Properties

Label 338.5.d.h.239.1
Level $338$
Weight $5$
Character 338.239
Analytic conductor $34.939$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,5,Mod(99,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.99"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 338.d (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,16,0,0,30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.9390475223\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.120336834816.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 46x^{5} + 445x^{4} + 68x^{3} + 32x^{2} + 1136x + 20164 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 239.1
Root \(-2.16680 - 2.16680i\) of defining polynomial
Character \(\chi\) \(=\) 338.239
Dual form 338.5.d.h.99.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 2.00000i) q^{2} -11.9855 q^{3} -8.00000i q^{4} +(27.8195 - 27.8195i) q^{5} +(-23.9709 + 23.9709i) q^{6} +(-49.1528 - 49.1528i) q^{7} +(-16.0000 - 16.0000i) q^{8} +62.6514 q^{9} -111.278i q^{10} +(-59.0953 - 59.0953i) q^{11} +95.8837i q^{12} -196.611 q^{14} +(-333.429 + 333.429i) q^{15} -64.0000 q^{16} -416.844i q^{17} +(125.303 - 125.303i) q^{18} +(3.74806 - 3.74806i) q^{19} +(-222.556 - 222.556i) q^{20} +(589.119 + 589.119i) q^{21} -236.381 q^{22} -462.074i q^{23} +(191.767 + 191.767i) q^{24} -922.846i q^{25} +219.917 q^{27} +(-393.222 + 393.222i) q^{28} +918.874 q^{29} +1333.72i q^{30} +(67.6743 - 67.6743i) q^{31} +(-128.000 + 128.000i) q^{32} +(708.285 + 708.285i) q^{33} +(-833.689 - 833.689i) q^{34} -2734.81 q^{35} -501.211i q^{36} +(154.404 + 154.404i) q^{37} -14.9922i q^{38} -890.223 q^{40} +(-2081.41 + 2081.41i) q^{41} +2356.48 q^{42} +1407.69i q^{43} +(-472.762 + 472.762i) q^{44} +(1742.93 - 1742.93i) q^{45} +(-924.149 - 924.149i) q^{46} +(-1373.25 - 1373.25i) q^{47} +767.070 q^{48} +2430.99i q^{49} +(-1845.69 - 1845.69i) q^{50} +4996.07i q^{51} +2519.79 q^{53} +(439.834 - 439.834i) q^{54} -3288.00 q^{55} +1572.89i q^{56} +(-44.9222 + 44.9222i) q^{57} +(1837.75 - 1837.75i) q^{58} +(387.572 + 387.572i) q^{59} +(2667.43 + 2667.43i) q^{60} +2705.62 q^{61} -270.697i q^{62} +(-3079.49 - 3079.49i) q^{63} +512.000i q^{64} +2833.14 q^{66} +(-2425.83 + 2425.83i) q^{67} -3334.75 q^{68} +5538.18i q^{69} +(-5469.62 + 5469.62i) q^{70} +(-4973.62 + 4973.62i) q^{71} +(-1002.42 - 1002.42i) q^{72} +(1208.41 + 1208.41i) q^{73} +617.616 q^{74} +11060.7i q^{75} +(-29.9845 - 29.9845i) q^{76} +5809.40i q^{77} -3300.68 q^{79} +(-1780.45 + 1780.45i) q^{80} -7710.57 q^{81} +8325.63i q^{82} +(-1803.48 + 1803.48i) q^{83} +(4712.95 - 4712.95i) q^{84} +(-11596.4 - 11596.4i) q^{85} +(2815.39 + 2815.39i) q^{86} -11013.1 q^{87} +1891.05i q^{88} +(2917.53 + 2917.53i) q^{89} -6971.71i q^{90} -3696.59 q^{92} +(-811.109 + 