gp: [N,k,chi] = [340,2,Mod(183,340)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(340, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("340.183");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [96,4,0,0,-8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(340, [\chi])\):
\( T_{3}^{48} - 96 T_{3}^{46} + 4286 T_{3}^{44} - 118276 T_{3}^{42} + 2261761 T_{3}^{40} - 31847908 T_{3}^{38} + \cdots + 186809600 \)
T3^48 - 96*T3^46 + 4286*T3^44 - 118276*T3^42 + 2261761*T3^40 - 31847908*T3^38 + 342547960*T3^36 - 2881507792*T3^34 + 19255188152*T3^32 - 103259685952*T3^30 + 447178471744*T3^28 - 1568776510512*T3^26 + 4460566548760*T3^24 - 10259782744560*T3^22 + 19008048955968*T3^20 - 28171301769408*T3^18 + 33072990343504*T3^16 - 30341882716800*T3^14 + 21350725246432*T3^12 - 11225870232576*T3^10 + 4244505395536*T3^8 - 1086690425984*T3^6 + 169456935552*T3^4 - 12780922368*T3^2 + 186809600
\( T_{13}^{48} + 4 T_{13}^{47} + 8 T_{13}^{46} - 168 T_{13}^{45} + 3010 T_{13}^{44} + \cdots + 839905316454400 \)
T13^48 + 4*T13^47 + 8*T13^46 - 168*T13^45 + 3010*T13^44 + 7424*T13^43 + 19728*T13^42 - 389792*T13^41 + 3636033*T13^40 + 3099732*T13^39 + 16972328*T13^38 - 293957560*T13^37 + 2084722288*T13^36 - 474024952*T13^35 + 6973937664*T13^34 - 97627009120*T13^33 + 594829322544*T13^32 - 547653944304*T13^31 + 1488502033248*T13^30 - 14786521311008*T13^29 + 80800085285888*T13^28 - 111506495982560*T13^27 + 161084456168192*T13^26 - 881006999203072*T13^25 + 4318618589236704*T13^24 - 7308021538690880*T13^23 + 7545933629186432*T13^22 - 11928759440495232*T13^21 + 50640252937155584*T13^20 - 88487512377833088*T13^19 + 86352376007421952*T13^18 - 65118605730554368*T13^17 + 217302036251254272*T13^16 - 383405369868964096*T13^15 + 368296144639742464*T13^14 - 162541903263477248*T13^13 + 354527070875448832*T13^12 - 626228067579472384*T13^11 + 603513170448351232*T13^10 - 170340631304843264*T13^9 + 149512656291350784*T13^8 - 256969266754039808*T13^7 + 257016289009074176*T13^6 - 45934094399700992*T13^5 + 23184293190676480*T13^4 - 29422077240934400*T13^3 + 21174172671541248*T13^2 - 5963941682872320*T13 + 839905316454400