Properties

Label 340.2.o.a.21.4
Level $340$
Weight $2$
Character 340.21
Analytic conductor $2.715$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [340,2,Mod(21,340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("340.21"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 340 = 2^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 340.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.71491366872\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 6 x^{10} - 16 x^{9} + 9 x^{8} - 72 x^{7} + 114 x^{6} - 144 x^{5} + 391 x^{4} - 484 x^{3} + \cdots + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 21.4
Root \(0.671074 - 0.0762761i\) of defining polynomial
Character \(\chi\) \(=\) 340.21
Dual form 340.2.o.a.81.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.849725 - 0.849725i) q^{3} +(0.707107 - 0.707107i) q^{5} +(2.54612 + 2.54612i) q^{7} +1.55594i q^{9} +(0.311840 + 0.311840i) q^{11} +0.858277 q^{13} -1.20169i q^{15} +(0.348747 - 4.10833i) q^{17} -3.08768i q^{19} +4.32700 q^{21} +(-3.09623 - 3.09623i) q^{23} -1.00000i q^{25} +(3.87129 + 3.87129i) q^{27} +(-4.66072 + 4.66072i) q^{29} +(6.31903 - 6.31903i) q^{31} +0.529956 q^{33} +3.60075 q^{35} +(-7.36986 + 7.36986i) q^{37} +(0.729299 - 0.729299i) q^{39} +(-6.99464 - 6.99464i) q^{41} +7.07494i q^{43} +(1.10021 + 1.10021i) q^{45} +0.845726 q^{47} +5.96543i q^{49} +(-3.19461 - 3.78729i) q^{51} +4.78713i q^{53} +0.441008 q^{55} +(-2.62368 - 2.62368i) q^{57} -0.569172i q^{59} +(-1.35102 - 1.35102i) q^{61} +(-3.96160 + 3.96160i) q^{63} +(0.606894 - 0.606894i) q^{65} -10.0217 q^{67} -5.26189 q^{69} +(9.67657 - 9.67657i) q^{71} +(-1.97194 + 1.97194i) q^{73} +(-0.849725 - 0.849725i) q^{75} +1.58796i q^{77} +(2.69799 + 2.69799i) q^{79} +1.91125 q^{81} +0.152320i q^{83} +(-2.65843 - 3.15163i) q^{85} +7.92066i q^{87} -15.3828 q^{89} +(2.18528 + 2.18528i) q^{91} -10.7389i q^{93} +(-2.18332 - 2.18332i) q^{95} +(-9.93903 + 9.93903i) q^{97} +(-0.485203 + 0.485203i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} - 12 q^{11} + 16 q^{13} - 4 q^{17} + 16 q^{21} + 12 q^{23} - 20 q^{27} + 4 q^{29} - 8 q^{31} - 48 q^{33} - 8 q^{35} - 20 q^{37} + 36 q^{39} + 8 q^{41} + 8 q^{45} - 8 q^{47} + 24 q^{51} + 16 q^{55}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/340\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(171\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.849725 0.849725i 0.490589 0.490589i −0.417903 0.908492i \(-0.637235\pi\)
0.908492 + 0.417903i \(0.137235\pi\)
\(4\) 0 0
\(5\) 0.707107 0.707107i 0.316228 0.316228i
\(6\) 0 0
\(7\) 2.54612 + 2.54612i 0.962342 + 0.962342i 0.999316 0.0369741i \(-0.0117719\pi\)
−0.0369741 + 0.999316i \(0.511772\pi\)
\(8\) 0 0
\(9\) 1.55594i 0.518645i
\(10\) 0 0
\(11\) 0.311840 + 0.311840i 0.0940232 + 0.0940232i 0.752554 0.658531i \(-0.228822\pi\)
−0.658531 + 0.752554i \(0.728822\pi\)
\(12\) 0 0
\(13\) 0.858277 0.238043 0.119022 0.992892i \(-0.462024\pi\)
0.119022 + 0.992892i \(0.462024\pi\)
\(14\) 0 0
\(15\) 1.20169i 0.310276i
\(16\) 0 0
\(17\) 0.348747 4.10833i 0.0845837 0.996416i
\(18\) 0 0
\(19\) 3.08768i 0.708363i −0.935177 0.354181i \(-0.884760\pi\)
0.935177 0.354181i \(-0.115240\pi\)
\(20\) 0 0
\(21\) 4.32700 0.944228
\(22\) 0 0
\(23\) −3.09623 3.09623i −0.645610 0.645610i 0.306319 0.951929i \(-0.400902\pi\)
−0.951929 + 0.306319i \(0.900902\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 3.87129 + 3.87129i 0.745030 + 0.745030i
\(28\) 0 0
\(29\) −4.66072 + 4.66072i −0.865475 + 0.865475i −0.991968 0.126493i \(-0.959628\pi\)
0.126493 + 0.991968i \(0.459628\pi\)
\(30\) 0 0
\(31\) 6.31903 6.31903i 1.13493 1.13493i 0.145586 0.989346i \(-0.453493\pi\)
0.989346 0.145586i \(-0.0465069\pi\)
\(32\) 0 0
\(33\) 0.529956 0.0922534
\(34\) 0 0
\(35\) 3.60075 0.608639
\(36\) 0 0
\(37\) −7.36986 + 7.36986i −1.21160 + 1.21160i −0.241097 + 0.970501i \(0.577507\pi\)
−0.970501 + 0.241097i \(0.922493\pi\)
\(38\) 0 0
\(39\) 0.729299 0.729299i 0.116781 0.116781i
\(40\) 0 0
\(41\) −6.99464 6.99464i −1.09238 1.09238i −0.995274 0.0971056i \(-0.969042\pi\)
−0.0971056 0.995274i \(-0.530958\pi\)
\(42\) 0 0
\(43\) 7.07494i 1.07892i 0.842012 + 0.539459i \(0.181371\pi\)
−0.842012 + 0.539459i \(0.818629\pi\)
\(44\) 0 0
\(45\) 1.10021 + 1.10021i 0.164010 + 0.164010i
\(46\) 0 0
\(47\) 0.845726 0.123362 0.0616809 0.998096i \(-0.480354\pi\)
0.0616809 + 0.998096i \(0.480354\pi\)
\(48\) 0 0
\(49\) 5.96543i 0.852205i
\(50\) 0 0
\(51\) −3.19461 3.78729i −0.447335 0.530326i
\(52\) 0 0
\(53\) 4.78713i 0.657563i 0.944406 + 0.328782i \(0.106638\pi\)
−0.944406 + 0.328782i \(0.893362\pi\)
\(54\) 0 0
\(55\) 0.441008 0.0594655
\(56\) 0 0
\(57\) −2.62368 2.62368i −0.347515 0.347515i
\(58\) 0 0
\(59\) 0.569172i 0.0740999i −0.999313 0.0370500i \(-0.988204\pi\)
0.999313 0.0370500i \(-0.0117961\pi\)
\(60\) 0 0
\(61\) −1.35102 1.35102i −0.172981 0.172981i 0.615307 0.788288i \(-0.289032\pi\)
−0.788288 + 0.615307i \(0.789032\pi\)
\(62\) 0 0
\(63\) −3.96160 + 3.96160i −0.499114 + 0.499114i
\(64\) 0 0
\(65\) 0.606894 0.606894i 0.0752759 0.0752759i
\(66\) 0 0
\(67\) −10.0217 −1.22435 −0.612175 0.790722i \(-0.709705\pi\)