811.109i) q^{93} -5493.02 q^{94} -208.538i q^{95} +(1534.14 - 1534.14i) q^{96} +(10446.8 - 10446.8i) q^{97} +(4861.98 + 4861.98i) q^{98} +(-3702.40 - 3702.40i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{2} + 30 q^{5} - 86 q^{7} - 128 q^{8} - 180 q^{9} - 474 q^{11} - 344 q^{14} - 1128 q^{15} - 512 q^{16} - 360 q^{18} - 518 q^{19} - 240 q^{20} + 1914 q^{21} - 1896 q^{22} - 2268 q^{27} - 688 q^{28}+ \cdots + 9504 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 2.00000i 0.500000 0.500000i
\(3\) −11.9855 −1.33172 −0.665859 0.746077i \(-0.731935\pi\)
−0.665859 + 0.746077i \(0.731935\pi\)
\(4\) 8.00000i 0.500000i
\(5\) 27.8195 27.8195i 1.11278 1.11278i 0.120006 0.992773i \(-0.461709\pi\)
0.992773 0.120006i \(-0.0382913\pi\)
\(6\) −23.9709 + 23.9709i −0.665859 + 0.665859i
\(7\) −49.1528 49.1528i −1.00312 1.00312i −0.999995 0.00312281i \(-0.999006\pi\)
−0.00312281 0.999995i \(-0.500994\pi\)
\(8\) −16.0000 16.0000i −0.250000 0.250000i
\(9\) 62.6514 0.773474
\(10\) 111.278i 1.11278i
\(11\) −59.0953 59.0953i −0.488391 0.488391i 0.419407 0.907798i \(-0.362238\pi\)
−0.907798 + 0.419407i \(0.862238\pi\)
\(12\) 95.8837i 0.665859i
\(13\) 0 0
\(14\) −196.611 −1.00312
\(15\) −333.429 + 333.429i −1.48191 + 1.48191i
\(16\) −64.0000 −0.250000
\(17\) 416.844i 1.44237i −0.692744 0.721184i \(-0.743598\pi\)
0.692744 0.721184i \(-0.256402\pi\)
\(18\) 125.303 125.303i 0.386737 0.386737i
\(19\) 3.74806 3.74806i 0.0103824 0.0103824i −0.701897 0.712279i \(-0.747663\pi\)
0.712279 + 0.701897i \(0.247663\pi\)
\(20\) −222.556 222.556i −0.556389 0.556389i
\(21\) 589.119 + 589.119i 1.33587 + 1.33587i
\(22\) −236.381 −0.488391
\(23\) 462.074i 0.873486i −0.899586 0.436743i \(-0.856132\pi\)
0.899586 0.436743i \(-0.143868\pi\)
\(24\) 191.767 + 191.767i 0.332930 + 0.332930i
\(25\) 922.846i 1.47655i
\(26\) 0 0
\(27\) 219.917 0.301669
\(28\) −393.222 + 393.222i −0.501559 + 0.501559i
\(29\) 918.874 1.09260 0.546298 0.837591i \(-0.316037\pi\)
0.546298 + 0.837591i \(0.316037\pi\)
\(30\) 1333.72i 1.48191i
\(31\) 67.6743 67.6743i 0.0704208 0.0704208i −0.671019 0.741440i \(-0.734143\pi\)
0.741440 + 0.671019i \(0.234143\pi\)
\(32\) −128.000 + 128.000i −0.125000 + 0.125000i
\(33\) 708.285 + 708.285i 0.650399 + 0.650399i
\(34\) −833.689 833.689i −0.721184 0.721184i
\(35\) −2734.81 −2.23250
\(36\) 501.211i 0.386737i
\(37\) 154.404 + 154.404i 0.112786 + 0.112786i 0.761247 0.648461i \(-0.224587\pi\)
−0.648461 + 0.761247i \(0.724587\pi\)
\(38\) 14.9922i 0.0103824i
\(39\) 0 0
\(40\) −890.223 −0.556389
\(41\) −2081.41 + 2081.41i −1.23820 + 1.23820i −0.277458 + 0.960738i \(0.589492\pi\)
−0.960738 + 0.277458i \(0.910508\pi\)
\(42\) 2356.48 1.33587
\(43\) 1407.69i 0.761327i 0.924714 + 0.380663i \(0.124304\pi\)
−0.924714 + 0.380663i \(0.875696\pi\)
