Properties

Label 3432.2.a.h.1.1
Level $3432$
Weight $2$
Character 3432.1
Self dual yes
Analytic conductor $27.405$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3432,2,Mod(1,3432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3432, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3432.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3432 = 2^{3} \cdot 3 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3432.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.4046579737\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3432.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +2.00000 q^{5} +4.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} +2.00000 q^{5} +4.00000 q^{7} +1.00000 q^{9} +1.00000 q^{11} -1.00000 q^{13} +2.00000 q^{15} +4.00000 q^{17} -2.00000 q^{19} +4.00000 q^{21} +6.00000 q^{23} -1.00000 q^{25} +1.00000 q^{27} +6.00000 q^{29} -6.00000 q^{31} +1.00000 q^{33} +8.00000 q^{35} -1.00000 q^{39} -6.00000 q^{41} +4.00000 q^{43} +2.00000 q^{45} -12.0000 q^{47} +9.00000 q^{49} +4.00000 q^{51} -4.00000 q^{53} +2.00000 q^{55} -2.00000 q^{57} +4.00000 q^{59} -2.00000 q^{61} +4.00000 q^{63} -2.00000 q^{65} +4.00000 q^{67} +6.00000 q^{69} +8.00000 q^{71} +12.0000 q^{73} -1.00000 q^{75} +4.00000 q^{77} +1.00000 q^{81} -12.0000 q^{83} +8.00000 q^{85} +6.00000 q^{87} -6.00000 q^{89} -4.00000 q^{91} -6.00000 q^{93} -4.00000 q^{95} +10.0000 q^{97} +1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) 4.00000 1.51186 0.755929 0.654654i \(-0.227186\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 4.00000 0.872872
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 0 0
\(33\) 1.00000 0.174078
\(34\) 0 0
\(35\) 8.00000 1.35225
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) 4.00000 0.560112
\(52\) 0 0
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) −2.00000 −0.264906
\(58\) 0 0
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 4.00000 0.503953
\(64\) 0 0
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 12.0000 1.40449 0.702247 0.711934i \(-0.252180\pi\)
0.702247 + 0.711934i \(0.252180\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 4.00000 0.455842
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 8.00000 0.867722
\(86\) 0 0
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) −6.00000 −0.622171
\(94\) 0 0
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 8.00000 0.780720
\(106\) 0 0
\(107\) −14.0000 −1.35343 −0.676716 0.736245i \(-0.736597\pi\)
−0.676716 + 0.736245i \(0.736597\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −18.0000 −1.69330 −0.846649 0.532152i \(-0.821383\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 0 0
\(115\) 12.0000 1.11901
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) 16.0000 1.46672
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −6.00000 −0.541002
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 22.0000 1.92215 0.961074 0.276289i \(-0.0891049\pi\)
0.961074 + 0.276289i \(0.0891049\pi\)
\(132\) 0 0
\(133\) −8.00000 −0.693688
\(134\) 0 0
\(135\) 2.00000 0.172133
\(136\) 0 0
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) 0 0
\(141\) −12.0000 −1.01058
\(142\) 0 0
\(143\) −1.00000 −0.0836242
\(144\) 0 0
\(145\) 12.0000 0.996546
\(146\) 0 0
\(147\) 9.00000 0.742307
\(148\) 0 0
\(149\) −14.0000 −1.14692 −0.573462 0.819232i \(-0.694400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 0 0
