\) 0 0
\(25\) −4.79955 −0.959909
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 8.83664 1.64092 0.820461 0.571703i \(-0.193717\pi\)
0.820461 + 0.571703i \(0.193717\pi\)
\(30\) 0 0
\(31\) 1.93253 0.347092 0.173546 0.984826i \(-0.444477\pi\)
0.173546 + 0.984826i \(0.444477\pi\)
\(32\) 0 0
\(33\) 1.00000 0.174078
\(34\) 0 0
\(35\) −1.48481 −0.250978
\(36\) 0 0
\(37\) −6.63276 −1.09042 −0.545209 0.838300i \(-0.683550\pi\)
−0.545209 + 0.838300i \(0.683550\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) −1.31638 −0.205584 −0.102792 0.994703i \(-0.532778\pi\)
−0.102792 + 0.994703i \(0.532778\pi\)
\(42\) 0 0
\(43\) 7.24891 1.10545 0.552724 0.833364i \(-0.313588\pi\)
0.552724 + 0.833364i \(0.313588\pi\)
\(44\) 0 0
\(45\) −0.447720 −0.0667421
\(46\) 0 0
\(47\) 4.48317 0.653937 0.326969 0.945035i \(-0.393973\pi\)
0.326969 + 0.945035i \(0.393973\pi\)
\(48\) 0 0
\(49\) 3.99836 0.571194
\(50\) 0 0
\(51\) 4.86866 0.681748
\(52\) 0 0
\(53\) −11.1159 −1.52689 −0.763445 0.645873i \(-0.776494\pi\)
−0.763445 + 0.645873i \(0.776494\pi\)
\(54\) 0 0
\(55\) −0.447720 −0.0603705
\(56\) 0 0
\(57\) 3.83157 0.507504
\(58\) 0 0
\(59\) −5.63112 −0.733109 −0.366554 0.930397i \(-0.619463\pi\)
−0.366554 + 0.930397i \(0.619463\pi\)
\(60\) 0 0
\(61\) 0.380248 0.0486857 0.0243429 0.999704i \(-0.492251\pi\)
0.0243429 + 0.999704i \(0.492251\pi\)
\(62\) 0 0
\(63\) 3.31638 0.417824
\(64\) 0 0
\(65\) −0.447720 −0.0555328
\(66\) 0 0
\(67\) 2.44772 0.299037 0.149518 0.988759i \(-0.452228\pi\)
0.149518 + 0.988759i \(0.452228\pi\)
\(68\) 0 0
\(69\) −5.31638 −0.640017
\(70\) 0 0
\(71\) −7.25087 −0.860520 −0.430260 0.902705i \(-0.641578\pi\)
−0.430260 + 0.902705i \(0.641578\pi\)
\(72\) 0 0
\(73\) 11.7995 1.38103 0.690516 0.723317i \(-0.257383\pi\)
0.690516 + 0.723317i \(0.257383\pi\)
\(74\) 0 0
\(75\) −4.79955 −0.554204
\(76\) 0 0
\(77\) 3.31638 0.377936
\(78\) 0 0
\(79\) 13.9104 1.56504 0.782521 0.622624i \(-0.213933\pi\)
0.782521 + 0.622624i \(0.213933\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0.895440 0.0982873 0.0491436 0.998792i \(-0.484351\pi\)
0.0491436 + 0.998792i \(0.484351\pi\)
\(84\) 0 0
\(85\) −2.17979 −0.236432
\(86\) 0 0
\(87\) 8.83664 0.947387
\(88\) 0 0
\(89\) −9.46072 −1.00283 −0.501417 0.865206i \(-0.667188\pi\)
−0.501417 + 0.865206i \(0.667188\pi\)
\(90\) 0 0
\(91\) 3.31638 0.347651
\(92\) 0 0
\(93\) 1.93253 0.200394
\(94\) 0 0
\(95\) −1.71547 −0.176003
\(96\) 0 0
\(97\) −4.22048 −0.428525 −0.214263 0.976776i \(-0.568735\pi\)
−0.214263 + 0.976776i \(0.568735\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) 0 0
\(101\) −14.8800 −1.48062 −0.740309 0.672267i \(-0.765321\pi\)
−0.740309 + 0.672267i \(0.765321\pi\)
\(102\) 0 0
\(103\) 8.73568 0.860752 0.430376 0.902650i \(-0.358381\pi\)
0.430376 + 0.902650i \(0.358381\pi\)
\(104\) 0 0
\(105\) −1.48481 −0.144902
\(106\) 0 0
\(107\) −2.25251 −0.217758 −0.108879 0.994055i \(-0.534726\pi\)
−0.108879 + 0.994055i \(0.534726\pi\)
\(108\) 0 0
\(109\) 11.2844 1.08085 0.540423 0.841394i \(-0.318264\pi\)
0.540423 + 0.841394i \(0.318264\pi\)
\(110\) 0 0
\(111\) −6.63276 −0.629553
\(112\) 0 0
\(113\) 15.6311 1.47045 0.735226 0.677822i \(-0.237076\pi\)
0.735226 + 0.677822i \(0.237076\pi\)
\(114\) 0 0
\(115\) 2.38025 0.221959
\(116\) 0 0
\(117\) 1.00000 0.0924500
\(118\) 0 0
\(119\) 16.1463 1.48013
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −1.31638 −0.118694
\(124\) 0 0
\(125\) 4.38745 0.392426
\(126\) 0 0
\(127\) −15.5014 −1.37553 −0.687764 0.725934i \(-0.741408\pi\)
−0.687764 + 0.725934i \(0.741408\pi\)
\(128\) 0 0
\(129\) 7.24891 0.638231
\(130\) 0 0
\(131\) 2.30607 0.201482 0.100741 0.994913i \(-0.467879\pi\)
0.100741 + 0.994913i \(0.467879\pi\)
\(132\) 0 0
\(133\) 12.7069 1.10183
\(134\) 0 0
\(135\) −0.447720 −0.0385336
\(136\) 0 0
\(137\) −0.700227 −0.0598245 −0.0299122 0.999553i \(-0.509523\pi\)