\(44\) −472.762 + 472.762i −0.244195 + 0.244195i
\(45\) 1742.93 1742.93i 0.860705 0.860705i
\(46\) −924.149 924.149i −0.436743 0.436743i
\(47\) −1373.25 1373.25i −0.621664 0.621664i 0.324293 0.945957i \(-0.394874\pi\)
−0.945957 + 0.324293i \(0.894874\pi\)
\(48\) 767.070 0.332930
\(49\) 2430.99i 1.01249i
\(50\) −1845.69 1845.69i −0.738277 0.738277i
\(51\) 4996.07i 1.92083i
\(52\) 0 0
\(53\) 2519.79 0.897040 0.448520 0.893773i \(-0.351951\pi\)
0.448520 + 0.893773i \(0.351951\pi\)
\(54\) 439.834 439.834i 0.150835 0.150835i
\(55\) −3288.00 −1.08694
\(56\) 1572.89i 0.501559i
\(57\) −44.9222 + 44.9222i −0.0138265 + 0.0138265i
\(58\) 1837.75 1837.75i 0.546298 0.546298i
\(59\) 387.572 + 387.572i 0.111339 + 0.111339i 0.760582 0.649242i \(-0.224914\pi\)
−0.649242 + 0.760582i \(0.724914\pi\)
\(60\) 2667.43 + 2667.43i 0.740954 + 0.740954i
\(61\) 2705.62 0.727123 0.363562 0.931570i \(-0.381561\pi\)
0.363562 + 0.931570i \(0.381561\pi\)
\(62\) 270.697i 0.0704208i
\(63\) −3079.49 3079.49i −0.775885 0.775885i
\(64\) 512.000i 0.125000i
\(65\) 0 0
\(66\) 2833.14 0.650399
\(67\) −2425.83 + 2425.83i −0.540394 + 0.540394i −0.923645 0.383250i \(-0.874805\pi\)
0.383250 + 0.923645i \(0.374805\pi\)
\(68\) −3334.75 −0.721184
\(69\) 5538.18i 1.16324i
\(70\) −5469.62 + 5469.62i −1.11625 + 1.11625i
\(71\) −4973.62 + 4973.62i −0.986633 + 0.986633i −0.999912 0.0132789i \(-0.995773\pi\)
0.0132789 + 0.999912i \(0.495773\pi\)
\(72\) −1002.42 1002.42i −0.193368 0.193368i
\(73\) 1208.41 + 1208.41i 0.226762 + 0.226762i 0.811338 0.584577i \(-0.198739\pi\)
−0.584577 + 0.811338i \(0.698739\pi\)
\(74\) 617.616 0.112786
\(75\) 11060.7i 1.96635i
\(76\) −29.9845 29.9845i −0.00519122 0.00519122i
\(77\) 5809.40i 0.979827i
\(78\) 0 0
\(79\) −3300.68 −0.528870 −0.264435 0.964403i \(-0.585186\pi\)
−0.264435 + 0.964403i \(0.585186\pi\)
\(80\) −1780.45 + 1780.45i −0.278195 + 0.278195i
\(81\) −7710.57 −1.17521
\(82\) 8325.63i 1.23820i
\(83\) −1803.48 + 1803.48i −0.261791 + 0.261791i −0.825781 0.563991i \(-0.809265\pi\)
0.563991 + 0.825781i \(0.309265\pi\)
\(84\) 4712.95 4712.95i 0.667935 0.667935i
\(85\) −11596.4 11596.4i −1.60504 1.60504i
\(86\) 2815.39 + 2815.39i 0.380663 + 0.380663i
\(87\) −11013.1 −1.45503
\(88\) 1891.05i 0.244195i
\(89\) 2917.53 + 2917.53i 0.368329 + 0.368329i 0.866867 0.498539i \(-0.166130\pi\)
−0.498539 + 0.866867i \(0.666130\pi\)
\(90\) 6971.71i 0.860705i
\(91\) 0 0
\(92\) −3696.59 −0.436743
\(93\) −811.109 + 811.109i −0.0937806 + 0.0937806i
\(94\) −5493.02 −0.621664
\(95\) 208.538i 0.0231067i
\(96\) 1534.14 1534.14i 0.166465 0.166465i
\(97\) 10446.8 10446.8i 1.11030 1.11030i 0.117188 0.993110i \(-0.462612\pi\)
0.993110 0.117188i \(-0.0373879\pi\)
\(98\) 4861.98 + 4861.98i 0.506246 + 0.506246i
\(99\) −3702.40 3702.40i −0.377758 0.377758i
