Properties

Label 3420.1.bn.b.2279.5
Level $3420$
Weight $1$
Character 3420.2279
Analytic conductor $1.707$
Analytic rank $0$
Dimension $16$
Projective image $D_{24}$
CM discriminant -95
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3420,1,Mod(1139,3420)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3420.1139"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3420, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3, 3])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3420 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3420.bn (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(24)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.70680234320\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{48})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{24}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{24} - \cdots)\)

Embedding invariants

Embedding label 2279.5
Root \(0.608761 + 0.793353i\) of defining polynomial
Character \(\chi\) \(=\) 3420.2279
Dual form 3420.1.bn.b.1139.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.382683 - 0.923880i) q^{2} +(0.130526 - 0.991445i) q^{3} +(-0.707107 - 0.707107i) q^{4} +(-0.866025 + 0.500000i) q^{5} +(-0.866025 - 0.500000i) q^{6} +(-0.923880 + 0.382683i) q^{8} +(-0.965926 - 0.258819i) q^{9} +(0.130526 + 0.991445i) q^{10} +(-0.965926 + 1.67303i) q^{11} +(-0.793353 + 0.608761i) q^{12} +(0.608761 + 1.05441i) q^{13} +(0.382683 + 0.923880i) q^{15} +1.00000i q^{16} +(-0.608761 + 0.793353i) q^{18} -1.00000i q^{19} +(0.965926 + 0.258819i) q^{20} +(1.17604 + 1.53264i) q^{22} +(0.258819 + 0.965926i) q^{24} +(0.500000 - 0.866025i) q^{25} +(1.20711 - 0.158919i) q^{26} +(-0.382683 + 0.923880i) q^{27} +1.00000 q^{30} +(0.923880 + 0.382683i) q^{32} +(1.53264 + 1.17604i) q^{33} +(0.500000 + 0.866025i) q^{36} +1.58671 q^{37} +(-0.923880 - 0.382683i) q^{38} +(1.12484 - 0.465926i) q^{39} +(0.608761 - 0.793353i) q^{40} +(1.86603 - 0.500000i) q^{44} +(0.965926 - 0.258819i) q^{45} +(0.991445 + 0.130526i) q^{48} +(0.500000 + 0.866025i) q^{49} +(-0.608761 - 0.793353i) q^{50} +(0.315118 - 1.17604i) q^{52} +1.98289i q^{53} +(0.707107 + 0.707107i) q^{54} -1.93185i q^{55} +(-0.991445 - 0.130526i) q^{57} +(0.382683 - 0.923880i) q^{60} +(-0.707107 + 1.22474i) q^{61} +(0.707107 - 0.707107i) q^{64} +(-1.05441 - 0.608761i) q^{65} +(1.67303 - 0.965926i) q^{66} +(-1.60021 + 0.923880i) q^{67} +(0.991445 - 0.130526i) q^{72} +(0.607206 - 1.46593i) q^{74} +(-0.793353 - 0.608761i) q^{75} +(-0.707107 + 0.707107i) q^{76} -1.21752i q^{78} +(-0.500000 - 0.866025i) q^{80} +(0.866025 + 0.500000i) q^{81} +(0.252157 - 1.91532i) q^{88} +(0.130526 - 0.991445i) q^{90} +(0.500000 + 0.866025i) q^{95} +(0.500000 - 0.866025i) q^{96} +(-0.923880 + 1.60021i) q^{97} +(0.991445 - 0.130526i) q^{98} +(1.36603 - 1.36603i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{25} + 8 q^{26} + 16 q^{30} + 8 q^{36} + 16 q^{44} + 8 q^{49} - 8 q^{80} + 8 q^{95} + 8 q^{96} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3420\mathbb{Z}\right)^\times\).

