Properties

Label 3381.2.a.l
Level $3381$
Weight $2$
Character orbit 3381.a
Self dual yes
Analytic conductor $26.997$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3381 = 3 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3381.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(26.9974209234\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 483)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2q^{2} - q^{3} + 2q^{4} - 4q^{5} - 2q^{6} + q^{9} + O(q^{10}) \) \( q + 2q^{2} - q^{3} + 2q^{4} - 4q^{5} - 2q^{6} + q^{9} - 8q^{10} - 5q^{11} - 2q^{12} + 2q^{13} + 4q^{15} - 4q^{16} + 2q^{18} + 5q^{19} - 8q^{20} - 10q^{22} - q^{23} + 11q^{25} + 4q^{26} - q^{27} - 2q^{29} + 8q^{30} - 6q^{31} - 8q^{32} + 5q^{33} + 2q^{36} + 6q^{37} + 10q^{38} - 2q^{39} - 5q^{41} + 8q^{43} - 10q^{44} - 4q^{45} - 2q^{46} + 9q^{47} + 4q^{48} + 22q^{50} + 4q^{52} + 9q^{53} - 2q^{54} + 20q^{55} - 5q^{57} - 4q^{58} - 9q^{59} + 8q^{60} + 5q^{61} - 12q^{62} - 8q^{64} - 8q^{65} + 10q^{66} + 4q^{67} + q^{69} + 12q^{71} + 12q^{74} - 11q^{75} + 10q^{76} - 4q^{78} - 10q^{79} + 16q^{80} + q^{81} - 10q^{82} + 18q^{83} + 16q^{86} + 2q^{87} - 10q^{89} - 8q^{90} - 2q^{92} + 6q^{93} + 18q^{94} - 20q^{95} + 8q^{96} + 18q^{97} - 5q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 −1.00000 2.00000 −4.00000 −2.00000 0 0 1.00000 −8.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(7\) \(-1\)
\(23\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3381.2.a.l 1
7.b odd 2 1 483.2.a.b 1
21.c even 2 1 1449.2.a.a 1
28.d even 2 1 7728.2.a.l 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
483.2.a.b 1 7.b odd 2 1
1449.2.a.a 1 21.c even 2 1
3381.2.a.l 1 1.a even 1 1 trivial
7728.2.a.l 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3381))\):

\( T_{2} - 2 \)
\( T_{5} + 4 \)
\( T_{11} + 5 \)
\( T_{13} - 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -2 + T \)
$3$ \( 1 + T \)
$5$ \( 4 + T \)
$7$ \( T \)
$11$ \( 5 + T \)
$13$ \( -2 + T \)
$17$ \( T \)
$19$ \( -5 + T \)
$23$ \( 1 + T \)
$29$ \( 2 + T \)
$31$ \( 6 + T \)
$37$ \( -6 + T \)
$41$ \( 5 + T \)
$43$ \( -8 + T \)
$47$ \( -9 + T \)
$53$ \( -9 + T \)
$59$ \( 9 + T \)
$61$ \( -5 + T \)
$67$ \( -4 + T \)
$71$ \( -12 + T \)
$73$ \( T \)
$79$ \( 10 + T \)
$83$ \( -18 + T \)
$89$ \( 10 + T \)
$97$ \( -18 + T \)
show more
show less