\(100\) −7382.77 −0.738277
\(101\) 1164.32i 0.114138i 0.998370 + 0.0570688i \(0.0181754\pi\)
−0.998370 + 0.0570688i \(0.981825\pi\)
\(102\) 9992.15 + 9992.15i 0.960414 + 0.960414i
\(103\) 13334.2i 1.25688i 0.777860 + 0.628438i \(0.216305\pi\)
−0.777860 + 0.628438i \(0.783695\pi\)
\(104\) 0 0
\(105\) 32778.0 2.97306
\(106\) 5039.57 5039.57i 0.448520 0.448520i
\(107\) 16300.3 1.42374 0.711868 0.702314i \(-0.247850\pi\)
0.711868 + 0.702314i \(0.247850\pi\)
\(108\) 1759.33i 0.150835i
\(109\) 14940.7 14940.7i 1.25753 1.25753i 0.305259 0.952269i \(-0.401257\pi\)
0.952269 0.305259i \(-0.0987430\pi\)
\(110\) −6576.00 + 6576.00i −0.543471 + 0.543471i
\(111\) −1850.60 1850.60i −0.150199 0.150199i
\(112\) 3145.78 + 3145.78i 0.250779 + 0.250779i
\(113\) 2940.09 0.230252 0.115126 0.993351i \(-0.463273\pi\)
0.115126 + 0.993351i \(0.463273\pi\)
\(114\) 179.689i 0.0138265i
\(115\) −12854.7 12854.7i −0.971997 0.971997i
\(116\) 7350.99i 0.546298i
\(117\) 0 0
\(118\) 1550.29 0.111339
\(119\) −20489.1 + 20489.1i −1.44687 + 1.44687i
\(120\) 10669.7 0.740954
\(121\) 7656.49i 0.522949i
\(122\) 5411.25 5411.25i 0.363562 0.363562i
\(123\) 24946.6 24946.6i 1.64893 1.64893i
\(124\) −541.395 541.395i −0.0352104 0.0352104i
\(125\) −8285.92 8285.92i −0.530299 0.530299i
\(126\) −12318.0 −0.775885
\(127\) 29566.9i 1.83315i −0.399863 0.916575i \(-0.630942\pi\)
0.399863 0.916575i \(-0.369058\pi\)
\(128\) 1024.00 + 1024.00i 0.0625000 + 0.0625000i
\(129\) 16871.9i 1.01387i
\(130\) 0 0
\(131\) −16053.2 −0.935446 −0.467723 0.883875i \(-0.654925\pi\)
−0.467723 + 0.883875i \(0.654925\pi\)
\(132\) 5666.28 5666.28i 0.325200 0.325200i
\(133\) −368.455 −0.0208296
\(134\) 9703.32i 0.540394i
\(135\) 6117.97 6117.97i 0.335691 0.335691i
\(136\) −6669.51 + 6669.51i −0.360592 + 0.360592i
\(137\) −7714.53 7714.53i −0.411025 0.411025i 0.471070 0.882096i \(-0.343868\pi\)
−0.882096 + 0.471070i \(0.843868\pi\)
\(138\) 11076.4 + 11076.4i 0.581619 + 0.581619i
\(139\) 13585.1 0.703129 0.351564 0.936164i \(-0.385650\pi\)
0.351564 + 0.936164i \(0.385650\pi\)
\(140\) 21878.5i 1.11625i
\(141\) 16459.1 + 16459.1i 0.827881 + 0.827881i
\(142\) 19894.5i 0.986633i
\(143\) 0 0
\(144\) −4009.69 −0.193368
\(145\) 25562.6 25562.6i 1.21582 1.21582i
\(146\) 4833.65 0.226762
\(147\) 29136.6i 1.34835i
\(148\) 1235.23 1235.23i 0.0563930 0.0563930i
\(149\) −18912.7 + 18912.7i −0.851886 + 0.851886i −0.990365 0.138480i \(-0.955778\pi\)
0.138480 + 0.990365i \(0.455778\pi\)
\(150\) 22121.5 + 22121.5i 0.983177 + 0.983177i
\(151\) −10548.8 10548.8i −0.462645 0.462645i 0.436877 0.899521i \(-0.356085\pi\)
−0.899521 + 0.436877i \(0.856085\pi\)
\(152\) −119.938 −0.00519122
\(153\) 26115.9i 1.11563i
\(154\) 11618.8 + 11618.8i 0.489914 + 0.489914i
\(155\) 3765.33i 0.156725i