\(n\) \(1711\) \(1901\) \(2737\) \(3061\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.382683 0.923880i 0.382683 0.923880i
\(3\) 0.130526 0.991445i 0.130526 0.991445i
\(4\) −0.707107 0.707107i −0.707107 0.707107i
\(5\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(6\) −0.866025 0.500000i −0.866025 0.500000i
\(7\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(8\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(9\) −0.965926 0.258819i −0.965926 0.258819i
\(10\) 0.130526 + 0.991445i 0.130526 + 0.991445i
\(11\) −0.965926 + 1.67303i −0.965926 + 1.67303i −0.258819 + 0.965926i \(0.583333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(12\) −0.793353 + 0.608761i −0.793353 + 0.608761i
\(13\) 0.608761 + 1.05441i 0.608761 + 1.05441i 0.991445 + 0.130526i \(0.0416667\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(14\) 0 0
\(15\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(16\) 1.00000i 1.00000i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −0.608761 + 0.793353i −0.608761 + 0.793353i
\(19\) 1.00000i 1.00000i
\(20\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(21\) 0 0
\(22\) 1.17604 + 1.53264i 1.17604 + 1.53264i
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(25\) 0.500000 0.866025i 0.500000 0.866025i
\(26\) 1.20711 0.158919i 1.20711 0.158919i
\(27\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(28\) 0 0
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 1.00000 1.00000
\(31\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(33\) 1.53264 + 1.17604i 1.53264 + 1.17604i
\(34\) 0 0
\(35\) 0 0
\(36\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(37\) 1.58671 1.58671 0.793353 0.608761i \(-0.208333\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(38\) −0.923880 0.382683i −0.923880 0.382683i
\(39\) 1.12484 0.465926i 1.12484 0.465926i
\(40\) 0.608761 0.793353i 0.608761 0.793353i
\(41\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(42\) 0 0
\(43\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(44\) 1.86603 0.500000i 1.86603 0.500000i
\(45\) 0.965926 0.258819i 0.965926 0.258819i
\(46\) 0 0
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) 0.991445 + 0.130526i 0.991445 + 0.130526i
\(49\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(50\) −0.608761 0.793353i −0.608761 0.793353i
\(51\) 0 0
\(52\) 0.315118 1.17604i 0.315118 1.17604i
\(53\) 1.98289i 1.98289i 0.130526 + 0.991445i \(0.458333\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(54\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(55\) 1.93185i 1.93185i
\(56\) 0 0
\(57\) −0.991445 0.130526i −0.991445 0.130526i
\(58\) 0 0
\(59\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(60\) 0.382683 0.923880i 0.382683 0.923880i
\(61\) −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i \(0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.707107 0.707107i 0.707107 0.707107i
\(65\) −1.05441 0.608761i −1.05441 0.608761i
\(66\) 1.67303 0.965926i 1.67303 0.965926i
\(67\) −1.60021 + 0.923880i −1.60021 + 0.923880i −0.608761 + 0.793353i \(0.708333\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0.991445 0.130526i 0.991445 0.130526i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0.607206 1.46593i 0.607206 1.46593i
\(75\) −0.793353 0.608761i −0.793353 0.608761i
\(76\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(77\) 0 0
\(78\) 1.21752i 1.21752i
\(79\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(80\) −0.500000 0.866025i −0.500000 0.866025i
\(81\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(82\) 0 0
\(83\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0.252157 1.91532i 0.252157 1.91532i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0.130526 0.991445i 0.130526 0.991445i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(96\) 0.500000 0.866025i 0.500000 0.866025i
\(97\) −0.923880 + 1.60021i −0.923880 + 1.60021i −0.130526 + 0.991445i \(0.541667\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(98\) 0.991445 0.130526i 0.991445 0.130526i
\(99\) 1.36603 1.36603i 1.36603 1.36603i
\(100\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(101\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(102\) 0 0
\(103\) 0.226078 0.130526i 0.226078 0.130526i −0.382683 0.923880i \(-0.625000\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(104\) −0.965926 0.741181i −0.965926 0.741181i
\(105\) 0 0
\(106\) 1.83195 + 0.758819i 1.83195 + 0.758819i
\(107\) 1.21752 1.21752 0.608761 0.793353i \(-0.291667\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(108\) 0.923880 0.382683i 0.923880 0.382683i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) −1.78480 0.739288i −1.78480 0.739288i
\(111\) 0.207107 1.57313i 0.207107 1.57313i
\(112\) 0 0
\(113\) −1.60021 + 0.923880i −1.60021 + 0.923880i −0.608761 + 0.793353i \(0.708333\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(114\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(115\) 0 0
