Properties

Label 3432.1.cp.f
Level $3432$
Weight $1$
Character orbit 3432.cp
Analytic conductor $1.713$
Analytic rank $0$
Dimension $4$
Projective image $D_{6}$
CM discriminant -264
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3432,1,Mod(659,3432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3432.659"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3432, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 3, 3, 4])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3432 = 2^{3} \cdot 3 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3432.cp (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,2,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.71279112336\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.65689386048.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12}^{4} q^{2} - \zeta_{12}^{4} q^{3} - \zeta_{12}^{2} q^{4} + ( - \zeta_{12}^{5} + \zeta_{12}) q^{5} - \zeta_{12}^{2} q^{6} + ( - \zeta_{12}^{3} - \zeta_{12}) q^{7} - q^{8} - \zeta_{12}^{2} q^{9} + \cdots + q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{6} - 4 q^{8} - 2 q^{9} - 2 q^{11} - 4 q^{12} - 2 q^{16} + 2 q^{17} - 4 q^{18} + 2 q^{22} - 2 q^{24} + 8 q^{25} - 4 q^{27} + 2 q^{32} + 2 q^{33} + 4 q^{34} - 6 q^{35}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3432\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1145\) \(1717\) \(2575\) \(2641\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\) \(-\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
659.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i −1.73205 −0.500000 0.866025i 0.866025 + 1.50000i −1.00000 −0.500000 0.866025i −0.866025 + 1.50000i
659.2 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 1.73205 −0.500000 0.866025i −0.866025 1.50000i −1.00000 −0.500000 0.866025i 0.866025 1.50000i
1979.1 0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i −1.73205 −0.500000 + 0.866025i 0.866025 1.50000i −1.00000 −0.500000 + 0.866025i −0.866025 1.50000i
1979.2 0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i 1.73205 −0.500000 + 0.866025i −0.866025 + 1.50000i −1.00000 −0.500000 + 0.866025i 0.866025 + 1.50000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
264.p odd 2 1 CM by \(\Q(\sqrt{-66}) \)
8.d odd 2 1 inner
13.c even 3 1 inner
33.d even 2 1 inner
104.n odd 6 1 inner
429.p even 6 1 inner
3432.cp odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3432.1.cp.f yes 4
3.b odd 2 1 3432.1.cp.e 4
8.d odd 2 1 inner 3432.1.cp.f yes 4
11.b odd 2 1 3432.1.cp.e 4
13.c even 3 1 inner 3432.1.cp.f yes 4
24.f even 2 1 3432.1.cp.e 4
33.d even 2 1 inner 3432.1.cp.f yes 4
39.i odd 6 1 3432.1.cp.e 4
88.g even 2 1 3432.1.cp.e 4
104.n odd 6 1 inner 3432.1.cp.f yes 4
143.k odd 6 1 3432.1.cp.e 4
264.p odd 2 1 CM 3432.1.cp.f yes 4
312.bn even 6 1 3432.1.cp.e 4
429.p even 6 1 inner 3432.1.cp.f yes 4
1144.bb even 6 1 3432.1.cp.e 4
3432.cp odd 6 1 inner 3432.1.cp.f yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3432.1.cp.e 4 3.b odd 2 1
3432.1.cp.e 4 11.b odd 2 1
3432.1.cp.e 4 24.f even 2 1
3432.1.cp.e 4 39.i odd 6 1
3432.1.cp.e 4 88.g even 2 1
3432.1.cp.e 4 143.k odd 6 1
3432.1.cp.e 4 312.bn even 6 1
3432.1.cp.e 4 1144.bb even 6 1
3432.1.cp.f yes 4 1.a even 1 1 trivial
3432.1.cp.f yes 4 8.d odd 2 1 inner
3432.1.cp.f yes 4 13.c even 3 1 inner
3432.1.cp.f yes 4 33.d even 2 1 inner
3432.1.cp.f yes 4 104.n odd 6 1 inner
3432.1.cp.f yes 4 264.p odd 2 1 CM
3432.1.cp.f yes 4 429.p even 6 1 inner
3432.1.cp.f yes 4 3432.cp odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3432, [\chi])\):

\( T_{5}^{2} - 3 \) Copy content Toggle raw display
\( T_{7}^{4} + 3T_{7}^{2} + 9 \) Copy content Toggle raw display
\( T_{17}^{2} - T_{17} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$11$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$17$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T - 1)^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
show more
show less