−0.612175 + 0.790722i \(0.709705\pi\)
\(68\) 0 0
\(69\) −5.26189 −0.633458
\(70\) 0 0
\(71\) 9.67657 9.67657i 1.14840 1.14840i 0.161529 0.986868i \(-0.448357\pi\)
0.986868 0.161529i \(-0.0516426\pi\)
\(72\) 0 0
\(73\) −1.97194 + 1.97194i −0.230798 + 0.230798i −0.813026 0.582228i \(-0.802181\pi\)
0.582228 + 0.813026i \(0.302181\pi\)
\(74\) 0 0
\(75\) −0.849725 0.849725i −0.0981177 0.0981177i
\(76\) 0 0
\(77\) 1.58796i 0.180965i
\(78\) 0 0
\(79\) 2.69799 + 2.69799i 0.303548 + 0.303548i 0.842400 0.538852i \(-0.181142\pi\)
−0.538852 + 0.842400i \(0.681142\pi\)
\(80\) 0 0
\(81\) 1.91125 0.212361
\(82\) 0 0
\(83\) 0.152320i 0.0167193i 0.999965 + 0.00835966i \(0.00266099\pi\)
−0.999965 + 0.00835966i \(0.997339\pi\)
\(84\) 0 0
\(85\) −2.65843 3.15163i −0.288347 0.341842i
\(86\) 0 0
\(87\) 7.92066i 0.849184i
\(88\) 0 0
\(89\) −15.3828 −1.63057 −0.815284 0.579061i \(-0.803419\pi\)
−0.815284 + 0.579061i \(0.803419\pi\)
\(90\) 0 0
\(91\) 2.18528 + 2.18528i 0.229079 + 0.229079i
\(92\) 0 0
\(93\) 10.7389i 1.11357i
\(94\) 0 0
\(95\) −2.18332 2.18332i −0.224004 0.224004i
\(96\) 0 0
\(97\) −9.93903 + 9.93903i −1.00916 + 1.00916i −0.00919831 + 0.999958i \(0.502928\pi\)
−0.999958 + 0.00919831i \(0.997072\pi\)
\(98\) 0 0
\(99\) −0.485203 + 0.485203i −0.0487647 + 0.0487647i
\(100\) 0 0
\(101\) −1.90033 −0.189090 −0.0945448 0.995521i \(-0.530140\pi\)
−0.0945448 + 0.995521i \(0.530140\pi\)
\(102\) 0 0
\(103\) 6.36254 0.626920 0.313460 0.949601i \(-0.398512\pi\)
0.313460 + 0.949601i \(0.398512\pi\)
\(104\) 0 0
\(105\) 3.05965 3.05965i 0.298591 0.298591i
\(106\) 0 0
\(107\) −8.44271 + 8.44271i −0.816187 + 0.816187i −0.985553 0.169366i \(-0.945828\pi\)
0.169366 + 0.985553i \(0.445828\pi\)
\(108\) 0 0
\(109\) 2.17688 + 2.17688i 0.208507 + 0.208507i 0.803633 0.595125i \(-0.202898\pi\)
−0.595125 + 0.803633i \(0.702898\pi\)
\(110\) 0 0
\(111\) 12.5247i 1.18879i
\(112\) 0 0
\(113\) −4.19151 4.19151i −0.394304 0.394304i 0.481914 0.876218i \(-0.339942\pi\)
−0.876218 + 0.481914i \(0.839942\pi\)
\(114\) 0 0
\(115\) −4.37874 −0.408319
\(116\) 0 0
\(117\) 1.33542i 0.123460i
\(118\) 0 0
\(119\) 11.3482 9.57234i 1.04029 0.877495i
\(120\) 0 0
\(121\) 10.8055i 0.982319i
\(122\) 0 0
\(123\) −11.8870 −1.07182
\(124\) 0 0
\(125\) −0.707107 0.707107i −0.0632456 0.0632456i
\(126\) 0 0
\(127\) 5.36196i 0.475797i −0.971290 0.237899i \(-0.923541\pi\)
0.971290 0.237899i \(-0.0764586\pi\)
\(128\) 0 0
\(129\) 6.01175 + 6.01175i 0.529305 + 0.529305i
\(130\) 0 0
\(131\) 10.9340 10.9340i 0.955311 0.955311i −0.0437326 0.999043i \(-0.513925\pi\)
0.999043 + 0.0437326i \(0.0139249\pi\)
\(132\) 0 0
\(133\) 7.86160 7.86160i 0.681687 0.681687i
\(134\) 0 0
\(135\) 5.47483 0.471199
\(136\) 0 0
\(137\) −0.858277 −0.0733276 −0.0366638 0.999328i \(-0.511673\pi\)
−0.0366638 + 0.999328i \(0.511673\pi\)
\(138\) 0 0
\(139\) −0.207354 + 0.207354i −0.0175876 + 0.0175876i −0.715846 0.698258i \(-0.753959\pi\)
0.698258 + 0.715846i \(0.253959\pi\)
\(140\) 0 0
\(141\) 0.718634 0.718634i 0.0605199 0.0605199i
\(142\) 0 0
\(143\) 0.267645 + 0.267645i 0.0223816 + 0.0223816i
\(144\) 0 0
\(145\) 6.59126i 0.547374i
\(146\) 0 0
\(147\) 5.06897 + 5.06897i 0.418082 + 0.418082i
\(148\) 0 0
\(149\) 14.9584 1.22544 0.612720 0.790300i \(-0.290076\pi\)
0.612720 + 0.790300i \(0.290076\pi\)
\(150\) 0 0
\(151\) 14.9851i 1.21947i 0.792604 + 0.609736i \(0.208725\pi\)
−0.792604 + 0.609736i \(0.791275\pi\)
\(152\) 0 0
\(153\) 6.39230 + 0.542629i 0.516787 + 0.0438689i
\(154\) 0 0
\(155\) 8.93646i 0.717794i
\(156\) 0 0
\(157\) −6.98286 −0.557293 −0.278646 0.960394i \(-0.589886\pi\)
−0.278646 + 0.960394i \(0.589886\pi\)
\(158\) 0 0
\(159\) 4.06774 + 4.06774i 0.322593 + 0.322593i
\(160\) 0 0
\(161\) 15.7668i 1.24259i
\(162\) 0 0
\(163\) 8.69117 + 8.69117i 0.680745 + 0.680745i 0.960168 0.279423i \(-0.0901433\pi\)
−0.279423 + 0.960168i \(0.590143\pi\)
\(164\) 0 0
\(165\) 0.374735 0.374735i 0.0291731 0.0291731i
\(166\) 0 0
\(167\) 9.57929 9.57929i 0.741268 0.741268i −0.231554 0.972822i \(-0.574381\pi\)
0.972822 + 0.231554i \(0.0743810\pi\)
\(168\) 0 0
\(169\) −12.2634 −0.943335
\(170\) 0 0
\(171\) 4.80424 0.367389
\(172\) 0 0
\(173\) 13.0860 13.0860i 0.994913 0.994913i −0.00507425 0.999987i \(-0.501615\pi\)
0.999987 + 0.00507425i \(0.00161519\pi\)
\(174\) 0 0
\(175\) 2.54612 2.54612i 0.192468 0.192468i
\(176\) 0 0
\(177\) −0.483640 0.483640i −0.0363526 0.0363526i
\(178\) 0 0
\(179\) 6.50504i 0.486209i −0.970000 0.243105i \(-0.921834\pi\)
0.970000 0.243105i \(-0.0781659\pi\)
\(180\) 0 0
\(181\) 15.5163 + 15.5163i 1.15332 + 1.15332i 0.985884 + 0.167433i \(0.0535477\pi\)
0.167433 + 0.985884i \(0.446452\pi\)
\(182\) 0 0
\(183\) −2.29600 −0.169725
\(184\) 0 0
\(185\) 10.4226i 0.766282i
\(186\) 0 0
\(187\) 1.38989 1.17239i 0.101639 0.0857334i
\(188\) 0 0
\(189\) 19.7135i 1.43395i
\(190\) 0 0
\(191\) −6.33757 −0.458570 −0.229285 0.973359i \(-0.573639\pi\)
−0.229285 + 0.973359i \(0.573639\pi\)
\(192\) 0 0
\(193\) 15.9020 + 15.9020i 1.14465 + 1.14465i 0.987588 + 0.157066i \(0.0502035\pi\)
0.157066 + 0.987588i \(0.449797\pi\)
\(194\) 0 0
\(195\) 1.03138i 0.0738590i