\(116\) 0 0
\(117\) −0.315118 1.17604i −0.315118 1.17604i
\(118\) 0 0
\(119\) 0 0
\(120\) −0.707107 0.707107i −0.707107 0.707107i
\(121\) −1.36603 2.36603i −1.36603 2.36603i
\(122\) 0.860919 + 1.12197i 0.860919 + 1.12197i
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 1.00000i
\(126\) 0 0
\(127\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(128\) −0.382683 0.923880i −0.382683 0.923880i
\(129\) 0 0
\(130\) −0.965926 + 0.741181i −0.965926 + 0.741181i
\(131\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) −0.252157 1.91532i −0.252157 1.91532i
\(133\) 0 0
\(134\) 0.241181 + 1.83195i 0.241181 + 1.83195i
\(135\) −0.130526 0.991445i −0.130526 0.991445i
\(136\) 0 0
\(137\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(138\) 0 0
\(139\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.35207 −2.35207
\(144\) 0.258819 0.965926i 0.258819 0.965926i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.923880 0.382683i 0.923880 0.382683i
\(148\) −1.12197 1.12197i −1.12197 1.12197i
\(149\) 1.67303 0.965926i 1.67303 0.965926i 0.707107 0.707107i \(-0.250000\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(150\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(151\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(152\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.12484 0.465926i −1.12484 0.465926i
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) 0 0
\(159\) 1.96593 + 0.258819i 1.96593 + 0.258819i
\(160\) −0.991445 + 0.130526i −0.991445 + 0.130526i
\(161\) 0 0
\(162\) 0.793353 0.608761i 0.793353 0.608761i
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) −1.91532 0.252157i −1.91532 0.252157i
\(166\) 0 0
\(167\) −0.130526 0.226078i −0.130526 0.226078i 0.793353 0.608761i \(-0.208333\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(168\) 0 0
\(169\) −0.241181 + 0.417738i −0.241181 + 0.417738i
\(170\) 0 0
\(171\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(172\) 0 0
\(173\) 1.37413 + 0.793353i 1.37413 + 0.793353i 0.991445 0.130526i \(-0.0416667\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.67303 0.965926i −1.67303 0.965926i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −0.866025 0.500000i −0.866025 0.500000i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 1.12197 + 0.860919i 1.12197 + 0.860919i
\(184\) 0 0
\(185\) −1.37413 + 0.793353i −1.37413 + 0.793353i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0.991445 0.130526i 0.991445 0.130526i
\(191\) −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) −0.608761 0.793353i −0.608761 0.793353i
\(193\) 0.130526 + 0.226078i 0.130526 + 0.226078i 0.923880 0.382683i \(-0.125000\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(194\) 1.12484 + 1.46593i 1.12484 + 1.46593i
\(195\) −0.741181 + 0.965926i −0.741181 + 0.965926i
\(196\) 0.258819 0.965926i 0.258819 0.965926i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) −0.739288 1.78480i −0.739288 1.78480i
\(199\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(200\) −0.130526 + 0.991445i −0.130526 + 0.991445i
\(201\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(202\) −1.12197 + 0.860919i −1.12197 + 0.860919i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −0.0340742 0.258819i −0.0340742 0.258819i
\(207\) 0 0
\(208\) −1.05441 + 0.608761i −1.05441 + 0.608761i
\(209\) 1.67303 + 0.965926i 1.67303 + 0.965926i
\(210\) 0 0
\(211\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(212\) 1.40211 1.40211i 1.40211 1.40211i
\(213\) 0 0
\(214\) 0.465926 1.12484i 0.465926 1.12484i
\(215\) 0 0
\(216\) 1.00000i 1.00000i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −1.36603 + 1.36603i −1.36603 + 1.36603i
\(221\) 0 0
\(222\) −1.37413 0.793353i −1.37413 0.793353i
\(223\) 1.71723 + 0.991445i 1.71723 + 0.991445i 0.923880 + 0.382683i \(0.125000\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(224\) 0 0
\(225\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(226\) 0.241181 + 1.83195i 0.241181 + 1.83195i
\(227\) 0.382683 0.662827i 0.382683 0.662827i −0.608761 0.793353i \(-0.708333\pi\)
0.991445 + 0.130526i \(0.0416667\pi\)
\(228\) 0.608761 + 0.793353i 0.608761 + 0.793353i
\(229\) 0.258819 + 0.448288i 0.258819 + 0.448288i 0.965926 0.258819i \(-0.0833333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) −1.20711 0.158919i −1.20711 0.158919i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(240\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(241\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) −2.70868 + 0.356604i −2.70868 + 0.356604i
\(243\) 0.608761 0.793353i 0.608761 0.793353i
\(244\) 1.36603 0.366025i 1.36603 0.366025i
\(245\) −0.866025 0.500000i −0.866025 0.500000i
\(246\) 0 0
\(247\) 1.05441 0.608761i 1.05441 0.608761i
\(248\) 0 0
\(249\) 0 0
\(250\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(251\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −0.707107 0.292893i −0.707107 0.292893i