−0.0299122 + 0.999553i \(0.509523\pi\)
\(138\) 0 0
\(139\) −13.8350 −1.17347 −0.586735 0.809779i \(-0.699587\pi\)
−0.586735 + 0.809779i \(0.699587\pi\)
\(140\) 0 0
\(141\) 4.48317 0.377551
\(142\) 0 0
\(143\) 1.00000 0.0836242
\(144\) 0 0
\(145\) −3.95634 −0.328556
\(146\) 0 0
\(147\) 3.99836 0.329779
\(148\) 0 0
\(149\) 18.4757 1.51359 0.756794 0.653654i \(-0.226765\pi\)
0.756794 + 0.653654i \(0.226765\pi\)
\(150\) 0 0
\(151\) −8.05205 −0.655267 −0.327633 0.944805i \(-0.606251\pi\)
−0.327633 + 0.944805i \(0.606251\pi\)
\(152\) 0 0
\(153\) 4.86866 0.393608
\(154\) 0 0
\(155\) −0.865231 −0.0694970
\(156\) 0 0
\(157\) 19.3598 1.54508 0.772539 0.634968i \(-0.218987\pi\)
0.772539 + 0.634968i \(0.218987\pi\)
\(158\) 0 0
\(159\) −11.1159 −0.881550
\(160\) 0 0
\(161\) −17.6311 −1.38953
\(162\) 0 0
\(163\) 14.0354 1.09934 0.549671 0.835381i \(-0.314753\pi\)
0.549671 + 0.835381i \(0.314753\pi\)
\(164\) 0 0
\(165\) −0.447720 −0.0348549
\(166\) 0 0
\(167\) −16.3988 −1.26898 −0.634489 0.772932i \(-0.718790\pi\)
−0.634489 + 0.772932i \(0.718790\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 3.83157 0.293007
\(172\) 0 0
\(173\) −2.75109 −0.209162 −0.104581 0.994516i \(-0.533350\pi\)
−0.104581 + 0.994516i \(0.533350\pi\)
\(174\) 0 0
\(175\) −15.9171 −1.20322
\(176\) 0 0
\(177\) −5.63112 −0.423261
\(178\) 0 0
\(179\) −13.3598 −0.998556 −0.499278 0.866442i \(-0.666401\pi\)
−0.499278 + 0.866442i \(0.666401\pi\)
\(180\) 0 0
\(181\) 23.0229 1.71128 0.855639 0.517572i \(-0.173164\pi\)
0.855639 + 0.517572i \(0.173164\pi\)
\(182\) 0 0
\(183\) 0.380248 0.0281087
\(184\) 0 0
\(185\) 2.96962 0.218331
\(186\) 0 0
\(187\) 4.86866 0.356032
\(188\) 0 0
\(189\) 3.31638 0.241231
\(190\) 0 0
\(191\) 5.22212 0.377860 0.188930 0.981991i \(-0.439498\pi\)
0.188930 + 0.981991i \(0.439498\pi\)
\(192\) 0 0
\(193\) 14.7270 1.06007 0.530037 0.847975i \(-0.322178\pi\)
0.530037 + 0.847975i \(0.322178\pi\)
\(194\) 0 0
\(195\) −0.447720 −0.0320619
\(196\) 0 0
\(197\) −13.4935 −0.961370 −0.480685 0.876893i \(-0.659612\pi\)
−0.480685 + 0.876893i \(0.659612\pi\)
\(198\) 0 0
\(199\) −14.5266 −1.02976 −0.514880 0.857262i \(-0.672164\pi\)
−0.514880 + 0.857262i \(0.672164\pi\)
\(200\) 0 0
\(201\) 2.44772 0.172649
\(202\) 0 0
\(203\) 29.3056 2.05685
\(204\) 0 0
\(205\) 0.589368 0.0411633
\(206\) 0 0
\(207\) −5.31638 −0.369514
\(208\) 0 0
\(209\) 3.83157 0.265035
\(210\) 0 0
\(211\) 9.48677 0.653096 0.326548 0.945181i \(-0.394114\pi\)
0.326548 + 0.945181i \(0.394114\pi\)
\(212\) 0 0
\(213\) −7.25087 −0.496821
\(214\) 0 0
\(215\) −3.24548 −0.221340
\(216\) 0 0
\(217\) 6.40899 0.435071
\(218\) 0 0
\(219\) 11.7995 0.797339
\(220\) 0 0
\(221\) 4.86866 0.327501
\(222\) 0 0
\(223\) −14.8989 −0.997702 −0.498851 0.866688i \(-0.666244\pi\)
−0.498851 + 0.866688i \(0.666244\pi\)
\(224\) 0 0
\(225\) −4.79955 −0.319970
\(226\) 0 0
\(227\) 21.6544 1.43725 0.718627 0.695395i \(-0.244771\pi\)
0.718627 + 0.695395i \(0.244771\pi\)
\(228\) 0 0
\(229\) −21.1057 −1.39471 −0.697354 0.716727i \(-0.745639\pi\)
−0.697354 + 0.716727i \(0.745639\pi\)
\(230\) 0 0
\(231\) 3.31638 0.218202
\(232\) 0 0
\(233\) 12.1195 0.793977 0.396988 0.917824i \(-0.370055\pi\)
0.396988 + 0.917824i \(0.370055\pi\)
\(234\) 0 0
\(235\) −2.00720 −0.130936
\(236\) 0 0
\(237\) 13.9104 0.903578
\(238\) 0 0
\(239\) 9.61227 0.621766 0.310883 0.950448i \(-0.399375\pi\)
0.310883 + 0.950448i \(0.399375\pi\)
\(240\) 0 0
\(241\) 19.1159 1.23136 0.615682 0.787994i \(-0.288880\pi\)
0.615682 + 0.787994i \(0.288880\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −1.79015 −0.114368
\(246\) 0 0
\(247\) 3.83157 0.243797
\(248\) 0 0
\(249\) 0.895440 0.0567462
\(250\) 0 0
\(251\) −20.3701 −1.28575 −0.642874 0.765972i \(-0.722258\pi\)
−0.642874 + 0.765972i \(0.722258\pi\)
\(252\) 0 0
\(253\) −5.31638 −0.334238
\(254\) 0 0
\(255\) −2.17979 −0.136504
