Defining parameters
Level: | \( N \) | \(=\) | \( 343 = 7^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 343.e (of order \(7\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 49 \) |
Character field: | \(\Q(\zeta_{7})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(65\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(343, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 234 | 174 | 60 |
Cusp forms | 150 | 114 | 36 |
Eisenstein series | 84 | 60 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(343, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
343.2.e.a | $6$ | $2.739$ | \(\Q(\zeta_{14})\) | None | \(-3\) | \(3\) | \(-6\) | \(0\) | \(q+(-1+\zeta_{14}-\zeta_{14}^{4}+\zeta_{14}^{5})q^{2}+\cdots\) |
343.2.e.b | $12$ | $2.739$ | \(\Q(\zeta_{21})\) | None | \(-2\) | \(0\) | \(7\) | \(0\) | \(q+(\beta_{11}-\beta_{9}+\beta_{5})q^{2}+(\beta_{7}-\beta_{6}+\beta_{2}-\beta_1)q^{3}+\cdots\) |
343.2.e.c | $48$ | $2.739$ | None | \(5\) | \(-7\) | \(-7\) | \(0\) | ||
343.2.e.d | $48$ | $2.739$ | None | \(5\) | \(7\) | \(7\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(343, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(343, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)