\(196\) 0 0
\(197\) 3.04218 + 3.04218i 0.216746 + 0.216746i 0.807126 0.590380i \(-0.201022\pi\)
−0.590380 + 0.807126i \(0.701022\pi\)
\(198\) 0 0
\(199\) 16.3409 16.3409i 1.15838 1.15838i 0.173553 0.984825i \(-0.444475\pi\)
0.984825 0.173553i \(-0.0555248\pi\)
\(200\) 0 0
\(201\) −8.51572 + 8.51572i −0.600653 + 0.600653i
\(202\) 0 0
\(203\) −23.7335 −1.66577
\(204\) 0 0
\(205\) −9.89192 −0.690882
\(206\) 0 0
\(207\) 4.81754 4.81754i 0.334842 0.334842i
\(208\) 0 0
\(209\) 0.962862 0.962862i 0.0666025 0.0666025i
\(210\) 0 0
\(211\) −9.01244 9.01244i −0.620442 0.620442i 0.325202 0.945644i \(-0.394568\pi\)
−0.945644 + 0.325202i \(0.894568\pi\)
\(212\) 0 0
\(213\) 16.4448i 1.12678i
\(214\) 0 0
\(215\) 5.00274 + 5.00274i 0.341184 + 0.341184i
\(216\) 0 0
\(217\) 32.1780 2.18439
\(218\) 0 0
\(219\) 3.35121i 0.226454i
\(220\) 0 0
\(221\) 0.299322 3.52609i 0.0201346 0.237190i
\(222\) 0 0
\(223\) 19.0411i 1.27509i 0.770414 + 0.637544i \(0.220050\pi\)
−0.770414 + 0.637544i \(0.779950\pi\)
\(224\) 0 0
\(225\) 1.55594 0.103729
\(226\) 0 0
\(227\) −15.3745 15.3745i −1.02044 1.02044i −0.999787 0.0206578i \(-0.993424\pi\)
−0.0206578 0.999787i \(-0.506576\pi\)
\(228\) 0 0
\(229\) 18.8958i 1.24867i −0.781157 0.624335i \(-0.785370\pi\)
0.781157 0.624335i \(-0.214630\pi\)
\(230\) 0 0
\(231\) 1.34933 + 1.34933i 0.0887794 + 0.0887794i
\(232\) 0 0
\(233\) −5.51283 + 5.51283i −0.361158 + 0.361158i −0.864239 0.503081i \(-0.832200\pi\)
0.503081 + 0.864239i \(0.332200\pi\)
\(234\) 0 0
\(235\) 0.598018 0.598018i 0.0390104 0.0390104i
\(236\) 0 0
\(237\) 4.58510 0.297834
\(238\) 0 0
\(239\) 0.792708 0.0512760 0.0256380 0.999671i \(-0.491838\pi\)
0.0256380 + 0.999671i \(0.491838\pi\)
\(240\) 0 0
\(241\) 16.5867 16.5867i 1.06844 1.06844i 0.0709640 0.997479i \(-0.477392\pi\)
0.997479 0.0709640i \(-0.0226076\pi\)
\(242\) 0 0
\(243\) −9.98983 + 9.98983i −0.640848 + 0.640848i
\(244\) 0 0
\(245\) 4.21820 + 4.21820i 0.269491 + 0.269491i
\(246\) 0 0
\(247\) 2.65009i 0.168621i
\(248\) 0 0
\(249\) 0.129430 + 0.129430i 0.00820231 + 0.00820231i
\(250\) 0 0
\(251\) −17.8958 −1.12957 −0.564787 0.825236i \(-0.691042\pi\)
−0.564787 + 0.825236i \(0.691042\pi\)
\(252\) 0 0
\(253\) 1.93106i 0.121405i
\(254\) 0 0
\(255\) −4.93695 0.419087i −0.309164 0.0262443i
\(256\) 0 0
\(257\) 6.06659i 0.378424i −0.981936 0.189212i \(-0.939407\pi\)
0.981936 0.189212i \(-0.0605933\pi\)
\(258\) 0 0
\(259\) −37.5291 −2.33194
\(260\) 0 0
\(261\) −7.25179 7.25179i −0.448874 0.448874i
\(262\) 0 0
\(263\) 11.2282i 0.692359i −0.938168 0.346179i \(-0.887479\pi\)
0.938168 0.346179i \(-0.112521\pi\)
\(264\) 0 0
\(265\) 3.38501 + 3.38501i 0.207940 + 0.207940i
\(266\) 0 0
\(267\) −13.0711 + 13.0711i −0.799938 + 0.799938i
\(268\) 0 0
\(269\) −1.47645 + 1.47645i −0.0900205 + 0.0900205i −0.750683 0.660663i \(-0.770275\pi\)
0.660663 + 0.750683i \(0.270275\pi\)
\(270\) 0 0
\(271\) −16.8696 −1.02476 −0.512378 0.858760i \(-0.671235\pi\)
−0.512378 + 0.858760i \(0.671235\pi\)
\(272\) 0 0
\(273\) 3.71376 0.224767
\(274\) 0 0
\(275\) 0.311840 0.311840i 0.0188046 0.0188046i
\(276\) 0 0
\(277\) 6.22053 6.22053i 0.373755 0.373755i −0.495088 0.868843i \(-0.664864\pi\)
0.868843 + 0.495088i \(0.164864\pi\)
\(278\) 0 0
\(279\) 9.83201 + 9.83201i 0.588627 + 0.588627i
\(280\) 0 0
\(281\) 16.4278i 0.980000i 0.871722 + 0.490000i \(0.163003\pi\)
−0.871722 + 0.490000i \(0.836997\pi\)
\(282\) 0 0
\(283\) 11.4555 + 11.4555i 0.680960 + 0.680960i 0.960217 0.279256i \(-0.0900879\pi\)
−0.279256 + 0.960217i \(0.590088\pi\)
\(284\) 0 0
\(285\) −3.71044 −0.219788
\(286\) 0 0
\(287\) 35.6184i 2.10249i
\(288\) 0 0
\(289\) −16.7568 2.86554i −0.985691 0.168561i
\(290\) 0 0
\(291\) 16.8909i 0.990161i
\(292\) 0 0
\(293\) 4.18148 0.244284 0.122142 0.992513i \(-0.461024\pi\)
0.122142 + 0.992513i \(0.461024\pi\)
\(294\) 0 0
\(295\) −0.402466 0.402466i −0.0234325 0.0234325i
\(296\) 0 0
\(297\) 2.41444i 0.140100i
\(298\) 0 0
\(299\) −2.65743 2.65743i −0.153683 0.153683i
\(300\) 0 0
\(301\) −18.0136 + 18.0136i −1.03829 + 1.03829i
\(302\) 0 0
\(303\) −1.61476 + 1.61476i −0.0927653 + 0.0927653i
\(304\) 0 0
\(305\) −1.91064 −0.109403
\(306\) 0 0
\(307\) −3.68898 −0.210541 −0.105271 0.994444i \(-0.533571\pi\)
−0.105271 + 0.994444i \(0.533571\pi\)
\(308\) 0 0
\(309\) 5.40641 5.40641i 0.307560 0.307560i
\(310\) 0 0
\(311\) −20.3769 + 20.3769i −1.15547 + 1.15547i −0.170027 + 0.985439i \(0.554385\pi\)
−0.985439 + 0.170027i \(0.945615\pi\)
\(312\) 0 0
\(313\) −8.16252 8.16252i −0.461373 0.461373i 0.437732 0.899105i \(-0.355782\pi\)
−0.899105 + 0.437732i \(0.855782\pi\)
\(314\) 0 0
\(315\) 5.60254i 0.315668i
\(316\) 0 0
\(317\) 10.5677 + 10.5677i 0.593539 + 0.593539i 0.938585 0.345047i \(-0.112137\pi\)
−0.345047 + 0.938585i \(0.612137\pi\)
\(318\) 0 0
\(319\) −2.90680 −0.162749
\(320\) 0 0
\(321\) 14.3479i 0.800824i
\(322\) 0 0
\(323\) −12.6852 1.07682i −0.705824 0.0599159i
\(324\) 0 0
\(325\) 0.858277i 0.0476087i
\(326\) 0 0
\(327\) 3.69950 0.204583
\(328\) 0 0
\(329\) 2.15332 + 2.15332i 0.118716 + 0.118716i
\(330\) 0 0
\(331\) 16.5607i 0.910257i 0.890426 + 0.455128i \(0.150407\pi\)