\(156\) 0 0
\(157\) 4252.07 0.172505 0.0862524 0.996273i \(-0.472511\pi\)
0.0862524 + 0.996273i \(0.472511\pi\)
\(158\) −6601.36 + 6601.36i −0.264435 + 0.264435i
\(159\) −30200.8 −1.19460
\(160\) 7121.78i 0.278195i
\(161\) −22712.2 + 22712.2i −0.876210 + 0.876210i
\(162\) −15421.1 + 15421.1i −0.587606 + 0.587606i
\(163\) 9633.41 + 9633.41i 0.362581 + 0.362581i 0.864762 0.502181i \(-0.167469\pi\)
−0.502181 + 0.864762i \(0.667469\pi\)
\(164\) 16651.3 + 16651.3i 0.619098 + 0.619098i
\(165\) 39408.2 1.44750
\(166\) 7213.90i 0.261791i
\(167\) −27778.0 27778.0i −0.996021 0.996021i 0.00397084 0.999992i \(-0.498736\pi\)
−0.999992 + 0.00397084i \(0.998736\pi\)
\(168\) 18851.8i 0.667935i
\(169\) 0 0
\(170\) −46385.6 −1.60504
\(171\) 234.821 234.821i 0.00803054 0.00803054i
\(172\) 11261.5 0.380663
\(173\) 6.52133i 0.000217893i −1.00000 0.000108947i \(-0.999965\pi\)
1.00000 0.000108947i \(-3.46788e-5\pi\)
\(174\) −22026.3 + 22026.3i −0.727515 + 0.727515i
\(175\) −45360.4 + 45360.4i −1.48116 + 1.48116i
\(176\) 3782.10 + 3782.10i 0.122098 + 0.122098i
\(177\) −4645.23 4645.23i −0.148272 0.148272i
\(178\) 11670.1 0.368329
\(179\) 25343.4i 0.790969i −0.918473 0.395485i \(-0.870577\pi\)
0.918473 0.395485i \(-0.129423\pi\)
\(180\) −13943.4 13943.4i −0.430353 0.430353i
\(181\) 13510.0i 0.412380i 0.978512 + 0.206190i \(0.0661065\pi\)
−0.978512 + 0.206190i \(0.933894\pi\)
\(182\) 0 0
\(183\) −32428.2 −0.968323
\(184\) −7393.19 + 7393.19i −0.218372 + 0.218372i
\(185\) 8590.88 0.251012
\(186\) 3244.43i 0.0937806i
\(187\) −24633.5 + 24633.5i −0.704439 + 0.704439i
\(188\) −10986.0 + 10986.0i −0.310832 + 0.310832i
\(189\) −10809.5 10809.5i −0.302610 0.302610i
\(190\) −417.076 417.076i −0.0115534 0.0115534i
\(191\) −12999.2 −0.356329 −0.178165 0.984001i \(-0.557016\pi\)
−0.178165 + 0.984001i \(0.557016\pi\)
\(192\) 6136.56i 0.166465i
\(193\) −12126.5 12126.5i −0.325552 0.325552i 0.525340 0.850892i \(-0.323938\pi\)
−0.850892 + 0.525340i \(0.823938\pi\)
\(194\) 41787.2i 1.11030i
\(195\) 0 0
\(196\) 19447.9 0.506246
\(197\) 349.848 349.848i 0.00901462 0.00901462i −0.702585 0.711600i \(-0.747971\pi\)
0.711600 + 0.702585i \(0.247971\pi\)
\(198\) −14809.6 −0.377758
\(199\) 56143.5i 1.41773i −0.705344 0.708865i \(-0.749207\pi\)
0.705344 0.708865i \(-0.250793\pi\)
\(200\) −14765.5 + 14765.5i −0.369138 + 0.369138i
\(201\) 29074.7 29074.7i 0.719653 0.719653i
\(202\) 2328.63 + 2328.63i 0.0570688 + 0.0570688i
\(203\) −45165.2 45165.2i −1.09600 1.09600i
\(204\) 39968.6 0.960414
\(205\) 115807.i 2.75568i
\(206\) 26668.4 + 26668.4i 0.628438 + 0.628438i
\(207\) 28949.6i 0.675619i
\(208\) 0 0
\(209\) −442.985 −0.0101414
\(210\) 65555.9 65555.9i 1.48653 1.48653i
\(211\) 10570.7 0.237431 0.118716 0.992928i \(-0.462122\pi\)