\(256\) 0 0
\(257\) −19.1593 −1.19513 −0.597563 0.801822i \(-0.703864\pi\)
−0.597563 + 0.801822i \(0.703864\pi\)
\(258\) 0 0
\(259\) −21.9967 −1.36681
\(260\) 0 0
\(261\) 8.83664 0.546974
\(262\) 0 0
\(263\) −15.0405 −0.927438 −0.463719 0.885982i \(-0.653485\pi\)
−0.463719 + 0.885982i \(0.653485\pi\)
\(264\) 0 0
\(265\) 4.97682 0.305724
\(266\) 0 0
\(267\) −9.46072 −0.578987
\(268\) 0 0
\(269\) 17.1192 1.04378 0.521888 0.853014i \(-0.325228\pi\)
0.521888 + 0.853014i \(0.325228\pi\)
\(270\) 0 0
\(271\) 4.18700 0.254342 0.127171 0.991881i \(-0.459410\pi\)
0.127171 + 0.991881i \(0.459410\pi\)
\(272\) 0 0
\(273\) 3.31638 0.200716
\(274\) 0 0
\(275\) −4.79955 −0.289424
\(276\) 0 0
\(277\) 14.3988 0.865141 0.432571 0.901600i \(-0.357607\pi\)
0.432571 + 0.901600i \(0.357607\pi\)
\(278\) 0 0
\(279\) 1.93253 0.115697
\(280\) 0 0
\(281\) −20.7136 −1.23567 −0.617834 0.786309i \(-0.711989\pi\)
−0.617834 + 0.786309i \(0.711989\pi\)
\(282\) 0 0
\(283\) 16.9976 1.01040 0.505201 0.863002i \(-0.331418\pi\)
0.505201 + 0.863002i \(0.331418\pi\)
\(284\) 0 0
\(285\) −1.71547 −0.101616
\(286\) 0 0
\(287\) −4.36561 −0.257694
\(288\) 0 0
\(289\) 6.70383 0.394343
\(290\) 0 0
\(291\) −4.22048 −0.247409
\(292\) 0 0
\(293\) 2.18700 0.127766 0.0638829 0.997957i \(-0.479652\pi\)
0.0638829 + 0.997957i \(0.479652\pi\)
\(294\) 0 0
\(295\) 2.52116 0.146788
\(296\) 0 0
\(297\) 1.00000 0.0580259
\(298\) 0 0
\(299\) −5.31638 −0.307454
\(300\) 0 0
\(301\) 24.0401 1.38565
\(302\) 0 0
\(303\) −14.8800 −0.854835
\(304\) 0 0
\(305\) −0.170244 −0.00974817
\(306\) 0 0
\(307\) −7.30620 −0.416987 −0.208493 0.978024i \(-0.566856\pi\)
−0.208493 + 0.978024i \(0.566856\pi\)
\(308\) 0 0
\(309\) 8.73568 0.496955
\(310\) 0 0
\(311\) −19.0011 −1.07745 −0.538726 0.842481i \(-0.681094\pi\)
−0.538726 + 0.842481i \(0.681094\pi\)
\(312\) 0 0
\(313\) 24.2974 1.37337 0.686684 0.726956i \(-0.259066\pi\)
0.686684 + 0.726956i \(0.259066\pi\)
\(314\) 0 0
\(315\) −1.48481 −0.0836595
\(316\) 0 0
\(317\) 23.2977 1.30853 0.654264 0.756266i \(-0.272978\pi\)
0.654264 + 0.756266i \(0.272978\pi\)
\(318\) 0 0
\(319\) 8.83664 0.494757
\(320\) 0 0
\(321\) −2.25251 −0.125723
\(322\) 0 0
\(323\) 18.6546 1.03797
\(324\) 0 0
\(325\) −4.79955 −0.266231
\(326\) 0 0
\(327\) 11.2844 0.624026
\(328\) 0 0
\(329\) 14.8679 0.819693
\(330\) 0 0
\(331\) 8.66820 0.476448 0.238224 0.971210i \(-0.423435\pi\)
0.238224 + 0.971210i \(0.423435\pi\)
\(332\) 0 0
\(333\) −6.63276 −0.363473
\(334\) 0 0
\(335\) −1.09589 −0.0598750
\(336\) 0 0
\(337\) −8.36679 −0.455768 −0.227884 0.973688i \(-0.573181\pi\)
−0.227884 + 0.973688i \(0.573181\pi\)
\(338\) 0 0
\(339\) 15.6311 0.848966
\(340\) 0 0
\(341\) 1.93253 0.104652
\(342\) 0 0
\(343\) −9.95457 −0.537496
\(344\) 0 0
\(345\) 2.38025 0.128148
\(346\) 0 0
\(347\) 8.29589 0.445347 0.222673 0.974893i \(-0.428522\pi\)
0.222673 + 0.974893i \(0.428522\pi\)
\(348\) 0 0
\(349\) −18.9995 −1.01702 −0.508511 0.861055i \(-0.669804\pi\)
−0.508511 + 0.861055i \(0.669804\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 0 0
\(353\) −22.3140 −1.18765 −0.593826 0.804593i \(-0.702383\pi\)
−0.593826 + 0.804593i \(0.702383\pi\)
\(354\) 0 0
\(355\) 3.24636 0.172299
\(356\) 0 0
\(357\) 16.1463 0.854553
\(358\) 0 0
\(359\) −22.1376 −1.16838 −0.584190 0.811617i \(-0.698588\pi\)
−0.584190 + 0.811617i \(0.698588\pi\)
\(360\) 0 0
\(361\) −4.31907 −0.227320
\(362\) 0 0
\(363\) 1.00000 0.0524864
\(364\) 0 0
\(365\) −5.28289 −0.276519
\(366\) 0 0
\(367\) −30.5846 −1.59650 −0.798251 0.602325i \(-0.794241\pi\)
−0.798251 + 0.602325i \(0.794241\pi\)
\(368\) 0 0
\(369\) −1.31638 −0.0685279
\(370\) 0 0
\(371\) −36.8646 −1.91391
\(372\) 0 0
\(373\) −9.42200 −0.487852 −0.243926 0.969794i \(-0.578435\pi\)
−0.243926 + 0.969794i \(0.578435\pi\)
\(374\) 0 0
\(375\) 4.38745 0.226567
\(376\) 0 0
\(377\) 8.83664 0.455110