−0.890426 + 0.455128i \(0.849593\pi\)
\(332\) 0 0
\(333\) −11.4670 11.4670i −0.628390 0.628390i
\(334\) 0 0
\(335\) −7.08644 + 7.08644i −0.387174 + 0.387174i
\(336\) 0 0
\(337\) 20.5030 20.5030i 1.11687 1.11687i 0.124672 0.992198i \(-0.460212\pi\)
0.992198 0.124672i \(-0.0397880\pi\)
\(338\) 0 0
\(339\) −7.12326 −0.386882
\(340\) 0 0
\(341\) 3.94105 0.213420
\(342\) 0 0
\(343\) 2.63413 2.63413i 0.142230 0.142230i
\(344\) 0 0
\(345\) −3.72072 + 3.72072i −0.200317 + 0.200317i
\(346\) 0 0
\(347\) 14.6519 + 14.6519i 0.786558 + 0.786558i 0.980928 0.194370i \(-0.0622664\pi\)
−0.194370 + 0.980928i \(0.562266\pi\)
\(348\) 0 0
\(349\) 12.4314i 0.665436i 0.943026 + 0.332718i \(0.107966\pi\)
−0.943026 + 0.332718i \(0.892034\pi\)
\(350\) 0 0
\(351\) 3.32264 + 3.32264i 0.177349 + 0.177349i
\(352\) 0 0
\(353\) 16.1927 0.861852 0.430926 0.902387i \(-0.358187\pi\)
0.430926 + 0.902387i \(0.358187\pi\)
\(354\) 0 0
\(355\) 13.6847i 0.726310i
\(356\) 0 0
\(357\) 1.50903 17.7767i 0.0798663 0.940845i
\(358\) 0 0
\(359\) 24.3479i 1.28503i −0.766272 0.642516i \(-0.777891\pi\)
0.766272 0.642516i \(-0.222109\pi\)
\(360\) 0 0
\(361\) 9.46622 0.498222
\(362\) 0 0
\(363\) −9.18171 9.18171i −0.481915 0.481915i
\(364\) 0 0
\(365\) 2.78874i 0.145970i
\(366\) 0 0
\(367\) 18.5690 + 18.5690i 0.969292 + 0.969292i 0.999542 0.0302501i \(-0.00963037\pi\)
−0.0302501 + 0.999542i \(0.509630\pi\)
\(368\) 0 0
\(369\) 10.8832 10.8832i 0.566558 0.566558i
\(370\) 0 0
\(371\) −12.1886 + 12.1886i −0.632801 + 0.632801i
\(372\) 0 0
\(373\) −23.3722 −1.21017 −0.605083 0.796162i \(-0.706860\pi\)
−0.605083 + 0.796162i \(0.706860\pi\)
\(374\) 0 0
\(375\) −1.20169 −0.0620551
\(376\) 0 0
\(377\) −4.00019 + 4.00019i −0.206020 + 0.206020i
\(378\) 0 0
\(379\) 13.6593 13.6593i 0.701633 0.701633i −0.263128 0.964761i \(-0.584754\pi\)
0.964761 + 0.263128i \(0.0847542\pi\)
\(380\) 0 0
\(381\) −4.55619 4.55619i −0.233421 0.233421i
\(382\) 0 0
\(383\) 2.49777i 0.127630i 0.997962 + 0.0638150i \(0.0203267\pi\)
−0.997962 + 0.0638150i \(0.979673\pi\)
\(384\) 0 0
\(385\) 1.12286 + 1.12286i 0.0572261 + 0.0572261i
\(386\) 0 0
\(387\) −11.0082 −0.559576
\(388\) 0 0
\(389\) 30.5541i 1.54915i 0.632480 + 0.774577i \(0.282037\pi\)
−0.632480 + 0.774577i \(0.717963\pi\)
\(390\) 0 0
\(391\) −13.8002 + 11.6405i −0.697904 + 0.588688i
\(392\) 0 0
\(393\) 18.5818i 0.937329i
\(394\) 0 0
\(395\) 3.81554 0.191981
\(396\) 0 0
\(397\) −19.4586 19.4586i −0.976601 0.976601i 0.0231310 0.999732i \(-0.492637\pi\)
−0.999732 + 0.0231310i \(0.992637\pi\)
\(398\) 0 0
\(399\) 13.3604i 0.668856i
\(400\) 0 0
\(401\) −1.18566 1.18566i −0.0592090 0.0592090i 0.676882 0.736091i \(-0.263331\pi\)
−0.736091 + 0.676882i \(0.763331\pi\)
\(402\) 0 0
\(403\) 5.42348 5.42348i 0.270163 0.270163i
\(404\) 0 0
\(405\) 1.35146 1.35146i 0.0671546 0.0671546i
\(406\) 0 0
\(407\) −4.59643 −0.227837
\(408\) 0 0
\(409\) −31.7380 −1.56934 −0.784671 0.619912i \(-0.787168\pi\)
−0.784671 + 0.619912i \(0.787168\pi\)
\(410\) 0 0
\(411\) −0.729299 + 0.729299i −0.0359737 + 0.0359737i
\(412\) 0 0
\(413\) 1.44918 1.44918i 0.0713095 0.0713095i
\(414\) 0 0
\(415\) 0.107707 + 0.107707i 0.00528711 + 0.00528711i
\(416\) 0 0
\(417\) 0.352388i 0.0172565i
\(418\) 0 0
\(419\) 17.6144 + 17.6144i 0.860520 + 0.860520i 0.991398 0.130878i \(-0.0417798\pi\)
−0.130878 + 0.991398i \(0.541780\pi\)
\(420\) 0 0
\(421\) 13.7355 0.669429 0.334714 0.942320i \(-0.391360\pi\)
0.334714 + 0.942320i \(0.391360\pi\)
\(422\) 0 0
\(423\) 1.31590i 0.0639810i
\(424\) 0 0
\(425\) −4.10833 0.348747i −0.199283 0.0169167i
\(426\) 0 0
\(427\) 6.87973i 0.332934i
\(428\) 0 0
\(429\) 0.454849 0.0219603
\(430\) 0 0
\(431\) 4.51255 + 4.51255i 0.217362 + 0.217362i 0.807386 0.590024i \(-0.200882\pi\)
−0.590024 + 0.807386i \(0.700882\pi\)
\(432\) 0 0
\(433\) 7.91233i 0.380242i −0.981761 0.190121i \(-0.939112\pi\)
0.981761 0.190121i \(-0.0608881\pi\)
\(434\) 0 0
\(435\) 5.60075 + 5.60075i 0.268536 + 0.268536i
\(436\) 0 0
\(437\) −9.56019 + 9.56019i −0.457326 + 0.457326i
\(438\) 0 0
\(439\) 0.196069 0.196069i 0.00935784 0.00935784i −0.702412 0.711770i \(-0.747894\pi\)
0.711770 + 0.702412i \(0.247894\pi\)
\(440\) 0 0
\(441\) −9.28183 −0.441992
\(442\) 0 0
\(443\) −5.95467 −0.282915 −0.141457 0.989944i \(-0.545179\pi\)
−0.141457 + 0.989944i \(0.545179\pi\)
\(444\) 0 0
\(445\) −10.8772 + 10.8772i −0.515631 + 0.515631i
\(446\) 0 0
\(447\) 12.7105 12.7105i 0.601187 0.601187i
\(448\) 0 0
\(449\) 27.3267 + 27.3267i 1.28963 + 1.28963i 0.935013 + 0.354612i \(0.115387\pi\)
0.354612 + 0.935013i \(0.384613\pi\)
\(450\) 0 0
\(451\) 4.36241i 0.205418i
\(452\) 0 0
\(453\) 12.7332 + 12.7332i 0.598259 + 0.598259i
\(454\) 0 0
\(455\) 3.09045 0.144882
\(456\) 0 0
\(457\) 34.8965i 1.63239i −0.577777 0.816194i \(-0.696080\pi\)
0.577777 0.816194i \(-0.303920\pi\)
\(458\) 0 0
\(459\) 17.2546 14.5544i 0.805378 0.679343i
\(460\) 0 0
\(461\) 24.9983i 1.16429i 0.813087 + 0.582143i \(0.197786\pi\)
−0.813087 + 0.582143i \(0.802214\pi\)
\(462\) 0 0
\(463\) 12.0549 0.560240 0.280120 0.959965i \(-0.409626\pi\)
0.280120 + 0.959965i \(0.409626\pi\)
\(464\) 0 0