0.118716 + 0.992928i \(0.462122\pi\)
\(212\) 20158.3i 0.448520i
\(213\) 59611.1 59611.1i 1.31392 1.31392i
\(214\) 32600.7 32600.7i 0.711868 0.711868i
\(215\) 39161.3 + 39161.3i 0.847189 + 0.847189i
\(216\) −3518.67 3518.67i −0.0754173 0.0754173i
\(217\) −6652.76 −0.141281
\(218\) 59762.8i 1.25753i
\(219\) −14483.4 14483.4i −0.301983 0.301983i
\(220\) 26304.0i 0.543471i
\(221\) 0 0
\(222\) −7402.42 −0.150199
\(223\) 27271.4 27271.4i 0.548401 0.548401i −0.377577 0.925978i \(-0.623243\pi\)
0.925978 + 0.377577i \(0.123243\pi\)
\(224\) 12583.1 0.250779
\(225\) 57817.6i 1.14208i
\(226\) 5880.18 5880.18i 0.115126 0.115126i
\(227\) −42485.7 + 42485.7i −0.824500 + 0.824500i −0.986750 0.162250i \(-0.948125\pi\)
0.162250 + 0.986750i \(0.448125\pi\)
\(228\) 359.378 + 359.378i 0.00691324 + 0.00691324i
\(229\) −28796.6 28796.6i −0.549124 0.549124i 0.377063 0.926188i \(-0.376934\pi\)
−0.926188 + 0.377063i \(0.876934\pi\)
\(230\) −51418.6 −0.971997
\(231\) 69628.3i 1.30485i
\(232\) −14702.0 14702.0i −0.273149 0.273149i
\(233\) 54456.8i 1.00309i 0.865131 + 0.501546i \(0.167235\pi\)
−0.865131 + 0.501546i \(0.832765\pi\)
\(234\) 0 0
\(235\) −76406.4 −1.38355
\(236\) 3100.57 3100.57i 0.0556696 0.0556696i
\(237\) 39560.2 0.704307
\(238\) 81956.2i 1.44687i
\(239\) 32089.5 32089.5i 0.561782 0.561782i −0.368031 0.929813i \(-0.619968\pi\)
0.929813 + 0.368031i \(0.119968\pi\)
\(240\) 21339.5 21339.5i 0.370477 0.370477i
\(241\) 69395.6 + 69395.6i 1.19481 + 1.19481i 0.975701 + 0.219105i \(0.0703138\pi\)
0.219105 + 0.975701i \(0.429686\pi\)
\(242\) −15313.0 15313.0i −0.261474 0.261474i
\(243\) 74601.5 1.26338
\(244\) 21645.0i 0.363562i
\(245\) 67628.9 + 67628.9i 1.12668 + 1.12668i
\(246\) 99786.5i 1.64893i
\(247\) 0 0
\(248\) −2165.58 −0.0352104
\(249\) 21615.5 21615.5i 0.348631 0.348631i
\(250\) −33143.7 −0.530299
\(251\) 29730.6i 0.471906i 0.971764 + 0.235953i \(0.0758212\pi\)
−0.971764 + 0.235953i \(0.924179\pi\)
\(252\) −24635.9 + 24635.9i −0.387943 + 0.387943i
\(253\) −27306.4 + 27306.4i −0.426603 + 0.426603i
\(254\) −59133.8 59133.8i −0.916575 0.916575i
\(255\) 138988. + 138988.i 2.13746 + 2.13746i
\(256\) 4096.00 0.0625000
\(257\) 12836.7i 0.194352i 0.995267 + 0.0971759i \(0.0309809\pi\)
−0.995267 + 0.0971759i \(0.969019\pi\)
\(258\) −33743.7 33743.7i −0.506937 0.506937i
\(259\) 15178.8i 0.226275i
\(260\) 0 0
\(261\) 57568.7 0.845095
\(262\) −32106.4 + 32106.4i −0.467723 + 0.467723i
\(263\) 59850.0 0.865272 0.432636 0.901569i \(-0.357584\pi\)
0.432636 + 0.901569i \(0.357584\pi\)
\(264\) 22665.1i 0.325200i
\(265\) 70099.1 70099.1i 0.998207 0.998207i
\(266\) −736.910 + 736.910i −0.0104148 + 0.0104148i
\(267\) −34968.0 34968.0i −0.490510 0.490510i
\(268\) 19406.6 + 19406.6i 0.270197 + 0.270197i
\(269\) −80657.7 −1.11466 −0.557329 0.830292i \(-0.688174\pi\)