\(151\) 4.00000 0.325515 0.162758 0.986666i \(-0.447961\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) 0 0
\(153\) 4.00000 0.323381
\(154\) 0 0
\(155\) −12.0000 −0.963863
\(156\) 0 0
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) 0 0
\(159\) −4.00000 −0.317221
\(160\) 0 0
\(161\) 24.0000 1.89146
\(162\) 0 0
\(163\) −8.00000 −0.626608 −0.313304 0.949653i \(-0.601436\pi\)
−0.313304 + 0.949653i \(0.601436\pi\)
\(164\) 0 0
\(165\) 2.00000 0.155700
\(166\) 0 0
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −2.00000 −0.152944
\(172\) 0 0
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) 4.00000 0.300658
\(178\) 0 0
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) 0 0
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 0 0
\(193\) −8.00000 −0.575853 −0.287926 0.957653i \(-0.592966\pi\)
−0.287926 + 0.957653i \(0.592966\pi\)
\(194\) 0 0
\(195\) −2.00000 −0.143223
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 0 0
\(203\) 24.0000 1.68447
\(204\) 0 0
\(205\) −12.0000 −0.838116
\(206\) 0 0
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 0 0
\(213\) 8.00000 0.548151
\(214\) 0 0
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) −24.0000 −1.62923
\(218\) 0 0
\(219\) 12.0000 0.810885
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) 26.0000 1.74109 0.870544 0.492090i \(-0.163767\pi\)
0.870544 + 0.492090i \(0.163767\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 8.00000 0.530979 0.265489 0.964114i \(-0.414466\pi\)
0.265489 + 0.964114i \(0.414466\pi\)
\(228\) 0 0
\(229\) 24.0000 1.58596 0.792982 0.609245i \(-0.208527\pi\)
0.792982 + 0.609245i \(0.208527\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) 0 0
\(233\) −8.00000 −0.524097 −0.262049 0.965055i \(-0.584398\pi\)
−0.262049 + 0.965055i \(0.584398\pi\)
\(234\) 0 0
\(235\) −24.0000 −1.56559
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) −4.00000 −0.257663 −0.128831 0.991667i \(-0.541123\pi\)
−0.128831 + 0.991667i \(0.541123\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 18.0000 1.14998
\(246\) 0 0
\(247\) 2.00000 0.127257
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) 0 0
\(255\) 8.00000 0.500979
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −8.00000 −0.491436
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) 8.00000 0.487769 0.243884 0.969804i \(-0.421578\pi\)
0.243884 + 0.969804i \(0.421578\pi\)
\(270\) 0 0
\(271\) 24.0000 1.45790 0.728948 0.684569i \(-0.240010\pi\)
0.728948 + 0.684569i \(0.240010\pi\)
\(272\) 0 0
\(273\) −4.00000 −0.242091
\(274\) 0 0
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 0 0
\(279\) −6.00000 −0.359211
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 12.0000 0.713326 0.356663 0.934233i \(-0.383914\pi\)
0.356663 + 0.934233i \(0.383914\pi\)
\(284\) 0 0
\(285\) −4.00000 −0.236940
\(286\) 0 0
\(287\) −24.0000 −1.41668
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 10.0000 0.586210
\(292\) 0 0
\(293\) 10.0000 0.584206 0.292103 0.956387i \(-0.405645\pi\)
0.292103 + 0.956387i \(0.405645\pi\)
\(294\) 0 0
\(295\) 8.00000 0.465778
\(296\) 0 0
\(297\) 1.00000 0.0580259
\(298\) 0 0
\(299\) −6.00000 −0.346989
\(300\) 0 0
\(301\) 16.0000 0.922225
\(302\) 0 0
\(303\) −10.0000 −0.574485
\(304\) 0 0
\(305\) −4.00000 −0.229039
\(306\) 0 0
\(307\) −6.00000 −0.342438 −0.171219 0.985233i \(-0.554771\pi\)