\(378\) 0 0
\(379\) 23.9657 1.23104 0.615519 0.788122i \(-0.288947\pi\)
0.615519 + 0.788122i \(0.288947\pi\)
\(380\) 0 0
\(381\) −15.5014 −0.794161
\(382\) 0 0
\(383\) 3.02318 0.154477 0.0772386 0.997013i \(-0.475390\pi\)
0.0772386 + 0.997013i \(0.475390\pi\)
\(384\) 0 0
\(385\) −1.48481 −0.0756728
\(386\) 0 0
\(387\) 7.24891 0.368483
\(388\) 0 0
\(389\) 22.5092 1.14126 0.570630 0.821207i \(-0.306699\pi\)
0.570630 + 0.821207i \(0.306699\pi\)
\(390\) 0 0
\(391\) −25.8836 −1.30899
\(392\) 0 0
\(393\) 2.30607 0.116326
\(394\) 0 0
\(395\) −6.22796 −0.313363
\(396\) 0 0
\(397\) −18.9502 −0.951083 −0.475541 0.879693i \(-0.657748\pi\)
−0.475541 + 0.879693i \(0.657748\pi\)
\(398\) 0 0
\(399\) 12.7069 0.636142
\(400\) 0 0
\(401\) 31.8162 1.58882 0.794411 0.607380i \(-0.207779\pi\)
0.794411 + 0.607380i \(0.207779\pi\)
\(402\) 0 0
\(403\) 1.93253 0.0962661
\(404\) 0 0
\(405\) −0.447720 −0.0222474
\(406\) 0 0
\(407\) −6.63276 −0.328773
\(408\) 0 0
\(409\) 18.7692 0.928075 0.464038 0.885815i \(-0.346400\pi\)
0.464038 + 0.885815i \(0.346400\pi\)
\(410\) 0 0
\(411\) −0.700227 −0.0345397
\(412\) 0 0
\(413\) −18.6749 −0.918932
\(414\) 0 0
\(415\) −0.400906 −0.0196797
\(416\) 0 0
\(417\) −13.8350 −0.677503
\(418\) 0 0
\(419\) −25.8007 −1.26045 −0.630224 0.776413i \(-0.717037\pi\)
−0.630224 + 0.776413i \(0.717037\pi\)
\(420\) 0 0
\(421\) −3.27569 −0.159647 −0.0798236 0.996809i \(-0.525436\pi\)
−0.0798236 + 0.996809i \(0.525436\pi\)
\(422\) 0 0
\(423\) 4.48317 0.217979
\(424\) 0 0
\(425\) −23.3674 −1.13348
\(426\) 0 0
\(427\) 1.26105 0.0610263
\(428\) 0 0
\(429\) 1.00000 0.0482805
\(430\) 0 0
\(431\) 16.7778 0.808160 0.404080 0.914724i \(-0.367592\pi\)
0.404080 + 0.914724i \(0.367592\pi\)
\(432\) 0 0
\(433\) −41.2667 −1.98315 −0.991575 0.129530i \(-0.958653\pi\)
−0.991575 + 0.129530i \(0.958653\pi\)
\(434\) 0 0
\(435\) −3.95634 −0.189692
\(436\) 0 0
\(437\) −20.3701 −0.974433
\(438\) 0 0
\(439\) −33.5161 −1.59963 −0.799817 0.600244i \(-0.795070\pi\)
−0.799817 + 0.600244i \(0.795070\pi\)
\(440\) 0 0
\(441\) 3.99836 0.190398
\(442\) 0 0
\(443\) −36.4410 −1.73136 −0.865681 0.500595i \(-0.833114\pi\)
−0.865681 + 0.500595i \(0.833114\pi\)
\(444\) 0 0
\(445\) 4.23575 0.200794
\(446\) 0 0
\(447\) 18.4757 0.873870
\(448\) 0 0
\(449\) −1.01524 −0.0479122 −0.0239561 0.999713i \(-0.507626\pi\)
−0.0239561 + 0.999713i \(0.507626\pi\)
\(450\) 0 0
\(451\) −1.31638 −0.0619858
\(452\) 0 0
\(453\) −8.05205 −0.378319
\(454\) 0 0
\(455\) −1.48481 −0.0696089
\(456\) 0 0
\(457\) −3.69393 −0.172795 −0.0863973 0.996261i \(-0.527535\pi\)
−0.0863973 + 0.996261i \(0.527535\pi\)
\(458\) 0 0
\(459\) 4.86866 0.227249
\(460\) 0 0
\(461\) −19.2308 −0.895667 −0.447834 0.894117i \(-0.647804\pi\)
−0.447834 + 0.894117i \(0.647804\pi\)
\(462\) 0 0
\(463\) −7.59443 −0.352943 −0.176472 0.984306i \(-0.556468\pi\)
−0.176472 + 0.984306i \(0.556468\pi\)
\(464\) 0 0
\(465\) −0.865231 −0.0401241
\(466\) 0 0
\(467\) −24.4003 −1.12911 −0.564555 0.825395i \(-0.690952\pi\)
−0.564555 + 0.825395i \(0.690952\pi\)
\(468\) 0 0
\(469\) 8.11756 0.374834
\(470\) 0 0
\(471\) 19.3598 0.892051
\(472\) 0 0
\(473\) 7.24891 0.333305
\(474\) 0 0
\(475\) −18.3898 −0.843782
\(476\) 0 0
\(477\) −11.1159 −0.508963
\(478\) 0 0
\(479\) 18.0359 0.824082 0.412041 0.911165i \(-0.364816\pi\)
0.412041 + 0.911165i \(0.364816\pi\)
\(480\) 0 0
\(481\) −6.63276 −0.302428
\(482\) 0 0
\(483\) −17.6311 −0.802244
\(484\) 0 0
\(485\) 1.88959 0.0858021
\(486\) 0 0
\(487\) −32.3881 −1.46765 −0.733823 0.679340i \(-0.762266\pi\)
−0.733823 + 0.679340i \(0.762266\pi\)
\(488\) 0 0
\(489\) 14.0354 0.634705
\(490\) 0 0
\(491\) 17.3044 0.780936 0.390468 0.920616i \(-0.372313\pi\)
0.390468 + 0.920616i \(0.372313\pi\)
\(492\) 0 0
\(493\) 43.0226 1.93764
\(494\) 0 0
\(495\) −0.447720 −0.0201235
\(496\) 0 0
\(497\) −24.0466 −1.07864
\(498\) 0 0