\(255\) 0 0
\(256\) −1.00000 −1.00000
\(257\) 0.662827 0.382683i 0.662827 0.382683i −0.130526 0.991445i \(-0.541667\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.315118 + 1.17604i 0.315118 + 1.17604i
\(261\) 0 0
\(262\) 0.991445 0.130526i 0.991445 0.130526i
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) −1.86603 0.500000i −1.86603 0.500000i
\(265\) −0.991445 1.71723i −0.991445 1.71723i
\(266\) 0 0
\(267\) 0 0
\(268\) 1.78480 + 0.478235i 1.78480 + 0.478235i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) −0.965926 0.258819i −0.965926 0.258819i
\(271\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.965926 + 1.67303i 0.965926 + 1.67303i
\(276\) 0 0
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 0.184592 + 1.40211i 0.184592 + 1.40211i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(282\) 0 0
\(283\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(284\) 0 0
\(285\) 0.923880 0.382683i 0.923880 0.382683i
\(286\) −0.900100 + 2.17303i −0.900100 + 2.17303i
\(287\) 0 0
\(288\) −0.793353 0.608761i −0.793353 0.608761i
\(289\) −1.00000 −1.00000
\(290\) 0 0
\(291\) 1.46593 + 1.12484i 1.46593 + 1.12484i
\(292\) 0 0
\(293\) −0.662827 + 0.382683i −0.662827 + 0.382683i −0.793353 0.608761i \(-0.791667\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(294\) 1.00000i 1.00000i
\(295\) 0 0
\(296\) −1.46593 + 0.607206i −1.46593 + 0.607206i
\(297\) −1.17604 1.53264i −1.17604 1.53264i
\(298\) −0.252157 1.91532i −0.252157 1.91532i
\(299\) 0 0
\(300\) 0.130526 + 0.991445i 0.130526 + 0.991445i
\(301\) 0 0
\(302\) 0 0
\(303\) −0.860919 + 1.12197i −0.860919 + 1.12197i
\(304\) 1.00000 1.00000
\(305\) 1.41421i 1.41421i
\(306\) 0 0
\(307\) 0.261052i 0.261052i −0.991445 0.130526i \(-0.958333\pi\)
0.991445 0.130526i \(-0.0416667\pi\)
\(308\) 0 0
\(309\) −0.0999004 0.241181i −0.0999004 0.241181i
\(310\) 0 0
\(311\) −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(312\) −0.860919 + 0.860919i −0.860919 + 0.860919i
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.60021 + 0.923880i 1.60021 + 0.923880i 0.991445 + 0.130526i \(0.0416667\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(318\) 0.991445 1.71723i 0.991445 1.71723i
\(319\) 0 0
\(320\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(321\) 0.158919 1.20711i 0.158919 1.20711i
\(322\) 0 0
\(323\) 0 0
\(324\) −0.258819 0.965926i −0.258819 0.965926i
\(325\) 1.21752 1.21752
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) −0.965926 + 1.67303i −0.965926 + 1.67303i
\(331\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(332\) 0 0
\(333\) −1.53264 0.410670i −1.53264 0.410670i
\(334\) −0.258819 + 0.0340742i −0.258819 + 0.0340742i
\(335\) 0.923880 1.60021i 0.923880 1.60021i
\(336\) 0 0
\(337\) 0.382683 + 0.662827i 0.382683 + 0.662827i 0.991445 0.130526i \(-0.0416667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(338\) 0.293643 + 0.382683i 0.293643 + 0.382683i
\(339\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.793353 + 0.608761i 0.793353 + 0.608761i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 1.25882 0.965926i 1.25882 0.965926i
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) 0.866025 1.50000i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(350\) 0 0
\(351\) −1.20711 + 0.158919i −1.20711 + 0.158919i
\(352\) −1.53264 + 1.17604i −1.53264 + 1.17604i
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.517638 0.517638 0.258819 0.965926i \(-0.416667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(360\) −0.793353 + 0.608761i −0.793353 + 0.608761i
\(361\) −1.00000 −1.00000
\(362\) 0 0
\(363\) −2.52409 + 1.04551i −2.52409 + 1.04551i
\(364\) 0 0
\(365\) 0 0
\(366\) 1.22474 0.707107i 1.22474 0.707107i
\(367\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0.207107 + 1.57313i 0.207107 + 1.57313i
\(371\) 0 0
\(372\) 0 0
\(373\) −0.130526 0.226078i −0.130526 0.226078i 0.793353 0.608761i \(-0.208333\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(374\) 0 0
\(375\) 0.991445 + 0.130526i 0.991445 + 0.130526i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0.258819 0.965926i 0.258819 0.965926i
\(381\) −0.758819 0.0999004i −0.758819 0.0999004i
\(382\) 1.05441 + 1.37413i 1.05441 + 1.37413i
\(383\) −0.608761 1.05441i −0.608761 1.05441i −0.991445 0.130526i \(-0.958333\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(384\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(385\) 0 0
\(386\) 0.258819 0.0340742i 0.258819 0.0340742i
\(387\) 0 0
\(388\) 1.78480 0.478235i 1.78480 0.478235i
\(389\) −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(390\) 0.608761 + 1.05441i 0.608761 + 1.05441i
\(391\) 0 0
\(392\) −0.793353 0.608761i −0.793353 0.608761i
\(393\) 0.923880 0.382683i 0.923880 0.382683i
\(394\) 0 0
\(395\) 0 0
\(396\) −1.93185 −1.93185
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) −0.923880 0.382683i −0.923880 0.382683i
\(399\) 0 0