\(465\) −7.59353 7.59353i −0.352142 0.352142i
\(466\) 0 0
\(467\) 9.71659i 0.449630i −0.974401 0.224815i \(-0.927822\pi\)
0.974401 0.224815i \(-0.0721778\pi\)
\(468\) 0 0
\(469\) −25.5165 25.5165i −1.17824 1.17824i
\(470\) 0 0
\(471\) −5.93350 + 5.93350i −0.273401 + 0.273401i
\(472\) 0 0
\(473\) −2.20625 + 2.20625i −0.101443 + 0.101443i
\(474\) 0 0
\(475\) −3.08768 −0.141673
\(476\) 0 0
\(477\) −7.44847 −0.341042
\(478\) 0 0
\(479\) 24.2119 24.2119i 1.10627 1.10627i 0.112635 0.993636i \(-0.464071\pi\)
0.993636 0.112635i \(-0.0359290\pi\)
\(480\) 0 0
\(481\) −6.32538 + 6.32538i −0.288413 + 0.288413i
\(482\) 0 0
\(483\) −13.3974 13.3974i −0.609603 0.609603i
\(484\) 0 0
\(485\) 14.0559i 0.638246i
\(486\) 0 0
\(487\) 21.7292 + 21.7292i 0.984645 + 0.984645i 0.999884 0.0152388i \(-0.00485086\pi\)
−0.0152388 + 0.999884i \(0.504851\pi\)
\(488\) 0 0
\(489\) 14.7702 0.667931
\(490\) 0 0
\(491\) 35.4594i 1.60026i −0.599828 0.800129i \(-0.704764\pi\)
0.599828 0.800129i \(-0.295236\pi\)
\(492\) 0 0
\(493\) 17.5224 + 20.7732i 0.789168 + 0.935578i
\(494\) 0 0
\(495\) 0.686180i 0.0308415i
\(496\) 0 0
\(497\) 49.2754 2.21030
\(498\) 0 0
\(499\) 8.77320 + 8.77320i 0.392742 + 0.392742i 0.875664 0.482921i \(-0.160424\pi\)
−0.482921 + 0.875664i \(0.660424\pi\)
\(500\) 0 0
\(501\) 16.2795i 0.727315i
\(502\) 0 0
\(503\) 24.6020 + 24.6020i 1.09695 + 1.09695i 0.994765 + 0.102185i \(0.0325832\pi\)
0.102185 + 0.994765i \(0.467417\pi\)
\(504\) 0 0
\(505\) −1.34373 + 1.34373i −0.0597954 + 0.0597954i
\(506\) 0 0
\(507\) −10.4205 + 10.4205i −0.462790 + 0.462790i
\(508\) 0 0
\(509\) 18.4302 0.816902 0.408451 0.912780i \(-0.366069\pi\)
0.408451 + 0.912780i \(0.366069\pi\)
\(510\) 0 0
\(511\) −10.0416 −0.444213
\(512\) 0 0
\(513\) 11.9533 11.9533i 0.527752 0.527752i
\(514\) 0 0
\(515\) 4.49900 4.49900i 0.198249 0.198249i
\(516\) 0 0
\(517\) 0.263731 + 0.263731i 0.0115989 + 0.0115989i
\(518\) 0 0
\(519\) 22.2391i 0.976186i
\(520\) 0 0
\(521\) 1.12348 + 1.12348i 0.0492205 + 0.0492205i 0.731289 0.682068i \(-0.238919\pi\)
−0.682068 + 0.731289i \(0.738919\pi\)
\(522\) 0 0
\(523\) 24.0707 1.05254 0.526270 0.850318i \(-0.323590\pi\)
0.526270 + 0.850318i \(0.323590\pi\)
\(524\) 0 0
\(525\) 4.32700i 0.188846i
\(526\) 0 0
\(527\) −23.7569 28.1644i −1.03487 1.22686i
\(528\) 0 0
\(529\) 3.82666i 0.166377i
\(530\) 0 0
\(531\) 0.885596 0.0384316
\(532\) 0 0
\(533\) −6.00334 6.00334i −0.260034 0.260034i
\(534\) 0 0
\(535\) 11.9398i 0.516202i
\(536\) 0 0
\(537\) −5.52749 5.52749i −0.238529 0.238529i
\(538\) 0 0
\(539\) −1.86026 + 1.86026i −0.0801270 + 0.0801270i
\(540\) 0 0
\(541\) 29.7186 29.7186i 1.27770 1.27770i 0.335754 0.941950i \(-0.391009\pi\)
0.941950 0.335754i \(-0.108991\pi\)
\(542\) 0 0
\(543\) 26.3691 1.13161
\(544\) 0 0
\(545\) 3.07857 0.131872
\(546\) 0 0
\(547\) −8.75314 + 8.75314i −0.374257 + 0.374257i −0.869025 0.494768i \(-0.835253\pi\)
0.494768 + 0.869025i \(0.335253\pi\)
\(548\) 0 0
\(549\) 2.10211 2.10211i 0.0897158 0.0897158i
\(550\) 0 0
\(551\) 14.3908 + 14.3908i 0.613070 + 0.613070i
\(552\) 0 0
\(553\) 13.7388i 0.584234i
\(554\) 0 0
\(555\) 8.85630 + 8.85630i 0.375929 + 0.375929i
\(556\) 0 0
\(557\) −34.0322 −1.44199 −0.720996 0.692939i \(-0.756316\pi\)
−0.720996 + 0.692939i \(0.756316\pi\)
\(558\) 0 0
\(559\) 6.07226i 0.256829i
\(560\) 0 0
\(561\) 0.184821 2.17723i 0.00780313 0.0919228i
\(562\) 0 0
\(563\) 43.2500i 1.82277i 0.411554 + 0.911386i \(0.364986\pi\)
−0.411554 + 0.911386i \(0.635014\pi\)
\(564\) 0 0
\(565\) −5.92769 −0.249380
\(566\) 0 0
\(567\) 4.86628 + 4.86628i 0.204364 + 0.204364i
\(568\) 0 0
\(569\) 9.56042i 0.400794i 0.979715 + 0.200397i \(0.0642231\pi\)
−0.979715 + 0.200397i \(0.935777\pi\)
\(570\) 0 0
\(571\) 1.42521 + 1.42521i 0.0596434 + 0.0596434i 0.736299 0.676656i \(-0.236572\pi\)
−0.676656 + 0.736299i \(0.736572\pi\)
\(572\) 0 0
\(573\) −5.38519 + 5.38519i −0.224969 + 0.224969i
\(574\) 0 0
\(575\) −3.09623 + 3.09623i −0.129122 + 0.129122i
\(576\) 0 0
\(577\) 17.6730 0.735736 0.367868 0.929878i \(-0.380088\pi\)
0.367868 + 0.929878i \(0.380088\pi\)
\(578\) 0 0
\(579\) 27.0247 1.12311
\(580\) 0 0
\(581\) −0.387825 + 0.387825i −0.0160897 + 0.0160897i
\(582\) 0 0
\(583\) −1.49282 + 1.49282i −0.0618262 + 0.0618262i
\(584\) 0 0
\(585\) 0.944288 + 0.944288i 0.0390415 + 0.0390415i
\(586\) 0 0
\(587\) 38.9386i 1.60717i 0.595192 + 0.803583i \(0.297076\pi\)
−0.595192 + 0.803583i \(0.702924\pi\)
\(588\) 0 0
\(589\) −19.5112 19.5112i −0.803944 0.803944i
\(590\) 0 0
\(591\) 5.17003 0.212666
\(592\) 0 0
\(593\) 2.70134i 0.110931i 0.998461 + 0.0554653i \(0.0176642\pi\)
−0.998461 + 0.0554653i \(0.982336\pi\)
\(594\) 0 0
\(595\) 1.25575 14.7931i 0.0514809 0.606457i
\(596\) 0 0
\(597\) 27.7706i 1.13657i
\(598\) 0 0
\(599\) −25.5707 −1.04479 −0.522396 0.852703i \(-0.674962\pi\)
−0.522396 + 0.852703i \(0.674962\pi\)
\(600\) 0 0
\(601\) 19.1635 + 19.1635i 0.781694 + 0.781694i 0.980117 0.198422i \(-0.0635818\pi\)
−0.198422 + 0.980117i \(0.563582\pi\)
\(602\) 0 0
\(603\) 15.5932i 0.635004i
\(604\) 0 0
\(605\) −7.64065 7.64065i −0.310637 0.310637i
\(606\) 0 0