\(499\) −18.1243 −0.811354 −0.405677 0.914017i \(-0.632964\pi\)
−0.405677 + 0.914017i \(0.632964\pi\)
\(500\) 0 0
\(501\) −16.3988 −0.732645
\(502\) 0 0
\(503\) −9.65594 −0.430537 −0.215268 0.976555i \(-0.569063\pi\)
−0.215268 + 0.976555i \(0.569063\pi\)
\(504\) 0 0
\(505\) 6.66208 0.296459
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) 10.0729 0.446472 0.223236 0.974764i \(-0.428338\pi\)
0.223236 + 0.974764i \(0.428338\pi\)
\(510\) 0 0
\(511\) 39.1318 1.73109
\(512\) 0 0
\(513\) 3.83157 0.169168
\(514\) 0 0
\(515\) −3.91114 −0.172345
\(516\) 0 0
\(517\) 4.48317 0.197170
\(518\) 0 0
\(519\) −2.75109 −0.120760
\(520\) 0 0
\(521\) 15.7020 0.687918 0.343959 0.938985i \(-0.388232\pi\)
0.343959 + 0.938985i \(0.388232\pi\)
\(522\) 0 0
\(523\) 3.42600 0.149809 0.0749043 0.997191i \(-0.476135\pi\)
0.0749043 + 0.997191i \(0.476135\pi\)
\(524\) 0 0
\(525\) −15.9171 −0.694680
\(526\) 0 0
\(527\) 9.40882 0.409855
\(528\) 0 0
\(529\) 5.26387 0.228864
\(530\) 0 0
\(531\) −5.63112 −0.244370
\(532\) 0 0
\(533\) −1.31638 −0.0570186
\(534\) 0 0
\(535\) 1.00849 0.0436009
\(536\) 0 0
\(537\) −13.3598 −0.576516
\(538\) 0 0
\(539\) 3.99836 0.172222
\(540\) 0 0
\(541\) 0.734489 0.0315782 0.0157891 0.999875i \(-0.494974\pi\)
0.0157891 + 0.999875i \(0.494974\pi\)
\(542\) 0 0
\(543\) 23.0229 0.988007
\(544\) 0 0
\(545\) −5.05223 −0.216414
\(546\) 0 0
\(547\) 13.1861 0.563797 0.281898 0.959444i \(-0.409036\pi\)
0.281898 + 0.959444i \(0.409036\pi\)
\(548\) 0 0
\(549\) 0.380248 0.0162286
\(550\) 0 0
\(551\) 33.8582 1.44241
\(552\) 0 0
\(553\) 46.1322 1.96174
\(554\) 0 0
\(555\) 2.96962 0.126053
\(556\) 0 0
\(557\) 18.3889 0.779163 0.389582 0.920992i \(-0.372620\pi\)
0.389582 + 0.920992i \(0.372620\pi\)
\(558\) 0 0
\(559\) 7.24891 0.306596
\(560\) 0 0
\(561\) 4.86866 0.205555
\(562\) 0 0
\(563\) 3.45999 0.145821 0.0729106 0.997338i \(-0.476771\pi\)
0.0729106 + 0.997338i \(0.476771\pi\)
\(564\) 0 0
\(565\) −6.99836 −0.294423
\(566\) 0 0
\(567\) 3.31638 0.139275
\(568\) 0 0
\(569\) −30.5955 −1.28263 −0.641315 0.767278i \(-0.721611\pi\)
−0.641315 + 0.767278i \(0.721611\pi\)
\(570\) 0 0
\(571\) 0.208391 0.00872088 0.00436044 0.999990i \(-0.498612\pi\)
0.00436044 + 0.999990i \(0.498612\pi\)
\(572\) 0 0
\(573\) 5.22212 0.218157
\(574\) 0 0
\(575\) 25.5162 1.06410
\(576\) 0 0
\(577\) 7.36724 0.306702 0.153351 0.988172i \(-0.450993\pi\)
0.153351 + 0.988172i \(0.450993\pi\)
\(578\) 0 0
\(579\) 14.7270 0.612034
\(580\) 0 0
\(581\) 2.96962 0.123200
\(582\) 0 0
\(583\) −11.1159 −0.460375
\(584\) 0 0
\(585\) −0.447720 −0.0185109
\(586\) 0 0
\(587\) 22.3048 0.920619 0.460310 0.887758i \(-0.347738\pi\)
0.460310 + 0.887758i \(0.347738\pi\)
\(588\) 0 0
\(589\) 7.40462 0.305102
\(590\) 0 0
\(591\) −13.4935 −0.555047
\(592\) 0 0
\(593\) 28.1490 1.15594 0.577970 0.816058i \(-0.303845\pi\)
0.577970 + 0.816058i \(0.303845\pi\)
\(594\) 0 0
\(595\) −7.22902 −0.296361
\(596\) 0 0
\(597\) −14.5266 −0.594532
\(598\) 0 0
\(599\) −34.4876 −1.40913 −0.704563 0.709641i \(-0.748857\pi\)
−0.704563 + 0.709641i \(0.748857\pi\)
\(600\) 0 0
\(601\) 16.2959 0.664723 0.332362 0.943152i \(-0.392155\pi\)
0.332362 + 0.943152i \(0.392155\pi\)
\(602\) 0 0
\(603\) 2.44772 0.0996789
\(604\) 0 0
\(605\) −0.447720 −0.0182024
\(606\) 0 0
\(607\) 6.43782 0.261303 0.130652 0.991428i \(-0.458293\pi\)
0.130652 + 0.991428i \(0.458293\pi\)
\(608\) 0 0
\(609\) 29.3056 1.18752
\(610\) 0 0
\(611\) 4.48317 0.181370
\(612\) 0 0
\(613\) −1.07523 −0.0434283 −0.0217142 0.999764i \(-0.506912\pi\)
−0.0217142 + 0.999764i \(0.506912\pi\)
\(614\) 0 0
\(615\) 0.589368 0.0237656
\(616\) 0 0
\(617\) −25.9612 −1.04516 −0.522580 0.852590i \(-0.675030\pi\)
−0.522580 + 0.852590i \(0.675030\pi\)
\(618\) 0 0
\(619\) −4.16319 −0.167333 −0.0836664 0.996494i \(-0.526663\pi\)
−0.0836664 + 0.996494i \(0.526663\pi\)
\(620\) 0 0
\(621\) −5.31638 −0.213339