\(400\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(401\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) 1.84776 1.84776
\(403\) 0 0
\(404\) 0.366025 + 1.36603i 0.366025 + 1.36603i
\(405\) −1.00000 −1.00000
\(406\) 0 0
\(407\) −1.53264 + 2.65461i −1.53264 + 2.65461i
\(408\) 0 0
\(409\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.252157 0.0675653i −0.252157 0.0675653i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.158919 + 1.20711i 0.158919 + 1.20711i
\(417\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(418\) 1.53264 1.17604i 1.53264 1.17604i
\(419\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(420\) 0 0
\(421\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −0.758819 1.83195i −0.758819 1.83195i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −0.860919 0.860919i −0.860919 0.860919i
\(429\) −0.307007 + 2.33195i −0.307007 + 2.33195i
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −0.923880 0.382683i −0.923880 0.382683i
\(433\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0.739288 + 1.78480i 0.739288 + 1.78480i
\(441\) −0.258819 0.965926i −0.258819 0.965926i
\(442\) 0 0
\(443\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) −1.25882 + 0.965926i −1.25882 + 0.965926i
\(445\) 0 0
\(446\) 1.57313 1.20711i 1.57313 1.20711i
\(447\) −0.739288 1.78480i −0.739288 1.78480i
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(451\) 0 0
\(452\) 1.78480 + 0.478235i 1.78480 + 0.478235i
\(453\) 0 0
\(454\) −0.465926 0.607206i −0.465926 0.607206i
\(455\) 0 0
\(456\) 0.965926 0.258819i 0.965926 0.258819i
\(457\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0.513210 0.0675653i 0.513210 0.0675653i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(462\) 0 0
\(463\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) −0.608761 + 1.05441i −0.608761 + 1.05441i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.866025 0.500000i −0.866025 0.500000i
\(476\) 0 0
\(477\) 0.513210 1.91532i 0.513210 1.91532i
\(478\) −0.991445 + 0.130526i −0.991445 + 0.130526i
\(479\) 0.258819 0.448288i 0.258819 0.448288i −0.707107 0.707107i \(-0.750000\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(480\) 1.00000i 1.00000i
\(481\) 0.965926 + 1.67303i 0.965926 + 1.67303i
\(482\) 0 0
\(483\) 0 0
\(484\) −0.707107 + 2.63896i −0.707107 + 2.63896i
\(485\) 1.84776i 1.84776i
\(486\) −0.500000 0.866025i −0.500000 0.866025i
\(487\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(488\) 0.184592 1.40211i 0.184592 1.40211i
\(489\) 0 0
\(490\) −0.793353 + 0.608761i −0.793353 + 0.608761i
\(491\) 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −0.158919 1.20711i −0.158919 1.20711i
\(495\) −0.500000 + 1.86603i −0.500000 + 1.86603i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0.448288 0.258819i 0.448288 0.258819i −0.258819 0.965926i \(-0.583333\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(500\) 0.707107 0.707107i 0.707107 0.707107i
\(501\) −0.241181 + 0.0999004i −0.241181 + 0.0999004i
\(502\) −0.662827 + 1.60021i −0.662827 + 1.60021i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 1.41421 1.41421
\(506\) 0 0
\(507\) 0.382683 + 0.293643i 0.382683 + 0.293643i
\(508\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(509\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(513\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(514\) −0.0999004 0.758819i −0.0999004 0.758819i
\(515\) −0.130526 + 0.226078i −0.130526 + 0.226078i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0.965926 1.25882i 0.965926 1.25882i
\(520\) 1.20711 + 0.158919i 1.20711 + 0.158919i
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 1.98289i 1.98289i 0.130526 + 0.991445i \(0.458333\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(524\) 0.258819 0.965926i 0.258819 0.965926i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −1.17604 + 1.53264i −1.17604 + 1.53264i
\(529\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(530\) −1.96593 + 0.258819i −1.96593 + 0.258819i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −1.05441 + 0.608761i −1.05441 + 0.608761i
\(536\) 1.12484 1.46593i 1.12484 1.46593i
\(537\) 0 0
\(538\) 0 0
\(539\) −1.93185 −1.93185
\(540\) −0.608761 + 0.793353i −0.608761 + 0.793353i
\(541\) 1.93185 1.93185 0.965926 0.258819i \(-0.0833333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(542\) −1.30656 0.541196i −1.30656 0.541196i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1.05441 0.608761i −1.05441 0.608761i −0.130526 0.991445i \(-0.541667\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(548\) 0 0
\(549\) 1.00000 1.00000i 1.00000 1.00000i
\(550\) 1.91532 0.252157i 1.91532 0.252157i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.607206 + 1.46593i 0.607206 + 1.46593i
\(556\) 1.36603 + 0.366025i 1.36603 + 0.366025i
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.793353 + 1.37413i 0.793353 + 1.37413i 0.923880 + 0.382683i \(0.125000\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(564\) 0 0
