Properties

Label 3432.1.eb.a
Level $3432$
Weight $1$
Character orbit 3432.eb
Analytic conductor $1.713$
Analytic rank $0$
Dimension $4$
Projective image $D_{10}$
CM discriminant -39
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3432,1,Mod(1091,3432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3432.1091"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3432, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 5, 5, 1, 5])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3432 = 2^{3} \cdot 3 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3432.eb (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,1,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.71279112336\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{10}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{10} + \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - q^{2} - \zeta_{10}^{2} q^{3} + q^{4} + (\zeta_{10}^{4} + \zeta_{10}^{3}) q^{5} + \zeta_{10}^{2} q^{6} - q^{8} + \zeta_{10}^{4} q^{9} + ( - \zeta_{10}^{4} - \zeta_{10}^{3}) q^{10} - \zeta_{10} q^{11} + \cdots + q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + q^{3} + 4 q^{4} - q^{6} - 4 q^{8} - q^{9} - q^{11} + q^{12} - q^{13} + 5 q^{15} + 4 q^{16} + q^{18} + q^{22} - q^{24} - q^{25} + q^{26} + q^{27} - 5 q^{30} - 4 q^{32} + q^{33}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3432\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1145\) \(1717\) \(2575\) \(2641\)
\(\chi(n)\) \(\zeta_{10}^{3}\) \(-1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1091.1
−0.309017 0.951057i
−0.309017 + 0.951057i
0.809017 0.587785i
0.809017 + 0.587785i
−1.00000 0.809017 0.587785i 1.00000 1.11803 0.363271i −0.809017 + 0.587785i 0 −1.00000 0.309017 0.951057i −1.11803 + 0.363271i
1403.1 −1.00000 0.809017 + 0.587785i 1.00000 1.11803 + 0.363271i −0.809017 0.587785i 0 −1.00000 0.309017 + 0.951057i −1.11803 0.363271i
2339.1 −1.00000 −0.309017 + 0.951057i 1.00000 −1.11803 1.53884i 0.309017 0.951057i 0 −1.00000 −0.809017 0.587785i 1.11803 + 1.53884i
3275.1 −1.00000 −0.309017 0.951057i 1.00000 −1.11803 + 1.53884i 0.309017 + 0.951057i 0 −1.00000 −0.809017 + 0.587785i 1.11803 1.53884i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
39.d odd 2 1 CM by \(\Q(\sqrt{-39}) \)
88.k even 10 1 inner
3432.eb odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3432.1.eb.a 4
3.b odd 2 1 3432.1.eb.d yes 4
8.d odd 2 1 3432.1.eb.b yes 4
11.d odd 10 1 3432.1.eb.b yes 4
13.b even 2 1 3432.1.eb.d yes 4
24.f even 2 1 3432.1.eb.c yes 4
33.f even 10 1 3432.1.eb.c yes 4
39.d odd 2 1 CM 3432.1.eb.a 4
88.k even 10 1 inner 3432.1.eb.a 4
104.h odd 2 1 3432.1.eb.c yes 4
143.l odd 10 1 3432.1.eb.c yes 4
264.r odd 10 1 3432.1.eb.d yes 4
312.h even 2 1 3432.1.eb.b yes 4
429.y even 10 1 3432.1.eb.b yes 4
1144.bq even 10 1 3432.1.eb.d yes 4
3432.eb odd 10 1 inner 3432.1.eb.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3432.1.eb.a 4 1.a even 1 1 trivial
3432.1.eb.a 4 39.d odd 2 1 CM
3432.1.eb.a 4 88.k even 10 1 inner
3432.1.eb.a 4 3432.eb odd 10 1 inner
3432.1.eb.b yes 4 8.d odd 2 1
3432.1.eb.b yes 4 11.d odd 10 1
3432.1.eb.b yes 4 312.h even 2 1
3432.1.eb.b yes 4 429.y even 10 1
3432.1.eb.c yes 4 24.f even 2 1
3432.1.eb.c yes 4 33.f even 10 1
3432.1.eb.c yes 4 104.h odd 2 1
3432.1.eb.c yes 4 143.l odd 10 1
3432.1.eb.d yes 4 3.b odd 2 1
3432.1.eb.d yes 4 13.b even 2 1
3432.1.eb.d yes 4 264.r odd 10 1
3432.1.eb.d yes 4 1144.bq even 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3432, [\chi])\):

\( T_{5}^{4} - 5T_{5} + 5 \) Copy content Toggle raw display
\( T_{59}^{4} - 2T_{59}^{3} + 4T_{59}^{2} - 3T_{59} + 1 \) Copy content Toggle raw display
\( T_{61}^{4} + 3T_{61}^{3} + 4T_{61}^{2} + 2T_{61} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} - 5T + 5 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} + 5T^{2} + 5 \) Copy content Toggle raw display
$47$ \( T^{4} - 5T + 5 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{4} + 5T + 5 \) Copy content Toggle raw display
$89$ \( (T - 2)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less