\(622\) 0 0
\(623\) −31.3753 −1.25703
\(624\) 0 0
\(625\) 22.0334 0.881335
\(626\) 0 0
\(627\) 3.83157 0.153018
\(628\) 0 0
\(629\) −32.2926 −1.28759
\(630\) 0 0
\(631\) −17.8263 −0.709653 −0.354827 0.934932i \(-0.615460\pi\)
−0.354827 + 0.934932i \(0.615460\pi\)
\(632\) 0 0
\(633\) 9.48677 0.377065
\(634\) 0 0
\(635\) 6.94029 0.275417
\(636\) 0 0
\(637\) 3.99836 0.158421
\(638\) 0 0
\(639\) −7.25087 −0.286840
\(640\) 0 0
\(641\) 14.9535 0.590627 0.295313 0.955400i \(-0.404576\pi\)
0.295313 + 0.955400i \(0.404576\pi\)
\(642\) 0 0
\(643\) 43.6402 1.72100 0.860502 0.509448i \(-0.170150\pi\)
0.860502 + 0.509448i \(0.170150\pi\)
\(644\) 0 0
\(645\) −3.24548 −0.127791
\(646\) 0 0
\(647\) −35.0109 −1.37642 −0.688211 0.725511i \(-0.741603\pi\)
−0.688211 + 0.725511i \(0.741603\pi\)
\(648\) 0 0
\(649\) −5.63112 −0.221041
\(650\) 0 0
\(651\) 6.40899 0.251188
\(652\) 0 0
\(653\) −30.7255 −1.20238 −0.601191 0.799105i \(-0.705307\pi\)
−0.601191 + 0.799105i \(0.705307\pi\)
\(654\) 0 0
\(655\) −1.03247 −0.0403421
\(656\) 0 0
\(657\) 11.7995 0.460344
\(658\) 0 0
\(659\) −4.76770 −0.185723 −0.0928616 0.995679i \(-0.529601\pi\)
−0.0928616 + 0.995679i \(0.529601\pi\)
\(660\) 0 0
\(661\) 26.2914 1.02262 0.511308 0.859397i \(-0.329161\pi\)
0.511308 + 0.859397i \(0.329161\pi\)
\(662\) 0 0
\(663\) 4.86866 0.189083
\(664\) 0 0
\(665\) −5.68915 −0.220616
\(666\) 0 0
\(667\) −46.9789 −1.81903
\(668\) 0 0
\(669\) −14.8989 −0.576023
\(670\) 0 0
\(671\) 0.380248 0.0146793
\(672\) 0 0
\(673\) −34.0287 −1.31171 −0.655855 0.754887i \(-0.727692\pi\)
−0.655855 + 0.754887i \(0.727692\pi\)
\(674\) 0 0
\(675\) −4.79955 −0.184735
\(676\) 0 0
\(677\) −49.6016 −1.90634 −0.953172 0.302428i \(-0.902203\pi\)
−0.953172 + 0.302428i \(0.902203\pi\)
\(678\) 0 0
\(679\) −13.9967 −0.537145
\(680\) 0 0
\(681\) 21.6544 0.829799
\(682\) 0 0
\(683\) −12.8111 −0.490203 −0.245101 0.969497i \(-0.578821\pi\)
−0.245101 + 0.969497i \(0.578821\pi\)
\(684\) 0 0
\(685\) 0.313506 0.0119784
\(686\) 0 0
\(687\) −21.1057 −0.805235
\(688\) 0 0
\(689\) −11.1159 −0.423483
\(690\) 0 0
\(691\) −20.2960 −0.772098 −0.386049 0.922478i \(-0.626160\pi\)
−0.386049 + 0.922478i \(0.626160\pi\)
\(692\) 0 0
\(693\) 3.31638 0.125979
\(694\) 0 0
\(695\) 6.19420 0.234959
\(696\) 0 0
\(697\) −6.40899 −0.242758
\(698\) 0 0
\(699\) 12.1195 0.458403
\(700\) 0 0
\(701\) −3.02391 −0.114211 −0.0571057 0.998368i \(-0.518187\pi\)
−0.0571057 + 0.998368i \(0.518187\pi\)
\(702\) 0 0
\(703\) −25.4139 −0.958502
\(704\) 0 0
\(705\) −2.00720 −0.0755957
\(706\) 0 0
\(707\) −49.3478 −1.85591
\(708\) 0 0
\(709\) 16.3829 0.615274 0.307637 0.951504i \(-0.400462\pi\)
0.307637 + 0.951504i \(0.400462\pi\)
\(710\) 0 0
\(711\) 13.9104 0.521681
\(712\) 0 0
\(713\) −10.2740 −0.384766
\(714\) 0 0
\(715\) −0.447720 −0.0167438
\(716\) 0 0
\(717\) 9.61227 0.358977
\(718\) 0 0
\(719\) −10.3875 −0.387387 −0.193693 0.981062i \(-0.562047\pi\)
−0.193693 + 0.981062i \(0.562047\pi\)
\(720\) 0 0
\(721\) 28.9708 1.07893
\(722\) 0 0
\(723\) 19.1159 0.710929
\(724\) 0 0
\(725\) −42.4118 −1.57514
\(726\) 0 0
\(727\) −13.4447 −0.498636 −0.249318 0.968422i \(-0.580206\pi\)
−0.249318 + 0.968422i \(0.580206\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 35.2924 1.30534
\(732\) 0 0
\(733\) −17.3104 −0.639373 −0.319686 0.947523i \(-0.603578\pi\)
−0.319686 + 0.947523i \(0.603578\pi\)
\(734\) 0 0
\(735\) −1.79015 −0.0660305
\(736\) 0 0
\(737\) 2.44772 0.0901629
\(738\) 0 0
\(739\) 43.0938 1.58523 0.792616 0.609722i \(-0.208719\pi\)
0.792616 + 0.609722i \(0.208719\pi\)
\(740\) 0 0
\(741\) 3.83157 0.140756
\(742\) 0 0
\(743\) −34.6213 −1.27013 −0.635067 0.772457i \(-0.719028\pi\)
−0.635067 + 0.772457i \(0.719028\pi\)
\(744\) 0 0
\(745\) −8.27193 −0.303060
\(746\) 0 0
\(747\) 0.895440 0.0327624
\(748\) 0 0
\(749\) −7.47017 −0.272954
\(750\) 0 0