−0.171219 + 0.985233i \(0.554771\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) 0 0
\(311\) 10.0000 0.567048 0.283524 0.958965i \(-0.408496\pi\)
0.283524 + 0.958965i \(0.408496\pi\)
\(312\) 0 0
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 0 0
\(315\) 8.00000 0.450749
\(316\) 0 0
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) −14.0000 −0.781404
\(322\) 0 0
\(323\) −8.00000 −0.445132
\(324\) 0 0
\(325\) 1.00000 0.0554700
\(326\) 0 0
\(327\) −14.0000 −0.774202
\(328\) 0 0
\(329\) −48.0000 −2.64633
\(330\) 0 0
\(331\) 36.0000 1.97874 0.989369 0.145424i \(-0.0464545\pi\)
0.989369 + 0.145424i \(0.0464545\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) 0 0
\(339\) −18.0000 −0.977626
\(340\) 0 0
\(341\) −6.00000 −0.324918
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) 12.0000 0.646058
\(346\) 0 0
\(347\) −30.0000 −1.61048 −0.805242 0.592946i \(-0.797965\pi\)
−0.805242 + 0.592946i \(0.797965\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) 16.0000 0.849192
\(356\) 0 0
\(357\) 16.0000 0.846810
\(358\) 0 0
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 1.00000 0.0524864
\(364\) 0 0
\(365\) 24.0000 1.25622
\(366\) 0 0
\(367\) −28.0000 −1.46159 −0.730794 0.682598i \(-0.760850\pi\)
−0.730794 + 0.682598i \(0.760850\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) −16.0000 −0.830679
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) −12.0000 −0.619677
\(376\) 0 0
\(377\) −6.00000 −0.309016
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) −4.00000 −0.204390 −0.102195 0.994764i \(-0.532587\pi\)
−0.102195 + 0.994764i \(0.532587\pi\)
\(384\) 0 0
\(385\) 8.00000 0.407718
\(386\) 0 0
\(387\) 4.00000 0.203331
\(388\) 0 0
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) 24.0000 1.21373
\(392\) 0 0
\(393\) 22.0000 1.10975
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −36.0000 −1.80679 −0.903394 0.428811i \(-0.858933\pi\)
−0.903394 + 0.428811i \(0.858933\pi\)
\(398\) 0 0
\(399\) −8.00000 −0.400501
\(400\) 0 0
\(401\) −34.0000 −1.69788 −0.848939 0.528490i \(-0.822758\pi\)
−0.848939 + 0.528490i \(0.822758\pi\)
\(402\) 0 0
\(403\) 6.00000 0.298881
\(404\) 0 0
\(405\) 2.00000 0.0993808
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −16.0000 −0.791149 −0.395575 0.918434i \(-0.629455\pi\)
−0.395575 + 0.918434i \(0.629455\pi\)
\(410\) 0 0
\(411\) −2.00000 −0.0986527
\(412\) 0 0
\(413\) 16.0000 0.787309
\(414\) 0 0
\(415\) −24.0000 −1.17811
\(416\) 0 0
\(417\) −8.00000 −0.391762
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) −24.0000 −1.16969 −0.584844 0.811146i \(-0.698844\pi\)
−0.584844 + 0.811146i \(0.698844\pi\)
\(422\) 0 0
\(423\) −12.0000 −0.583460
\(424\) 0 0
\(425\) −4.00000 −0.194029
\(426\) 0 0
\(427\) −8.00000 −0.387147
\(428\) 0 0
\(429\) −1.00000 −0.0482805
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) 12.0000 0.575356
\(436\) 0 0
\(437\) −12.0000 −0.574038
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) 0 0
\(447\) −14.0000 −0.662177
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 0 0
\(453\) 4.00000 0.187936
\(454\) 0 0
\(455\) −8.00000 −0.375046
\(456\) 0 0
\(457\) −32.0000 −1.49690 −0.748448 0.663193i \(-0.769201\pi\)
−0.748448 + 0.663193i \(0.769201\pi\)
\(458\) 0 0
\(459\) 4.00000 0.186704
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) 14.0000 0.650635 0.325318 0.945605i \(-0.394529\pi\)