\(607\) −1.85412 + 1.85412i −0.0752566 + 0.0752566i −0.743733 0.668477i \(-0.766947\pi\)
0.668477 + 0.743733i \(0.266947\pi\)
\(608\) 0 0
\(609\) −20.1669 + 20.1669i −0.817206 + 0.817206i
\(610\) 0 0
\(611\) 0.725867 0.0293654
\(612\) 0 0
\(613\) 22.2141 0.897218 0.448609 0.893728i \(-0.351920\pi\)
0.448609 + 0.893728i \(0.351920\pi\)
\(614\) 0 0
\(615\) −8.40541 + 8.40541i −0.338939 + 0.338939i
\(616\) 0 0
\(617\) −26.2279 + 26.2279i −1.05590 + 1.05590i −0.0575537 + 0.998342i \(0.518330\pi\)
−0.998342 + 0.0575537i \(0.981670\pi\)
\(618\) 0 0
\(619\) −27.6655 27.6655i −1.11197 1.11197i −0.992884 0.119088i \(-0.962003\pi\)
−0.119088 0.992884i \(-0.537997\pi\)
\(620\) 0 0
\(621\) 23.9729i 0.961997i
\(622\) 0 0
\(623\) −39.1663 39.1663i −1.56916 1.56916i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 1.63633i 0.0653489i
\(628\) 0 0
\(629\) 27.7076 + 32.8480i 1.10477 + 1.30974i
\(630\) 0 0
\(631\) 11.5566i 0.460060i 0.973184 + 0.230030i \(0.0738825\pi\)
−0.973184 + 0.230030i \(0.926118\pi\)
\(632\) 0 0
\(633\) −15.3162 −0.608764
\(634\) 0 0
\(635\) −3.79148 3.79148i −0.150460 0.150460i
\(636\) 0 0
\(637\) 5.11999i 0.202862i
\(638\) 0 0
\(639\) 15.0561 + 15.0561i 0.595611 + 0.595611i
\(640\) 0 0
\(641\) −10.8245 + 10.8245i −0.427541 + 0.427541i −0.887790 0.460249i \(-0.847760\pi\)
0.460249 + 0.887790i \(0.347760\pi\)
\(642\) 0 0
\(643\) −5.75529 + 5.75529i −0.226966 + 0.226966i −0.811424 0.584458i \(-0.801307\pi\)
0.584458 + 0.811424i \(0.301307\pi\)
\(644\) 0 0
\(645\) 8.50190 0.334762
\(646\) 0 0
\(647\) 13.3123 0.523359 0.261680 0.965155i \(-0.415724\pi\)
0.261680 + 0.965155i \(0.415724\pi\)
\(648\) 0 0
\(649\) 0.177490 0.177490i 0.00696711 0.00696711i
\(650\) 0 0
\(651\) 27.3424 27.3424i 1.07163 1.07163i
\(652\) 0 0
\(653\) −4.90397 4.90397i −0.191907 0.191907i 0.604612 0.796520i \(-0.293328\pi\)
−0.796520 + 0.604612i \(0.793328\pi\)
\(654\) 0 0
\(655\) 15.4631i 0.604192i
\(656\) 0 0
\(657\) −3.06821 3.06821i −0.119702 0.119702i
\(658\) 0 0
\(659\) 9.44123 0.367778 0.183889 0.982947i \(-0.441131\pi\)
0.183889 + 0.982947i \(0.441131\pi\)
\(660\) 0 0
\(661\) 1.09412i 0.0425562i 0.999774 + 0.0212781i \(0.00677354\pi\)
−0.999774 + 0.0212781i \(0.993226\pi\)
\(662\) 0 0
\(663\) −2.74186 3.25054i −0.106485 0.126241i
\(664\) 0 0
\(665\) 11.1180i 0.431137i
\(666\) 0 0
\(667\) 28.8614 1.11752
\(668\) 0 0
\(669\) 16.1797 + 16.1797i 0.625544 + 0.625544i
\(670\) 0 0
\(671\) 0.842606i 0.0325284i
\(672\) 0 0
\(673\) −35.2057 35.2057i −1.35708 1.35708i −0.877497 0.479582i \(-0.840788\pi\)
−0.479582 0.877497i \(-0.659212\pi\)
\(674\) 0 0
\(675\) 3.87129 3.87129i 0.149006 0.149006i
\(676\) 0 0
\(677\) −4.78528 + 4.78528i −0.183913 + 0.183913i −0.793059 0.609145i \(-0.791513\pi\)
0.609145 + 0.793059i \(0.291513\pi\)
\(678\) 0 0
\(679\) −50.6119 −1.94231
\(680\) 0 0
\(681\) −26.1283 −1.00124
\(682\) 0 0
\(683\) −0.594557 + 0.594557i −0.0227501 + 0.0227501i −0.718390 0.695640i \(-0.755121\pi\)
0.695640 + 0.718390i \(0.255121\pi\)
\(684\) 0 0
\(685\) −0.606894 + 0.606894i −0.0231882 + 0.0231882i
\(686\) 0 0
\(687\) −16.0562 16.0562i −0.612583 0.612583i
\(688\) 0 0
\(689\) 4.10869i 0.156528i
\(690\) 0 0
\(691\) −20.8786 20.8786i −0.794260 0.794260i 0.187923 0.982184i \(-0.439824\pi\)
−0.982184 + 0.187923i \(0.939824\pi\)
\(692\) 0 0
\(693\) −2.47077 −0.0938566
\(694\) 0 0
\(695\) 0.293243i 0.0111234i
\(696\) 0 0
\(697\) −31.1757 + 26.2969i −1.18086 + 0.996067i
\(698\) 0 0
\(699\) 9.36877i 0.354360i
\(700\) 0 0
\(701\) −41.7794 −1.57799 −0.788993 0.614402i \(-0.789397\pi\)
−0.788993 + 0.614402i \(0.789397\pi\)
\(702\) 0 0
\(703\) 22.7558 + 22.7558i 0.858251 + 0.858251i
\(704\) 0 0
\(705\) 1.01630i 0.0382761i
\(706\) 0 0
\(707\) −4.83846 4.83846i −0.181969 0.181969i
\(708\) 0 0
\(709\) 32.6543 32.6543i 1.22636 1.22636i 0.261028 0.965331i \(-0.415938\pi\)
0.965331 0.261028i \(-0.0840616\pi\)
\(710\) 0 0
\(711\) −4.19791 + 4.19791i −0.157434 + 0.157434i
\(712\) 0 0
\(713\) −39.1304 −1.46545
\(714\) 0 0
\(715\) 0.378507 0.0141554
\(716\) 0 0
\(717\) 0.673583 0.673583i 0.0251554 0.0251554i
\(718\) 0 0
\(719\) 5.03927 5.03927i 0.187933 0.187933i −0.606869 0.794802i \(-0.707575\pi\)
0.794802 + 0.606869i \(0.207575\pi\)
\(720\) 0 0
\(721\) 16.1998 + 16.1998i 0.603311 + 0.603311i
\(722\) 0 0
\(723\) 28.1882i 1.04833i
\(724\) 0 0
\(725\) 4.66072 + 4.66072i 0.173095 + 0.173095i
\(726\) 0 0
\(727\) −23.6649 −0.877681 −0.438840 0.898565i \(-0.644611\pi\)
−0.438840 + 0.898565i \(0.644611\pi\)
\(728\) 0 0
\(729\) 22.7110i 0.841147i
\(730\) 0 0
\(731\) 29.0662 + 2.46737i 1.07505 + 0.0912588i
\(732\) 0 0
\(733\) 10.4809i 0.387122i 0.981088 + 0.193561i \(0.0620037\pi\)
−0.981088 + 0.193561i \(0.937996\pi\)
\(734\) 0 0
\(735\) 7.16861 0.264418
\(736\) 0 0
\(737\) −3.12518 3.12518i −0.115117 0.115117i
\(738\) 0 0
\(739\) 19.4369i 0.714996i 0.933914 + 0.357498i \(0.116370\pi\)
−0.933914 + 0.357498i \(0.883630\pi\)
\(740\) 0 0
\(741\) −2.25184 2.25184i −0.0827236 0.0827236i
\(742\) 0 0
\(743\) 36.7392 36.7392i 1.34783 1.34783i 0.459817 0.888014i \(-0.347915\pi\)
0.888014 0.459817i \(-0.152085\pi\)
\(744\) 0 0
\(745\) 10.5772 10.5772i 0.387518 0.387518i