\(751\) −25.5001 −0.930512 −0.465256 0.885176i \(-0.654038\pi\)
−0.465256 + 0.885176i \(0.654038\pi\)
\(752\) 0 0
\(753\) −20.3701 −0.742327
\(754\) 0 0
\(755\) 3.60506 0.131202
\(756\) 0 0
\(757\) 45.3361 1.64777 0.823885 0.566757i \(-0.191802\pi\)
0.823885 + 0.566757i \(0.191802\pi\)
\(758\) 0 0
\(759\) −5.31638 −0.192972
\(760\) 0 0
\(761\) 22.3800 0.811273 0.405637 0.914034i \(-0.367050\pi\)
0.405637 + 0.914034i \(0.367050\pi\)
\(762\) 0 0
\(763\) 37.4232 1.35481
\(764\) 0 0
\(765\) −2.17979 −0.0788106
\(766\) 0 0
\(767\) −5.63112 −0.203328
\(768\) 0 0
\(769\) 17.1707 0.619190 0.309595 0.950868i \(-0.399806\pi\)
0.309595 + 0.950868i \(0.399806\pi\)
\(770\) 0 0
\(771\) −19.1593 −0.690006
\(772\) 0 0
\(773\) −40.0468 −1.44038 −0.720191 0.693776i \(-0.755946\pi\)
−0.720191 + 0.693776i \(0.755946\pi\)
\(774\) 0 0
\(775\) −9.27526 −0.333177
\(776\) 0 0
\(777\) −21.9967 −0.789128
\(778\) 0 0
\(779\) −5.04379 −0.180713
\(780\) 0 0
\(781\) −7.25087 −0.259456
\(782\) 0 0
\(783\) 8.83664 0.315796
\(784\) 0 0
\(785\) −8.66775 −0.309365
\(786\) 0 0
\(787\) −1.19881 −0.0427331 −0.0213666 0.999772i \(-0.506802\pi\)
−0.0213666 + 0.999772i \(0.506802\pi\)
\(788\) 0 0
\(789\) −15.0405 −0.535457
\(790\) 0 0
\(791\) 51.8387 1.84317
\(792\) 0 0
\(793\) 0.380248 0.0135030
\(794\) 0 0
\(795\) 4.97682 0.176510
\(796\) 0 0
\(797\) −17.0591 −0.604264 −0.302132 0.953266i \(-0.597698\pi\)
−0.302132 + 0.953266i \(0.597698\pi\)
\(798\) 0 0
\(799\) 21.8270 0.772184
\(800\) 0 0
\(801\) −9.46072 −0.334278
\(802\) 0 0
\(803\) 11.7995 0.416397
\(804\) 0 0
\(805\) 7.89380 0.278220
\(806\) 0 0
\(807\) 17.1192 0.602624
\(808\) 0 0
\(809\) −7.68992 −0.270363 −0.135182 0.990821i \(-0.543162\pi\)
−0.135182 + 0.990821i \(0.543162\pi\)
\(810\) 0 0
\(811\) −26.8012 −0.941117 −0.470558 0.882369i \(-0.655948\pi\)
−0.470558 + 0.882369i \(0.655948\pi\)
\(812\) 0 0
\(813\) 4.18700 0.146844
\(814\) 0 0
\(815\) −6.28395 −0.220117
\(816\) 0 0
\(817\) 27.7747 0.971713
\(818\) 0 0
\(819\) 3.31638 0.115884
\(820\) 0 0
\(821\) −3.01154 −0.105103 −0.0525517 0.998618i \(-0.516735\pi\)
−0.0525517 + 0.998618i \(0.516735\pi\)
\(822\) 0 0
\(823\) −7.41660 −0.258527 −0.129263 0.991610i \(-0.541261\pi\)
−0.129263 + 0.991610i \(0.541261\pi\)
\(824\) 0 0
\(825\) −4.79955 −0.167099
\(826\) 0 0
\(827\) 21.3618 0.742823 0.371411 0.928468i \(-0.378874\pi\)
0.371411 + 0.928468i \(0.378874\pi\)
\(828\) 0 0
\(829\) −47.4073 −1.64652 −0.823262 0.567662i \(-0.807848\pi\)
−0.823262 + 0.567662i \(0.807848\pi\)
\(830\) 0 0
\(831\) 14.3988 0.499489
\(832\) 0 0
\(833\) 19.4667 0.674480
\(834\) 0 0
\(835\) 7.34208 0.254083
\(836\) 0 0
\(837\) 1.93253 0.0667979
\(838\) 0 0
\(839\) −17.8148 −0.615034 −0.307517 0.951543i \(-0.599498\pi\)
−0.307517 + 0.951543i \(0.599498\pi\)
\(840\) 0 0
\(841\) 49.0861 1.69262
\(842\) 0 0
\(843\) −20.7136 −0.713413
\(844\) 0 0
\(845\) −0.447720 −0.0154020
\(846\) 0 0
\(847\) 3.31638 0.113952
\(848\) 0 0
\(849\) 16.9976 0.583356
\(850\) 0 0
\(851\) 35.2622 1.20877
\(852\) 0 0
\(853\) 48.4227 1.65796 0.828981 0.559276i \(-0.188921\pi\)
0.828981 + 0.559276i \(0.188921\pi\)
\(854\) 0 0
\(855\) −1.71547 −0.0586678
\(856\) 0 0
\(857\) 28.4459 0.971694 0.485847 0.874044i \(-0.338511\pi\)
0.485847 + 0.874044i \(0.338511\pi\)
\(858\) 0 0
\(859\) −13.7373 −0.468711 −0.234356 0.972151i \(-0.575298\pi\)
−0.234356 + 0.972151i \(0.575298\pi\)
\(860\) 0 0
\(861\) −4.36561 −0.148779
\(862\) 0 0
\(863\) −29.7600 −1.01304 −0.506522 0.862227i \(-0.669069\pi\)
−0.506522 + 0.862227i \(0.669069\pi\)
\(864\) 0 0
\(865\) 1.23172 0.0418797
\(866\) 0 0
\(867\) 6.70383 0.227674
\(868\) 0 0
\(869\) 13.9104 0.471878
\(870\) 0 0
\(871\) 2.44772 0.0829378
\(872\) 0 0
\(873\) −4.22048 −0.142842
\(874\) 0 0
\(875\) 14.5504 0.491895
\(876\) 0 0
\(877\) −23.4058 −0.790359 −0.395180 0.918604i \(-0.629318\pi\)
−0.395180 + 0.918604i \(0.629318\pi\)
