Properties

Label 343.2.e
Level $343$
Weight $2$
Character orbit 343.e
Rep. character $\chi_{343}(50,\cdot)$
Character field $\Q(\zeta_{7})$
Dimension $114$
Newform subspaces $4$
Sturm bound $65$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 343 = 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 343.e (of order \(7\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{7})\)
Newform subspaces: \( 4 \)
Sturm bound: \(65\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(343, [\chi])\).

Total New Old
Modular forms 234 174 60
Cusp forms 150 114 36
Eisenstein series 84 60 24

Trace form

\( 114 q + 5 q^{2} + 3 q^{3} - 11 q^{4} + q^{5} + 9 q^{6} - 35 q^{8} + 4 q^{9} - 11 q^{10} + 6 q^{11} + 14 q^{12} - 7 q^{13} - 27 q^{15} - 17 q^{16} - 4 q^{17} + 8 q^{18} + 22 q^{19} - 7 q^{20} - 35 q^{22}+ \cdots - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(343, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
343.2.e.a 343.e 49.e $6$ $2.739$ \(\Q(\zeta_{14})\) None 49.2.e.a \(-3\) \(3\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{7}]$ \(q+(-1+\zeta_{14}-\zeta_{14}^{4}+\zeta_{14}^{5})q^{2}+\cdots\)
343.2.e.b 343.e 49.e $12$ $2.739$ \(\Q(\zeta_{21})\) None 49.2.e.b \(-2\) \(0\) \(7\) \(0\) $\mathrm{SU}(2)[C_{7}]$ \(q+(\beta_{11}-\beta_{9}+\beta_{5})q^{2}+(\beta_{7}-\beta_{6}+\beta_{2}-\beta_1)q^{3}+\cdots\)
343.2.e.c 343.e 49.e $48$ $2.739$ None 49.2.g.a \(5\) \(-7\) \(-7\) \(0\) $\mathrm{SU}(2)[C_{7}]$
343.2.e.d 343.e 49.e $48$ $2.739$ None 49.2.g.a \(5\) \(7\) \(7\) \(0\) $\mathrm{SU}(2)[C_{7}]$

Decomposition of \(S_{2}^{\mathrm{old}}(343, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(343, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)