\(565\) 0.923880 1.60021i 0.923880 1.60021i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 1.00000i 1.00000i
\(571\) −1.67303 + 0.965926i −1.67303 + 0.965926i −0.707107 + 0.707107i \(0.750000\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(572\) 1.66317 + 1.66317i 1.66317 + 1.66317i
\(573\) 1.37413 + 1.05441i 1.37413 + 1.05441i
\(574\) 0 0
\(575\) 0 0
\(576\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(579\) 0.241181 0.0999004i 0.241181 0.0999004i
\(580\) 0 0
\(581\) 0 0
\(582\) 1.60021 0.923880i 1.60021 0.923880i
\(583\) −3.31744 1.91532i −3.31744 1.91532i
\(584\) 0 0
\(585\) 0.860919 + 0.860919i 0.860919 + 0.860919i
\(586\) 0.0999004 + 0.758819i 0.0999004 + 0.758819i
\(587\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(588\) −0.923880 0.382683i −0.923880 0.382683i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 1.58671i 1.58671i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) −1.86603 + 0.500000i −1.86603 + 0.500000i
\(595\) 0 0
\(596\) −1.86603 0.500000i −1.86603 0.500000i
\(597\) −0.991445 0.130526i −0.991445 0.130526i
\(598\) 0 0
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 1.78480 0.478235i 1.78480 0.478235i
\(604\) 0 0
\(605\) 2.36603 + 1.36603i 2.36603 + 1.36603i
\(606\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(607\) 1.37413 0.793353i 1.37413 0.793353i 0.382683 0.923880i \(-0.375000\pi\)
0.991445 + 0.130526i \(0.0416667\pi\)
\(608\) 0.382683 0.923880i 0.382683 0.923880i
\(609\) 0 0
\(610\) −1.30656 0.541196i −1.30656 0.541196i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −0.241181 0.0999004i −0.241181 0.0999004i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(618\) −0.261052 −0.261052
\(619\) 0.448288 + 0.258819i 0.448288 + 0.258819i 0.707107 0.707107i \(-0.250000\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −1.40211 + 0.184592i −1.40211 + 0.184592i
\(623\) 0 0
\(624\) 0.465926 + 1.12484i 0.465926 + 1.12484i
\(625\) −0.500000 0.866025i −0.500000 0.866025i
\(626\) 0 0
\(627\) 1.17604 1.53264i 1.17604 1.53264i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.517638i 0.517638i −0.965926 0.258819i \(-0.916667\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1.46593 1.12484i 1.46593 1.12484i
\(635\) 0.382683 + 0.662827i 0.382683 + 0.662827i
\(636\) −1.20711 1.57313i −1.20711 1.57313i
\(637\) −0.608761 + 1.05441i −0.608761 + 1.05441i
\(638\) 0 0
\(639\) 0 0
\(640\) 0.793353 + 0.608761i 0.793353 + 0.608761i
\(641\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(642\) −1.05441 0.608761i −1.05441 0.608761i
\(643\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −0.991445 0.130526i −0.991445 0.130526i
\(649\) 0 0
\(650\) 0.465926 1.12484i 0.465926 1.12484i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(654\) 0 0
\(655\) −0.866025 0.500000i −0.866025 0.500000i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 1.17604 + 1.53264i 1.17604 + 1.53264i
\(661\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −0.965926 + 1.25882i −0.965926 + 1.25882i
\(667\) 0 0
\(668\) −0.0675653 + 0.252157i −0.0675653 + 0.252157i
\(669\) 1.20711 1.57313i 1.20711 1.57313i
\(670\) −1.12484 1.46593i −1.12484 1.46593i
\(671\) −1.36603 2.36603i −1.36603 2.36603i
\(672\) 0 0
\(673\) 0.991445 1.71723i 0.991445 1.71723i 0.382683 0.923880i \(-0.375000\pi\)
0.608761 0.793353i \(-0.291667\pi\)
\(674\) 0.758819 0.0999004i 0.758819 0.0999004i
\(675\) 0.608761 + 0.793353i 0.608761 + 0.793353i
\(676\) 0.465926 0.124844i 0.465926 0.124844i
\(677\) 1.05441 + 0.608761i 1.05441 + 0.608761i 0.923880 0.382683i \(-0.125000\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(678\) 1.84776 1.84776
\(679\) 0 0
\(680\) 0 0
\(681\) −0.607206 0.465926i −0.607206 0.465926i
\(682\) 0 0
\(683\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(684\) 0.866025 0.500000i 0.866025 0.500000i
\(685\) 0 0
\(686\) 0 0
\(687\) 0.478235 0.198092i 0.478235 0.198092i
\(688\) 0 0
\(689\) −2.09077 + 1.20711i −2.09077 + 1.20711i
\(690\) 0 0
\(691\) 1.67303 + 0.965926i 1.67303 + 0.965926i 0.965926 + 0.258819i \(0.0833333\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(692\) −0.410670 1.53264i −0.410670 1.53264i
\(693\) 0 0
\(694\) 0 0
\(695\) 0.707107 1.22474i 0.707107 1.22474i
\(696\) 0 0
\(697\) 0 0
\(698\) −1.05441 1.37413i −1.05441 1.37413i
\(699\) 0 0
\(700\) 0 0
\(701\) 0.517638i 0.517638i −0.965926 0.258819i \(-0.916667\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(702\) −0.315118 + 1.17604i −0.315118 + 1.17604i
\(703\) 1.58671i 1.58671i
\(704\) 0.500000 + 1.86603i 0.500000 + 1.86603i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 2.03696 1.17604i 2.03696 1.17604i
\(716\) 0 0
\(717\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(718\) 0.198092 0.478235i 0.198092 0.478235i
\(719\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(720\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(721\) 0 0