0.325318 + 0.945605i \(0.394529\pi\)
\(464\) 0 0
\(465\) −12.0000 −0.556487
\(466\) 0 0
\(467\) −32.0000 −1.48078 −0.740392 0.672176i \(-0.765360\pi\)
−0.740392 + 0.672176i \(0.765360\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) 10.0000 0.460776
\(472\) 0 0
\(473\) 4.00000 0.183920
\(474\) 0 0
\(475\) 2.00000 0.0917663
\(476\) 0 0
\(477\) −4.00000 −0.183147
\(478\) 0 0
\(479\) −32.0000 −1.46212 −0.731059 0.682315i \(-0.760973\pi\)
−0.731059 + 0.682315i \(0.760973\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 24.0000 1.09204
\(484\) 0 0
\(485\) 20.0000 0.908153
\(486\) 0 0
\(487\) 22.0000 0.996915 0.498458 0.866914i \(-0.333900\pi\)
0.498458 + 0.866914i \(0.333900\pi\)
\(488\) 0 0
\(489\) −8.00000 −0.361773
\(490\) 0 0
\(491\) −2.00000 −0.0902587 −0.0451294 0.998981i \(-0.514370\pi\)
−0.0451294 + 0.998981i \(0.514370\pi\)
\(492\) 0 0
\(493\) 24.0000 1.08091
\(494\) 0 0
\(495\) 2.00000 0.0898933
\(496\) 0 0
\(497\) 32.0000 1.43540
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) −16.0000 −0.714827
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −20.0000 −0.889988
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) 0 0
\(511\) 48.0000 2.12339
\(512\) 0 0
\(513\) −2.00000 −0.0883022
\(514\) 0 0
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) −12.0000 −0.527759
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) −36.0000 −1.57417 −0.787085 0.616844i \(-0.788411\pi\)
−0.787085 + 0.616844i \(0.788411\pi\)
\(524\) 0 0
\(525\) −4.00000 −0.174574
\(526\) 0 0
\(527\) −24.0000 −1.04546
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) 6.00000 0.259889
\(534\) 0 0
\(535\) −28.0000 −1.21055
\(536\) 0 0
\(537\) 20.0000 0.863064
\(538\) 0 0
\(539\) 9.00000 0.387657
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) −14.0000 −0.600798
\(544\) 0 0
\(545\) −28.0000 −1.19939
\(546\) 0 0
\(547\) −32.0000 −1.36822 −0.684111 0.729378i \(-0.739809\pi\)
−0.684111 + 0.729378i \(0.739809\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 0 0
\(563\) −26.0000 −1.09577 −0.547885 0.836554i \(-0.684567\pi\)
−0.547885 + 0.836554i \(0.684567\pi\)
\(564\) 0 0
\(565\) −36.0000 −1.51453
\(566\) 0 0
\(567\) 4.00000 0.167984
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 0 0
\(573\) 6.00000 0.250654
\(574\) 0 0
\(575\) −6.00000 −0.250217
\(576\) 0 0
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 0 0
\(579\) −8.00000 −0.332469
\(580\) 0 0
\(581\) −48.0000 −1.99138
\(582\) 0 0
\(583\) −4.00000 −0.165663
\(584\) 0 0
\(585\) −2.00000 −0.0826898
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 12.0000 0.494451
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) −2.00000 −0.0821302 −0.0410651 0.999156i \(-0.513075\pi\)
−0.0410651 + 0.999156i \(0.513075\pi\)
\(594\) 0 0
\(595\) 32.0000 1.31187
\(596\) 0 0
\(597\) 8.00000 0.327418
\(598\) 0 0
\(599\) 2.00000 0.0817178 0.0408589 0.999165i \(-0.486991\pi\)
0.0408589 + 0.999165i \(0.486991\pi\)
\(600\) 0 0
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) 2.00000 0.0813116
\(606\) 0 0
\(607\) 32.0000 1.29884 0.649420 0.760430i \(-0.275012\pi\)
0.649420 + 0.760430i \(0.275012\pi\)
\(608\) 0 0
\(609\) 24.0000 0.972529
\(610\) 0 0
\(611\) 12.0000 0.485468
\(612\) 0 0
\(613\) −30.0000 −1.21169 −0.605844 0.795583i \(-0.707165\pi\)
−0.605844 + 0.795583i \(0.707165\pi\)