−0.557329 + 0.830292i \(0.688174\pi\)
\(270\) 24471.9i 0.335691i
\(271\) 54675.2 + 54675.2i 0.744478 + 0.744478i 0.973436 0.228958i \(-0.0735318\pi\)
−0.228958 + 0.973436i \(0.573532\pi\)
\(272\) 26678.0i 0.360592i
\(273\) 0 0
\(274\) −30858.1 −0.411025
\(275\) −54535.9 + 54535.9i −0.721135 + 0.721135i
\(276\) 44305.4 0.581619
\(277\) 54949.1i 0.716145i −0.933694 0.358073i \(-0.883434\pi\)
0.933694 0.358073i \(-0.116566\pi\)
\(278\) 27170.3 27170.3i 0.351564 0.351564i
\(279\) 4239.89 4239.89i 0.0544686 0.0544686i
\(280\) 43756.9 + 43756.9i 0.558124 + 0.558124i
\(281\) −24920.8 24920.8i −0.315609 0.315609i 0.531469 0.847078i \(-0.321640\pi\)
−0.847078 + 0.531469i \(0.821640\pi\)
\(282\) 65836.4 0.827881
\(283\) 40742.6i 0.508716i 0.967110 + 0.254358i \(0.0818642\pi\)
−0.967110 + 0.254358i \(0.918136\pi\)
\(284\) 39788.9 + 39788.9i 0.493316 + 0.493316i
\(285\) 2499.43i 0.0307716i
\(286\) 0 0
\(287\) 204614. 2.48411
\(288\) −8019.38 + 8019.38i −0.0966842 + 0.0966842i
\(289\) −90238.2 −1.08043
\(290\) 102250.i 1.21582i
\(291\) −125210. + 125210.i −1.47860 + 1.47860i
\(292\) 9667.31 9667.31i 0.113381 0.113381i
\(293\) −86357.9 86357.9i −1.00593 1.00593i −0.999982 0.00594591i \(-0.998107\pi\)
−0.00594591 0.999982i \(-0.501893\pi\)
\(294\) −58273.1 58273.1i −0.674177 0.674177i
\(295\) 21564.1 0.247792
\(296\) 4940.93i 0.0563930i
\(297\) −12996.1 12996.1i −0.147333 0.147333i
\(298\) 75650.9i 0.851886i
\(299\) 0 0
\(300\) 88485.9 0.983177
\(301\) 69192.0 69192.0i 0.763701 0.763701i
\(302\) −42195.1 −0.462645
\(303\) 13954.9i 0.151999i
\(304\) −239.876 + 239.876i −0.00259561 + 0.00259561i
\(305\) 75269.1 75269.1i 0.809127 0.809127i
\(306\) −52231.7 52231.7i −0.557817 0.557817i
\(307\) −16827.4 16827.4i −0.178542 0.178542i 0.612178 0.790720i \(-0.290294\pi\)
−0.790720 + 0.612178i \(0.790294\pi\)
\(308\) 46475.2 0.489914
\(309\) 159817.i 1.67380i
\(310\) −7530.66 7530.66i −0.0783627 0.0783627i
\(311\) 91661.6i 0.947691i −0.880608 0.473845i \(-0.842866\pi\)
0.880608 0.473845i \(-0.157134\pi\)
\(312\) 0 0
\(313\) −97693.4 −0.997186 −0.498593 0.866836i \(-0.666150\pi\)
−0.498593 + 0.866836i \(0.666150\pi\)
\(314\) 8504.14 8504.14i 0.0862524 0.0862524i
\(315\) −171340. −1.72678
\(316\) 26405.4i 0.264435i
\(317\) 13766.4 13766.4i 0.136994 0.136994i −0.635284 0.772278i \(-0.719117\pi\)
0.772278 + 0.635284i \(0.219117\pi\)
\(318\) −60401.6 + 60401.6i −0.597302 + 0.597302i
\(319\) −54301.1 54301.1i −0.533614 0.533614i
\(320\) 14243.6 + 14243.6i 0.139097 + 0.139097i
\(321\) −195367. −1.89601
\(322\) 90848.9i 0.876210i
\(323\) −1562.36 1562.36i −0.0149753 0.0149753i
\(324\) 61684.5i 0.587606i
\(325\) 0 0
\(326\) 38533.7 0.362581
\(327\) −179071. + 179071.i −1.67467 + 1.67467i
\(328\) 66605.0 0.619098