\(722\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 2.73205i 2.73205i
\(727\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(728\) 0 0
\(729\) −0.707107 0.707107i −0.707107 0.707107i
\(730\) 0 0
\(731\) 0 0
\(732\) −0.184592 1.40211i −0.184592 1.40211i
\(733\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0 0
\(735\) −0.608761 + 0.793353i −0.608761 + 0.793353i
\(736\) 0 0
\(737\) 3.56960i 3.56960i
\(738\) 0 0
\(739\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(740\) 1.53264 + 0.410670i 1.53264 + 0.410670i
\(741\) −0.465926 1.12484i −0.465926 1.12484i
\(742\) 0 0
\(743\) 0.130526 + 0.226078i 0.130526 + 0.226078i 0.923880 0.382683i \(-0.125000\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(744\) 0 0
\(745\) −0.965926 + 1.67303i −0.965926 + 1.67303i
\(746\) −0.258819 + 0.0340742i −0.258819 + 0.0340742i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0.500000 0.866025i 0.500000 0.866025i
\(751\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(752\) 0 0
\(753\) −0.226078 + 1.71723i −0.226078 + 1.71723i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −0.793353 0.608761i −0.793353 0.608761i
\(761\) −0.448288 + 0.258819i −0.448288 + 0.258819i −0.707107 0.707107i \(-0.750000\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(762\) −0.382683 + 0.662827i −0.382683 + 0.662827i
\(763\) 0 0
\(764\) 1.67303 0.448288i 1.67303 0.448288i
\(765\) 0 0
\(766\) −1.20711 + 0.158919i −1.20711 + 0.158919i
\(767\) 0 0
\(768\) −0.130526 + 0.991445i −0.130526 + 0.991445i
\(769\) −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(770\) 0 0
\(771\) −0.292893 0.707107i −0.292893 0.707107i
\(772\) 0.0675653 0.252157i 0.0675653 0.252157i
\(773\) 1.58671i 1.58671i −0.608761 0.793353i \(-0.708333\pi\)
0.608761 0.793353i \(-0.291667\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.241181 1.83195i 0.241181 1.83195i
\(777\) 0 0
\(778\) −1.37413 + 1.05441i −1.37413 + 1.05441i
\(779\) 0 0
\(780\) 1.20711 0.158919i 1.20711 0.158919i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(785\) 0 0
\(786\) 1.00000i 1.00000i
\(787\) −0.662827 + 0.382683i −0.662827 + 0.382683i −0.793353 0.608761i \(-0.791667\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −0.739288 + 1.78480i −0.739288 + 1.78480i
\(793\) −1.72184 −1.72184
\(794\) 0 0
\(795\) −1.83195 + 0.758819i −1.83195 + 0.758819i
\(796\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(797\) 1.05441 0.608761i 1.05441 0.608761i 0.130526 0.991445i \(-0.458333\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.793353 0.608761i 0.793353 0.608761i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0.707107 1.70711i 0.707107 1.70711i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 1.40211 + 0.184592i 1.40211 + 0.184592i
\(809\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(810\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) −1.40211 0.184592i −1.40211 0.184592i
\(814\) 1.86603 + 2.43185i 1.86603 + 2.43185i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 \(0\)
0.500000 + 0.866025i \(0.333333\pi\)
\(822\) 0 0
\(823\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(824\) −0.158919 + 0.207107i −0.158919 + 0.207107i
\(825\) 1.78480 0.739288i 1.78480 0.739288i
\(826\) 0 0
\(827\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.17604 + 0.315118i 1.17604 + 0.315118i
\(833\) 0 0
\(834\) 1.41421 1.41421
\(835\) 0.226078 + 0.130526i 0.226078 + 0.130526i
\(836\) −0.500000 1.86603i −0.500000 1.86603i
\(837\) 0 0
\(838\) −1.98289 + 0.261052i −1.98289 + 0.261052i
\(839\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(840\) 0 0
\(841\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.482362i 0.482362i
\(846\) 0 0
\(847\) 0 0
\(848\) −1.98289 −1.98289
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(854\) 0 0
\(855\) −0.258819 0.965926i −0.258819 0.965926i
\(856\) −1.12484 + 0.465926i −1.12484 + 0.465926i
\(857\) −1.71723 0.991445i −1.71723 0.991445i −0.923880 0.382683i \(-0.875000\pi\)
−0.793353 0.608761i \(-0.791667\pi\)
\(858\) 2.03696 + 1.17604i 2.03696 + 1.17604i
\(859\) −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i \(0.666667\pi\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.58671 1.58671 0.793353 0.608761i \(-0.208333\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(864\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(865\) −1.58671 −1.58671
\(866\) 0.292893 0.707107i 0.292893 0.707107i
\(867\) −0.130526 + 0.991445i −0.130526 + 0.991445i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −1.94829 1.12484i −1.94829 1.12484i
\(872\) 0 0
\(873\) 1.30656 1.30656i 1.30656 1.30656i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −0.923880 1.60021i −0.923880 1.60021i −0.793353 0.608761i \(-0.791667\pi\)
−0.130526 0.991445i \(-0.541667\pi\)
\(878\) 0 0
\(879\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(880\) 1.93185 1.93185