\(614\) 0 0
\(615\) −12.0000 −0.483887
\(616\) 0 0
\(617\) −38.0000 −1.52982 −0.764911 0.644136i \(-0.777217\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 6.00000 0.240772
\(622\) 0 0
\(623\) −24.0000 −0.961540
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) −2.00000 −0.0798723
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −22.0000 −0.875806 −0.437903 0.899022i \(-0.644279\pi\)
−0.437903 + 0.899022i \(0.644279\pi\)
\(632\) 0 0
\(633\) −8.00000 −0.317971
\(634\) 0 0
\(635\) 16.0000 0.634941
\(636\) 0 0
\(637\) −9.00000 −0.356593
\(638\) 0 0
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) −42.0000 −1.65890 −0.829450 0.558581i \(-0.811346\pi\)
−0.829450 + 0.558581i \(0.811346\pi\)
\(642\) 0 0
\(643\) 44.0000 1.73519 0.867595 0.497271i \(-0.165665\pi\)
0.867595 + 0.497271i \(0.165665\pi\)
\(644\) 0 0
\(645\) 8.00000 0.315000
\(646\) 0 0
\(647\) 30.0000 1.17942 0.589711 0.807614i \(-0.299242\pi\)
0.589711 + 0.807614i \(0.299242\pi\)
\(648\) 0 0
\(649\) 4.00000 0.157014
\(650\) 0 0
\(651\) −24.0000 −0.940634
\(652\) 0 0
\(653\) 20.0000 0.782660 0.391330 0.920250i \(-0.372015\pi\)
0.391330 + 0.920250i \(0.372015\pi\)
\(654\) 0 0
\(655\) 44.0000 1.71922
\(656\) 0 0
\(657\) 12.0000 0.468165
\(658\) 0 0
\(659\) −42.0000 −1.63609 −0.818044 0.575156i \(-0.804941\pi\)
−0.818044 + 0.575156i \(0.804941\pi\)
\(660\) 0 0
\(661\) −40.0000 −1.55582 −0.777910 0.628376i \(-0.783720\pi\)
−0.777910 + 0.628376i \(0.783720\pi\)
\(662\) 0 0
\(663\) −4.00000 −0.155347
\(664\) 0 0
\(665\) −16.0000 −0.620453
\(666\) 0 0
\(667\) 36.0000 1.39393
\(668\) 0 0
\(669\) 26.0000 1.00522
\(670\) 0 0
\(671\) −2.00000 −0.0772091
\(672\) 0 0
\(673\) 42.0000 1.61898 0.809491 0.587133i \(-0.199743\pi\)
0.809491 + 0.587133i \(0.199743\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −38.0000 −1.46046 −0.730229 0.683202i \(-0.760587\pi\)
−0.730229 + 0.683202i \(0.760587\pi\)
\(678\) 0 0
\(679\) 40.0000 1.53506
\(680\) 0 0
\(681\) 8.00000 0.306561
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) −4.00000 −0.152832
\(686\) 0 0
\(687\) 24.0000 0.915657
\(688\) 0 0
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 4.00000 0.151947
\(694\) 0 0
\(695\) −16.0000 −0.606915
\(696\) 0 0
\(697\) −24.0000 −0.909065
\(698\) 0 0
\(699\) −8.00000 −0.302588
\(700\) 0 0
\(701\) 50.0000 1.88847 0.944237 0.329267i \(-0.106802\pi\)
0.944237 + 0.329267i \(0.106802\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −24.0000 −0.903892
\(706\) 0 0
\(707\) −40.0000 −1.50435
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −36.0000 −1.34821
\(714\) 0 0
\(715\) −2.00000 −0.0747958
\(716\) 0 0
\(717\) 8.00000 0.298765
\(718\) 0 0
\(719\) 2.00000 0.0745874 0.0372937 0.999304i \(-0.488126\pi\)
0.0372937 + 0.999304i \(0.488126\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) −4.00000 −0.148762
\(724\) 0 0
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) 52.0000 1.92857 0.964287 0.264861i \(-0.0853260\pi\)
0.964287 + 0.264861i \(0.0853260\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 16.0000 0.591781
\(732\) 0 0
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 0 0
\(735\) 18.0000 0.663940
\(736\) 0 0
\(737\) 4.00000 0.147342
\(738\) 0 0
\(739\) 10.0000 0.367856 0.183928 0.982940i \(-0.441119\pi\)
0.183928 + 0.982940i \(0.441119\pi\)
\(740\) 0 0
\(741\) 2.00000 0.0734718