\(878\) 0 0
\(879\) 2.18700 0.0737656
\(880\) 0 0
\(881\) −25.4702 −0.858112 −0.429056 0.903278i \(-0.641154\pi\)
−0.429056 + 0.903278i \(0.641154\pi\)
\(882\) 0 0
\(883\) −6.15410 −0.207102 −0.103551 0.994624i \(-0.533020\pi\)
−0.103551 + 0.994624i \(0.533020\pi\)
\(884\) 0 0
\(885\) 2.52116 0.0847480
\(886\) 0 0
\(887\) −45.5829 −1.53052 −0.765262 0.643719i \(-0.777391\pi\)
−0.765262 + 0.643719i \(0.777391\pi\)
\(888\) 0 0
\(889\) −51.4085 −1.72419
\(890\) 0 0
\(891\) 1.00000 0.0335013
\(892\) 0 0
\(893\) 17.1776 0.574826
\(894\) 0 0
\(895\) 5.98143 0.199937
\(896\) 0 0
\(897\) −5.31638 −0.177509
\(898\) 0 0
\(899\) 17.0770 0.569551
\(900\) 0 0
\(901\) −54.1196 −1.80299
\(902\) 0 0
\(903\) 24.0401 0.800005
\(904\) 0 0
\(905\) −10.3078 −0.342643
\(906\) 0 0
\(907\) 10.0365 0.333256 0.166628 0.986020i \(-0.446712\pi\)
0.166628 + 0.986020i \(0.446712\pi\)
\(908\) 0 0
\(909\) −14.8800 −0.493539
\(910\) 0 0
\(911\) −34.7183 −1.15027 −0.575134 0.818059i \(-0.695050\pi\)
−0.575134 + 0.818059i \(0.695050\pi\)
\(912\) 0 0
\(913\) 0.895440 0.0296347
\(914\) 0 0
\(915\) −0.170244 −0.00562811
\(916\) 0 0
\(917\) 7.64780 0.252553
\(918\) 0 0
\(919\) −29.9020 −0.986375 −0.493187 0.869923i \(-0.664168\pi\)
−0.493187 + 0.869923i \(0.664168\pi\)
\(920\) 0 0
\(921\) −7.30620 −0.240748
\(922\) 0 0
\(923\) −7.25087 −0.238665
\(924\) 0 0
\(925\) 31.8342 1.04670
\(926\) 0 0
\(927\) 8.73568 0.286917
\(928\) 0 0
\(929\) −6.50844 −0.213535 −0.106768 0.994284i \(-0.534050\pi\)
−0.106768 + 0.994284i \(0.534050\pi\)
\(930\) 0 0
\(931\) 15.3200 0.502093
\(932\) 0 0
\(933\) −19.0011 −0.622067
\(934\) 0 0
\(935\) −2.17979 −0.0712869
\(936\) 0 0
\(937\) 22.9227 0.748851 0.374426 0.927257i \(-0.377840\pi\)
0.374426 + 0.927257i \(0.377840\pi\)
\(938\) 0 0
\(939\) 24.2974 0.792914
\(940\) 0 0
\(941\) −42.2872 −1.37852 −0.689261 0.724513i \(-0.742065\pi\)
−0.689261 + 0.724513i \(0.742065\pi\)
\(942\) 0 0
\(943\) 6.99836 0.227898
\(944\) 0 0
\(945\) −1.48481 −0.0483008
\(946\) 0 0
\(947\) −3.87642 −0.125967 −0.0629834 0.998015i \(-0.520062\pi\)
−0.0629834 + 0.998015i \(0.520062\pi\)
\(948\) 0 0
\(949\) 11.7995 0.383030
\(950\) 0 0
\(951\) 23.2977 0.755479
\(952\) 0 0
\(953\) −21.8529 −0.707885 −0.353943 0.935267i \(-0.615159\pi\)
−0.353943 + 0.935267i \(0.615159\pi\)
\(954\) 0 0
\(955\) −2.33805 −0.0756575
\(956\) 0 0
\(957\) 8.83664 0.285648
\(958\) 0 0
\(959\) −2.32222 −0.0749884
\(960\) 0 0
\(961\) −27.2653 −0.879527
\(962\) 0 0
\(963\) −2.25251 −0.0725860
\(964\) 0 0
\(965\) −6.59357 −0.212255
\(966\) 0 0
\(967\) −55.7960 −1.79428 −0.897138 0.441750i \(-0.854358\pi\)
−0.897138 + 0.441750i \(0.854358\pi\)
\(968\) 0 0
\(969\) 18.6546 0.599272
\(970\) 0 0
\(971\) 21.4307 0.687743 0.343871 0.939017i \(-0.388262\pi\)
0.343871 + 0.939017i \(0.388262\pi\)
\(972\) 0 0
\(973\) −45.8821 −1.47091
\(974\) 0 0
\(975\) −4.79955 −0.153709
\(976\) 0 0
\(977\) 47.1672 1.50901 0.754506 0.656293i \(-0.227876\pi\)
0.754506 + 0.656293i \(0.227876\pi\)
\(978\) 0 0
\(979\) −9.46072 −0.302366
\(980\) 0 0
\(981\) 11.2844 0.360282
\(982\) 0 0
\(983\) 36.3165 1.15832 0.579158 0.815215i \(-0.303381\pi\)
0.579158 + 0.815215i \(0.303381\pi\)
\(984\) 0 0
\(985\) 6.04130 0.192492
\(986\) 0 0
\(987\) 14.8679 0.473250
\(988\) 0 0
\(989\) −38.5379 −1.22543
\(990\) 0 0
\(991\) 10.1361 0.321985 0.160992 0.986956i \(-0.448531\pi\)
0.160992 + 0.986956i \(0.448531\pi\)
\(992\) 0 0
\(993\) 8.66820 0.275077
\(994\) 0 0
\(995\) 6.50383 0.206185
\(996\) 0 0
\(997\) 42.6875 1.35193 0.675963 0.736935i \(-0.263728\pi\)
0.675963 + 0.736935i \(0.263728\pi\)
\(998\) 0 0
\(999\) −6.63276 −0.209851
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3432.2.a.x.1.3 5
4.3 odd 2 6864.2.a.ce.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3432.2.a.x.1.3 5 1.1 even 1 trivial
6864.2.a.ce.1.3 5 4.3 odd 2