\(881\) 1.93185i 1.93185i −0.258819 0.965926i \(-0.583333\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(882\) −0.991445 0.130526i −0.991445 0.130526i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.382683 + 0.662827i 0.382683 + 0.662827i 0.991445 0.130526i \(-0.0416667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(888\) 0.410670 + 1.53264i 0.410670 + 1.53264i
\(889\) 0 0
\(890\) 0 0
\(891\) −1.67303 + 0.965926i −1.67303 + 0.965926i
\(892\) −0.513210 1.91532i −0.513210 1.91532i
\(893\) 0 0
\(894\) −1.93185 −1.93185
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 1.00000 1.00000
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 1.12484 1.46593i 1.12484 1.46593i
\(905\) 0 0
\(906\) 0 0
\(907\) 1.37413 + 0.793353i 1.37413 + 0.793353i 0.991445 0.130526i \(-0.0416667\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(908\) −0.739288 + 0.198092i −0.739288 + 0.198092i
\(909\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(910\) 0 0
\(911\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(912\) 0.130526 0.991445i 0.130526 0.991445i
\(913\) 0 0
\(914\) 0 0
\(915\) −1.40211 0.184592i −1.40211 0.184592i
\(916\) 0.133975 0.500000i 0.133975 0.500000i
\(917\) 0 0
\(918\) 0 0
\(919\) 1.73205i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(920\) 0 0
\(921\) −0.258819 0.0340742i −0.258819 0.0340742i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0.793353 1.37413i 0.793353 1.37413i
\(926\) 0 0
\(927\) −0.252157 + 0.0675653i −0.252157 + 0.0675653i
\(928\) 0 0
\(929\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(930\) 0 0
\(931\) 0.866025 0.500000i 0.866025 0.500000i
\(932\) 0 0
\(933\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(934\) 0 0
\(935\) 0 0
\(936\) 0.741181 + 0.965926i 0.741181 + 0.965926i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −0.793353 + 0.608761i −0.793353 + 0.608761i
\(951\) 1.12484 1.46593i 1.12484 1.46593i
\(952\) 0 0
\(953\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(954\) −1.57313 1.20711i −1.57313 1.20711i
\(955\) 1.73205i 1.73205i
\(956\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(957\) 0 0
\(958\) −0.315118 0.410670i −0.315118 0.410670i
\(959\) 0 0
\(960\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(961\) 0.500000 0.866025i 0.500000 0.866025i
\(962\) 1.91532 0.252157i 1.91532 0.252157i
\(963\) −1.17604 0.315118i −1.17604 0.315118i
\(964\) 0 0
\(965\) −0.226078 0.130526i −0.226078 0.130526i
\(966\) 0 0
\(967\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(968\) 2.16748 + 1.66317i 2.16748 + 1.66317i
\(969\) 0 0
\(970\) −1.70711 0.707107i −1.70711 0.707107i
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −0.991445 + 0.130526i −0.991445 + 0.130526i
\(973\) 0 0
\(974\) 1.70711 + 0.707107i 1.70711 + 0.707107i
\(975\) 0.158919 1.20711i 0.158919 1.20711i
\(976\) −1.22474 0.707107i −1.22474 0.707107i
\(977\) −0.226078 + 0.130526i −0.226078 + 0.130526i −0.608761 0.793353i \(-0.708333\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(981\) 0 0
\(982\) 1.71723 0.226078i 1.71723 0.226078i
\(983\) 0.991445 1.71723i 0.991445 1.71723i 0.382683 0.923880i \(-0.375000\pi\)
0.608761 0.793353i \(-0.291667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −1.17604 0.315118i −1.17604 0.315118i
\(989\) 0 0
\(990\) 1.53264 + 1.17604i 1.53264 + 1.17604i
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(996\) 0 0
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) −0.0675653 0.513210i −0.0675653 0.513210i
\(999\) −0.607206 + 1.46593i −0.607206 + 1.46593i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3420.1.bn.b.2279.5 yes 16
4.3 odd 2 3420.1.bn.a.2279.3 yes 16
5.4 even 2 inner 3420.1.bn.b.2279.4 yes 16
9.5 odd 6 3420.1.bn.a.1139.3 16
19.18 odd 2 inner 3420.1.bn.b.2279.4 yes 16
20.19 odd 2 3420.1.bn.a.2279.6 yes 16
36.23 even 6 inner 3420.1.bn.b.1139.6 yes 16
45.14 odd 6 3420.1.bn.a.1139.6 yes 16
76.75 even 2 3420.1.bn.a.2279.6 yes 16
95.94 odd 2 CM 3420.1.bn.b.2279.5 yes 16
171.113 even 6 3420.1.bn.a.1139.6 yes 16
180.59 even 6 inner 3420.1.bn.b.1139.3 yes 16
380.379 even 2 3420.1.bn.a.2279.3 yes 16
684.455 odd 6 inner 3420.1.bn.b.1139.3 yes 16
855.284 even 6 3420.1.bn.a.1139.3 16
3420.1139 odd 6 inner 3420.1.bn.b.1139.6 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3420.1.bn.a.1139.3 16 9.5 odd 6
3420.1.bn.a.1139.3 16 855.284 even 6
3420.1.bn.a.1139.6 yes 16 45.14 odd 6
3420.1.bn.a.1139.6 yes 16 171.113 even 6
3420.1.bn.a.2279.3 yes 16 4.3 odd 2
3420.1.bn.a.2279.3 yes 16 380.379 even 2
3420.1.bn.a.2279.6 yes 16 20.19 odd 2
3420.1.bn.a.2279.6 yes 16 76.75 even 2
3420.1.bn.b.1139.3 yes 16 180.59 even 6 inner
3420.1.bn.b.1139.3 yes 16 684.455 odd 6 inner
3420.1.bn.b.1139.6 yes 16 36.23 even 6 inner
3420.1.bn.b.1139.6 yes 16 3420.1139 odd 6 inner
3420.1.bn.b.2279.4 yes 16 5.4 even 2 inner
3420.1.bn.b.2279.4 yes 16 19.18 odd 2 inner
3420.1.bn.b.2279.5 yes 16 1.1 even 1 trivial
3420.1.bn.b.2279.5 yes 16 95.94 odd 2 CM