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) −28.0000 −1.02584
\(746\) 0 0
\(747\) −12.0000 −0.439057
\(748\) 0 0
\(749\) −56.0000 −2.04620
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 0 0
\(753\) −4.00000 −0.145768
\(754\) 0 0
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 6.00000 0.217786
\(760\) 0 0
\(761\) 34.0000 1.23250 0.616250 0.787551i \(-0.288651\pi\)
0.616250 + 0.787551i \(0.288651\pi\)
\(762\) 0 0
\(763\) −56.0000 −2.02734
\(764\) 0 0
\(765\) 8.00000 0.289241
\(766\) 0 0
\(767\) −4.00000 −0.144432
\(768\) 0 0
\(769\) −40.0000 −1.44244 −0.721218 0.692708i \(-0.756418\pi\)
−0.721218 + 0.692708i \(0.756418\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 0 0
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) 6.00000 0.215526
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.0000 0.429945
\(780\) 0 0
\(781\) 8.00000 0.286263
\(782\) 0 0
\(783\) 6.00000 0.214423
\(784\) 0 0
\(785\) 20.0000 0.713831
\(786\) 0 0
\(787\) −26.0000 −0.926800 −0.463400 0.886149i \(-0.653371\pi\)
−0.463400 + 0.886149i \(0.653371\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −72.0000 −2.56003
\(792\) 0 0
\(793\) 2.00000 0.0710221
\(794\) 0 0
\(795\) −8.00000 −0.283731
\(796\) 0 0
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) −48.0000 −1.69812
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) 12.0000 0.423471
\(804\) 0 0
\(805\) 48.0000 1.69178
\(806\) 0 0
\(807\) 8.00000 0.281613
\(808\) 0 0
\(809\) −24.0000 −0.843795 −0.421898 0.906644i \(-0.638636\pi\)
−0.421898 + 0.906644i \(0.638636\pi\)
\(810\) 0 0
\(811\) −42.0000 −1.47482 −0.737410 0.675446i \(-0.763951\pi\)
−0.737410 + 0.675446i \(0.763951\pi\)
\(812\) 0 0
\(813\) 24.0000 0.841717
\(814\) 0 0
\(815\) −16.0000 −0.560456
\(816\) 0 0
\(817\) −8.00000 −0.279885
\(818\) 0 0
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) 22.0000 0.767805 0.383903 0.923374i \(-0.374580\pi\)
0.383903 + 0.923374i \(0.374580\pi\)
\(822\) 0 0
\(823\) 48.0000 1.67317 0.836587 0.547833i \(-0.184547\pi\)
0.836587 + 0.547833i \(0.184547\pi\)
\(824\) 0 0
\(825\) −1.00000 −0.0348155
\(826\) 0 0
\(827\) −32.0000 −1.11275 −0.556375 0.830932i \(-0.687808\pi\)
−0.556375 + 0.830932i \(0.687808\pi\)
\(828\) 0 0
\(829\) −10.0000 −0.347314 −0.173657 0.984806i \(-0.555558\pi\)
−0.173657 + 0.984806i \(0.555558\pi\)
\(830\) 0 0
\(831\) 2.00000 0.0693792
\(832\) 0 0
\(833\) 36.0000 1.24733
\(834\) 0 0
\(835\) −32.0000 −1.10741
\(836\) 0 0
\(837\) −6.00000 −0.207390
\(838\) 0 0
\(839\) −52.0000 −1.79524 −0.897620 0.440771i \(-0.854705\pi\)
−0.897620 + 0.440771i \(0.854705\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) −6.00000 −0.206651
\(844\) 0 0
\(845\) 2.00000 0.0688021
\(846\) 0 0
\(847\) 4.00000 0.137442
\(848\) 0 0
\(849\) 12.0000 0.411839
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −38.0000 −1.30110 −0.650548 0.759465i \(-0.725461\pi\)
−0.650548 + 0.759465i \(0.725461\pi\)
\(854\) 0 0
\(855\) −4.00000 −0.136797
\(856\) 0 0
\(857\) 40.0000 1.36637 0.683187 0.730243i \(-0.260593\pi\)
0.683187 + 0.730243i \(0.260593\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) −24.0000 −0.817918
\(862\) 0 0
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) 0 0
\(865\) −12.0000 −0.408012
\(866\) 0 0
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −4.00000 −0.135535
\(872\) 0 0
\(873\) 10.0000 0.338449