\(746\) 0 0
\(747\) −0.237001 −0.00867140
\(748\) 0 0
\(749\) −42.9922 −1.57090
\(750\) 0 0
\(751\) −26.7281 + 26.7281i −0.975322 + 0.975322i −0.999703 0.0243807i \(-0.992239\pi\)
0.0243807 + 0.999703i \(0.492239\pi\)
\(752\) 0 0
\(753\) −15.2065 + 15.2065i −0.554157 + 0.554157i
\(754\) 0 0
\(755\) 10.5961 + 10.5961i 0.385631 + 0.385631i
\(756\) 0 0
\(757\) 32.6953i 1.18833i 0.804344 + 0.594165i \(0.202517\pi\)
−0.804344 + 0.594165i \(0.797483\pi\)
\(758\) 0 0
\(759\) −1.64087 1.64087i −0.0595597 0.0595597i
\(760\) 0 0
\(761\) 20.9742 0.760314 0.380157 0.924922i \(-0.375870\pi\)
0.380157 + 0.924922i \(0.375870\pi\)
\(762\) 0 0
\(763\) 11.0852i 0.401311i
\(764\) 0 0
\(765\) 4.90374 4.13634i 0.177295 0.149550i
\(766\) 0 0
\(767\) 0.488508i 0.0176390i
\(768\) 0 0
\(769\) −48.1965 −1.73801 −0.869005 0.494803i \(-0.835240\pi\)
−0.869005 + 0.494803i \(0.835240\pi\)
\(770\) 0 0
\(771\) −5.15493 5.15493i −0.185650 0.185650i
\(772\) 0 0
\(773\) 30.5076i 1.09728i 0.836059 + 0.548640i \(0.184854\pi\)
−0.836059 + 0.548640i \(0.815146\pi\)
\(774\) 0 0
\(775\) −6.31903 6.31903i −0.226986 0.226986i
\(776\) 0 0
\(777\) −31.8894 + 31.8894i −1.14402 + 1.14402i
\(778\) 0 0
\(779\) −21.5972 + 21.5972i −0.773801 + 0.773801i
\(780\) 0 0
\(781\) 6.03507 0.215952
\(782\) 0 0
\(783\) −36.0860 −1.28961
\(784\) 0 0
\(785\) −4.93762 + 4.93762i −0.176231 + 0.176231i
\(786\) 0 0
\(787\) −10.1400 + 10.1400i −0.361452 + 0.361452i −0.864347 0.502895i \(-0.832268\pi\)
0.502895 + 0.864347i \(0.332268\pi\)
\(788\) 0 0
\(789\) −9.54086 9.54086i −0.339663 0.339663i
\(790\) 0 0
\(791\) 21.3442i 0.758911i
\(792\) 0 0
\(793\) −1.15955 1.15955i −0.0411770 0.0411770i
\(794\) 0 0
\(795\) 5.75266 0.204026
\(796\) 0 0
\(797\) 43.8868i 1.55455i 0.629161 + 0.777275i \(0.283399\pi\)
−0.629161 + 0.777275i \(0.716601\pi\)
\(798\) 0 0
\(799\) 0.294945 3.47452i 0.0104344 0.122920i
\(800\) 0 0
\(801\) 23.9346i 0.845687i
\(802\) 0 0
\(803\) −1.22986 −0.0434007
\(804\) 0 0
\(805\) −11.1488 11.1488i −0.392943 0.392943i
\(806\) 0 0
\(807\) 2.50914i 0.0883260i
\(808\) 0 0
\(809\) −11.5776 11.5776i −0.407048 0.407048i 0.473660 0.880708i \(-0.342933\pi\)
−0.880708 + 0.473660i \(0.842933\pi\)
\(810\) 0 0
\(811\) 37.9966 37.9966i 1.33424 1.33424i 0.432705 0.901535i \(-0.357559\pi\)
0.901535 0.432705i \(-0.142441\pi\)
\(812\) 0 0
\(813\) −14.3345 + 14.3345i −0.502734 + 0.502734i
\(814\) 0 0
\(815\) 12.2912 0.430541
\(816\) 0 0
\(817\) 21.8452 0.764265
\(818\) 0 0
\(819\) −3.40015 + 3.40015i −0.118811 + 0.118811i
\(820\) 0 0
\(821\) 14.6216 14.6216i 0.510298 0.510298i −0.404320 0.914618i \(-0.632492\pi\)
0.914618 + 0.404320i \(0.132492\pi\)
\(822\) 0 0
\(823\) −11.3195 11.3195i −0.394573 0.394573i 0.481740 0.876314i \(-0.340005\pi\)
−0.876314 + 0.481740i \(0.840005\pi\)
\(824\) 0 0
\(825\) 0.529956i 0.0184507i
\(826\) 0 0
\(827\) 12.3448 + 12.3448i 0.429269 + 0.429269i 0.888379 0.459110i \(-0.151832\pi\)
−0.459110 + 0.888379i \(0.651832\pi\)
\(828\) 0 0
\(829\) −35.5735 −1.23552 −0.617759 0.786368i \(-0.711959\pi\)
−0.617759 + 0.786368i \(0.711959\pi\)
\(830\) 0 0
\(831\) 10.5715i 0.366720i
\(832\) 0 0
\(833\) 24.5080 + 2.08043i 0.849151 + 0.0720826i
\(834\) 0 0
\(835\) 13.5472i 0.468819i
\(836\) 0 0
\(837\) 48.9256 1.69112
\(838\) 0 0
\(839\) 34.1295 + 34.1295i 1.17828 + 1.17828i 0.980182 + 0.198100i \(0.0634771\pi\)
0.198100 + 0.980182i \(0.436523\pi\)
\(840\) 0 0
\(841\) 14.4447i 0.498093i
\(842\) 0 0
\(843\) 13.9591 + 13.9591i 0.480777 + 0.480777i
\(844\) 0 0
\(845\) −8.67151 + 8.67151i −0.298309 + 0.298309i
\(846\) 0 0
\(847\) 27.5121 27.5121i 0.945327 0.945327i
\(848\) 0 0
\(849\) 19.4681 0.668143
\(850\) 0 0
\(851\) 45.6376 1.56444
\(852\) 0 0
\(853\) 17.5597 17.5597i 0.601233 0.601233i −0.339406 0.940640i \(-0.610226\pi\)
0.940640 + 0.339406i \(0.110226\pi\)
\(854\) 0 0
\(855\) 3.39711 3.39711i 0.116179 0.116179i
\(856\) 0 0
\(857\) −8.24219 8.24219i −0.281548 0.281548i 0.552178 0.833726i \(-0.313797\pi\)
−0.833726 + 0.552178i \(0.813797\pi\)
\(858\) 0 0
\(859\) 1.76702i 0.0602900i −0.999546 0.0301450i \(-0.990403\pi\)
0.999546 0.0301450i \(-0.00959690\pi\)
\(860\) 0 0
\(861\) −30.2658 30.2658i −1.03146 1.03146i
\(862\) 0 0
\(863\) −46.0934 −1.56904 −0.784518 0.620106i \(-0.787090\pi\)
−0.784518 + 0.620106i \(0.787090\pi\)
\(864\) 0 0
\(865\) 18.5064i 0.629238i
\(866\) 0 0
\(867\) −16.6735 + 11.8037i −0.566263 + 0.400875i
\(868\) 0 0
\(869\) 1.68268i 0.0570811i
\(870\) 0 0
\(871\) −8.60144 −0.291449
\(872\) 0 0
\(873\) −15.4645 15.4645i −0.523394 0.523394i
\(874\) 0 0
\(875\) 3.60075i 0.121728i
\(876\) 0 0
\(877\) −20.4117 20.4117i −0.689255 0.689255i 0.272813 0.962067i \(-0.412046\pi\)
−0.962067 + 0.272813i \(0.912046\pi\)
\(878\) 0 0
\(879\) 3.55310 3.55310i 0.119843 0.119843i
\(880\) 0 0
\(881\) −8.10219 + 8.10219i −0.272970 + 0.272970i −0.830295 0.557325i \(-0.811828\pi\)
0.557325 + 0.830295i \(0.311828\pi\)
\(882\) 0 0
\(883\) 45.5357 1.53240 0.766199 0.642604i \(-0.222146\pi\)
0.766199 + 0.642604i \(0.222146\pi\)
\(884\) 0 0
\(885\) −0.683970 −0.0229914
\(886\) 0 0