\(874\) 0 0
\(875\) −48.0000 −1.62270
\(876\) 0 0
\(877\) −42.0000 −1.41824 −0.709120 0.705088i \(-0.750907\pi\)
−0.709120 + 0.705088i \(0.750907\pi\)
\(878\) 0 0
\(879\) 10.0000 0.337292
\(880\) 0 0
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 0 0
\(885\) 8.00000 0.268917
\(886\) 0 0
\(887\) −28.0000 −0.940148 −0.470074 0.882627i \(-0.655773\pi\)
−0.470074 + 0.882627i \(0.655773\pi\)
\(888\) 0 0
\(889\) 32.0000 1.07325
\(890\) 0 0
\(891\) 1.00000 0.0335013
\(892\) 0 0
\(893\) 24.0000 0.803129
\(894\) 0 0
\(895\) 40.0000 1.33705
\(896\) 0 0
\(897\) −6.00000 −0.200334
\(898\) 0 0
\(899\) −36.0000 −1.20067
\(900\) 0 0
\(901\) −16.0000 −0.533037
\(902\) 0 0
\(903\) 16.0000 0.532447
\(904\) 0 0
\(905\) −28.0000 −0.930751
\(906\) 0 0
\(907\) −12.0000 −0.398453 −0.199227 0.979953i \(-0.563843\pi\)
−0.199227 + 0.979953i \(0.563843\pi\)
\(908\) 0 0
\(909\) −10.0000 −0.331679
\(910\) 0 0
\(911\) 38.0000 1.25900 0.629498 0.777002i \(-0.283261\pi\)
0.629498 + 0.777002i \(0.283261\pi\)
\(912\) 0 0
\(913\) −12.0000 −0.397142
\(914\) 0 0
\(915\) −4.00000 −0.132236
\(916\) 0 0
\(917\) 88.0000 2.90602
\(918\) 0 0
\(919\) −32.0000 −1.05558 −0.527791 0.849374i \(-0.676980\pi\)
−0.527791 + 0.849374i \(0.676980\pi\)
\(920\) 0 0
\(921\) −6.00000 −0.197707
\(922\) 0 0
\(923\) −8.00000 −0.263323
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 4.00000 0.131377
\(928\) 0 0
\(929\) −58.0000 −1.90292 −0.951459 0.307775i \(-0.900416\pi\)
−0.951459 + 0.307775i \(0.900416\pi\)
\(930\) 0 0
\(931\) −18.0000 −0.589926
\(932\) 0 0
\(933\) 10.0000 0.327385
\(934\) 0 0
\(935\) 8.00000 0.261628
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) 22.0000 0.717943
\(940\) 0 0
\(941\) 30.0000 0.977972 0.488986 0.872292i \(-0.337367\pi\)
0.488986 + 0.872292i \(0.337367\pi\)
\(942\) 0 0
\(943\) −36.0000 −1.17232
\(944\) 0 0
\(945\) 8.00000 0.260240
\(946\) 0 0
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 0 0
\(949\) −12.0000 −0.389536
\(950\) 0 0
\(951\) −6.00000 −0.194563
\(952\) 0 0
\(953\) −32.0000 −1.03658 −0.518291 0.855204i \(-0.673432\pi\)
−0.518291 + 0.855204i \(0.673432\pi\)
\(954\) 0 0
\(955\) 12.0000 0.388311
\(956\) 0 0
\(957\) 6.00000 0.193952
\(958\) 0 0
\(959\) −8.00000 −0.258333
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) −14.0000 −0.451144
\(964\) 0 0
\(965\) −16.0000 −0.515058
\(966\) 0 0
\(967\) 60.0000 1.92947 0.964735 0.263223i \(-0.0847856\pi\)
0.964735 + 0.263223i \(0.0847856\pi\)
\(968\) 0 0
\(969\) −8.00000 −0.256997
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −32.0000 −1.02587
\(974\) 0 0
\(975\) 1.00000 0.0320256
\(976\) 0 0
\(977\) −46.0000 −1.47167 −0.735835 0.677161i \(-0.763210\pi\)
−0.735835 + 0.677161i \(0.763210\pi\)
\(978\) 0 0
\(979\) −6.00000 −0.191761
\(980\) 0 0
\(981\) −14.0000 −0.446986
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) −12.0000 −0.382352
\(986\) 0 0
\(987\) −48.0000 −1.52786
\(988\) 0 0
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 0 0
\(993\) 36.0000 1.14243
\(994\) 0 0
\(995\) 16.0000 0.507234
\(996\) 0 0
\(997\) 6.00000 0.190022 0.0950110 0.995476i \(-0.469711\pi\)
0.0950110 + 0.995476i \(0.469711\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3432.2.a.h.1.1 1
4.3 odd 2 6864.2.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3432.2.a.h.1.1 1 1.1 even 1 trivial
6864.2.a.l.1.1 1 4.3 odd 2