\(887\) −21.2088 + 21.2088i −0.712121 + 0.712121i −0.966979 0.254858i \(-0.917971\pi\)
0.254858 + 0.966979i \(0.417971\pi\)
\(888\) 0 0
\(889\) 13.6522 13.6522i 0.457880 0.457880i
\(890\) 0 0
\(891\) 0.596004 + 0.596004i 0.0199669 + 0.0199669i
\(892\) 0 0
\(893\) 2.61133i 0.0873849i
\(894\) 0 0
\(895\) −4.59976 4.59976i −0.153753 0.153753i
\(896\) 0 0
\(897\) −4.51616 −0.150790
\(898\) 0 0
\(899\) 58.9025i 1.96451i
\(900\) 0 0
\(901\) 19.6671 + 1.66950i 0.655207 + 0.0556191i
\(902\) 0 0
\(903\) 30.6132i 1.01874i
\(904\) 0 0
\(905\) 21.9433 0.729421
\(906\) 0 0
\(907\) −21.1053 21.1053i −0.700789 0.700789i 0.263791 0.964580i \(-0.415027\pi\)
−0.964580 + 0.263791i \(0.915027\pi\)
\(908\) 0 0
\(909\) 2.95679i 0.0980705i
\(910\) 0 0
\(911\) 28.9605 + 28.9605i 0.959504 + 0.959504i 0.999211 0.0397077i \(-0.0126427\pi\)
−0.0397077 + 0.999211i \(0.512643\pi\)
\(912\) 0 0
\(913\) −0.0474995 + 0.0474995i −0.00157200 + 0.00157200i
\(914\) 0 0
\(915\) −1.62352 + 1.62352i −0.0536718 + 0.0536718i
\(916\) 0 0
\(917\) 55.6787 1.83867
\(918\) 0 0
\(919\) 41.5906 1.37195 0.685973 0.727627i \(-0.259377\pi\)
0.685973 + 0.727627i \(0.259377\pi\)
\(920\) 0 0
\(921\) −3.13461 + 3.13461i −0.103289 + 0.103289i
\(922\) 0 0
\(923\) 8.30518 8.30518i 0.273368 0.273368i
\(924\) 0 0
\(925\) 7.36986 + 7.36986i 0.242320 + 0.242320i
\(926\) 0 0
\(927\) 9.89971i 0.325149i
\(928\) 0 0
\(929\) −34.8304 34.8304i −1.14275 1.14275i −0.987945 0.154805i \(-0.950525\pi\)
−0.154805 0.987945i \(-0.549475\pi\)
\(930\) 0 0
\(931\) 18.4194 0.603670
\(932\) 0 0
\(933\) 34.6294i 1.13372i
\(934\) 0 0
\(935\) 0.153800 1.81181i 0.00502981 0.0592524i
\(936\) 0 0
\(937\) 6.06542i 0.198149i −0.995080 0.0990743i \(-0.968412\pi\)
0.995080 0.0990743i \(-0.0315881\pi\)
\(938\) 0 0
\(939\) −13.8718 −0.452689
\(940\) 0 0
\(941\) −15.0698 15.0698i −0.491261 0.491261i 0.417442 0.908704i \(-0.362927\pi\)
−0.908704 + 0.417442i \(0.862927\pi\)
\(942\) 0 0
\(943\) 43.3141i 1.41050i
\(944\) 0 0
\(945\) 13.9396 + 13.9396i 0.453454 + 0.453454i
\(946\) 0 0
\(947\) −5.18941 + 5.18941i −0.168633 + 0.168633i −0.786378 0.617745i \(-0.788046\pi\)
0.617745 + 0.786378i \(0.288046\pi\)
\(948\) 0 0
\(949\) −1.69247 + 1.69247i −0.0549399 + 0.0549399i
\(950\) 0 0
\(951\) 17.9592 0.582367
\(952\) 0 0
\(953\) 20.8537 0.675517 0.337759 0.941233i \(-0.390331\pi\)
0.337759 + 0.941233i \(0.390331\pi\)
\(954\) 0 0
\(955\) −4.48134 + 4.48134i −0.145013 + 0.145013i
\(956\) 0 0
\(957\) −2.46998 + 2.46998i −0.0798430 + 0.0798430i
\(958\) 0 0
\(959\) −2.18528 2.18528i −0.0705662 0.0705662i
\(960\) 0 0
\(961\) 48.8604i 1.57614i
\(962\) 0 0
\(963\) −13.1363 13.1363i −0.423312 0.423312i
\(964\) 0 0
\(965\) 22.4889 0.723943
\(966\) 0 0
\(967\) 28.0955i 0.903492i −0.892147 0.451746i \(-0.850801\pi\)
0.892147 0.451746i \(-0.149199\pi\)
\(968\) 0 0
\(969\) −11.6939 + 9.86394i −0.375664 + 0.316875i
\(970\) 0 0
\(971\) 39.4478i 1.26594i −0.774176 0.632970i \(-0.781836\pi\)
0.774176 0.632970i \(-0.218164\pi\)
\(972\) 0 0
\(973\) −1.05590 −0.0338505
\(974\) 0 0
\(975\) −0.729299 0.729299i −0.0233563 0.0233563i
\(976\) 0 0
\(977\) 35.4283i 1.13345i 0.823906 + 0.566726i \(0.191790\pi\)
−0.823906 + 0.566726i \(0.808210\pi\)
\(978\) 0 0
\(979\) −4.79695 4.79695i −0.153311 0.153311i
\(980\) 0 0
\(981\) −3.38709 + 3.38709i −0.108141 + 0.108141i
\(982\) 0 0
\(983\) −10.6102 + 10.6102i −0.338412 + 0.338412i −0.855770 0.517357i \(-0.826916\pi\)
0.517357 + 0.855770i \(0.326916\pi\)
\(984\) 0 0
\(985\) 4.30229 0.137082
\(986\) 0 0
\(987\) 3.65945 0.116482
\(988\) 0 0
\(989\) 21.9057 21.9057i 0.696560 0.696560i
\(990\) 0 0
\(991\) 1.09187 1.09187i 0.0346844 0.0346844i −0.689552 0.724236i \(-0.742192\pi\)
0.724236 + 0.689552i \(0.242192\pi\)
\(992\) 0 0
\(993\) 14.0720 + 14.0720i 0.446562 + 0.446562i
\(994\) 0 0
\(995\) 23.1096i 0.732622i
\(996\) 0 0
\(997\) −6.30718 6.30718i −0.199750 0.199750i 0.600143 0.799893i \(-0.295110\pi\)
−0.799893 + 0.600143i \(0.795110\pi\)
\(998\) 0 0
\(999\) −57.0618 −1.80535
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 340.2.o.a.21.4 12
3.2 odd 2 3060.2.be.b.361.3 12
4.3 odd 2 1360.2.bt.c.1041.3 12
5.2 odd 4 1700.2.m.c.1449.3 12
5.3 odd 4 1700.2.m.f.1449.4 12
5.4 even 2 1700.2.o.d.701.3 12
17.2 even 8 5780.2.c.h.5201.5 12
17.8 even 8 5780.2.a.n.1.3 6
17.9 even 8 5780.2.a.m.1.4 6
17.13 even 4 inner 340.2.o.a.81.4 yes 12
17.15 even 8 5780.2.c.h.5201.8 12
51.47 odd 4 3060.2.be.b.1441.3 12
68.47 odd 4 1360.2.bt.c.81.3 12
85.13 odd 4 1700.2.m.c.149.3 12
85.47 odd 4 1700.2.m.f.149.4 12
85.64 even 4 1700.2.o.d.1101.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.o.a.21.4 12 1.1 even 1 trivial
340.2.o.a.81.4 yes 12 17.13 even 4 inner
1360.2.bt.c.81.3 12 68.47 odd 4
1360.2.bt.c.1041.3 12 4.3 odd 2
1700.2.m.c.149.3 12 85.13 odd 4
1700.2.m.c.1449.3 12 5.2 odd 4
1700.2.m.f.149.4 12 85.47 odd 4
1700.2.m.f.1449.4 12 5.3 odd 4
1700.2.o.d.701.3 12 5.4 even 2
1700.2.o.d.1101.3 12 85.64 even 4
3060.2.be.b.361.3 12 3.2 odd 2
3060.2.be.b.1441.3 12 51.47 odd 4
5780.2.a.m.1.4 6 17.9 even 8
5780.2.a.n.1.3 6 17.8 even 8
5780.2.c.h.5201.5 12 17.2 even 8
5780.2.c.h.5201.8 12 17.15 even 8