\(329\) 134999.i 1.24720i
\(330\) 78816.4 78816.4i 0.723750 0.723750i
\(331\) −37790.7 + 37790.7i −0.344928 + 0.344928i −0.858216 0.513288i \(-0.828427\pi\)
0.513288 + 0.858216i \(0.328427\pi\)
\(332\) 14427.8 + 14427.8i 0.130895 + 0.130895i
\(333\) 9673.63 + 9673.63i 0.0872370 + 0.0872370i
\(334\) −111112. −0.996021
\(335\) 134971.i 1.20268i
\(336\) −37703.6 37703.6i −0.333968 0.333968i
\(337\) 13090.4i 0.115264i 0.998338 + 0.0576319i \(0.0183550\pi\)
−0.998338 + 0.0576319i \(0.981645\pi\)
\(338\) 0 0
\(339\) −35238.4 −0.306631
\(340\) −92771.1 + 92771.1i −0.802518 + 0.802518i
\(341\) −7998.47 −0.0687857
\(342\) 939.284i 0.00803054i
\(343\) 1474.16 1474.16i 0.0125301 0.0125301i
\(344\) 22523.1 22523.1i 0.190332 0.190332i
\(345\) 154069. + 154069.i 1.29443 + 1.29443i
\(346\) −13.0427 13.0427i −0.000108947 0.000108947i
\(347\) 61798.8 0.513241 0.256620 0.966512i \(-0.417391\pi\)
0.256620 + 0.966512i \(0.417391\pi\)
\(348\) 88105.0i 0.727515i
\(349\) −131328. 131328.i −1.07822 1.07822i −0.996670 0.0815455i \(-0.974014\pi\)
−0.0815455 0.996670i \(-0.525986\pi\)
\(350\) 181442.i 1.48116i
\(351\) 0 0
\(352\) 15128.4 0.122098
\(353\) 137041. 137041.i 1.09977 1.09977i 0.105333 0.994437i \(-0.466409\pi\)
0.994437 0.105333i \(-0.0335910\pi\)
\(354\) −18580.9 −0.148272
\(355\) 276727.i 2.19581i
\(356\) 23340.2 23340.2i 0.184164 0.184164i
\(357\) 245571. 245571.i 1.92682 1.92682i
\(358\) −50686.9 50686.9i −0.395485 0.395485i
\(359\) −24773.9 24773.9i −0.192223 0.192223i 0.604433 0.796656i \(-0.293400\pi\)
−0.796656 + 0.604433i \(0.793400\pi\)
\(360\) −55773.7 −0.430353
\(361\) 130293.i 0.999784i
\(362\) 27020.0 + 27020.0i 0.206190 + 0.206190i
\(363\) 91766.6i 0.696420i
\(364\) 0 0
\(365\) 67234.9 0.504671
\(366\) −64856.3 + 64856.3i −0.484162 + 0.484162i
\(367\) 168676. 1.25234 0.626169 0.779687i \(-0.284622\pi\)
0.626169 + 0.779687i \(0.284622\pi\)
\(368\) 29572.8i 0.218372i
\(369\) −130403. + 130403.i −0.957712 + 0.957712i
\(370\) 17181.8 17181.8i 0.125506 0.125506i
\(371\) −123854. 123854.i −0.899837 0.899837i
\(372\) 6488.87 + 6488.87i 0.0468903 + 0.0468903i
\(373\) 104703. 0.752559 0.376279 0.926506i \(-0.377203\pi\)
0.376279 + 0.926506i \(0.377203\pi\)
\(374\) 98534.2i 0.704439i
\(375\) 99310.6 + 99310.6i 0.706209 + 0.706209i
\(376\) 43944.2i 0.310832i
\(377\) 0 0
\(378\) −43238.1 −0.302610
\(379\) 125500. 125500.i 0.873709 0.873709i −0.119165 0.992874i \(-0.538022\pi\)
0.992874 + 0.119165i \(0.0380219\pi\)
\(380\) −1668.30 −0.0115534
\(381\) 354373.i 2.44124i
\(382\) −25998.5 + 25998.5i −0.178165 + 0.178165i
\(383\) 20232.1 20232.1i 0.137925 0.137925i −0.634773 0.772698i \(-0.718907\pi\)
0.772698 + 0.634773i \(0.218907\pi\)
\(384\) −12273.1 12273.1i −0.0832324 0.0832324i
\(385\) 161614. + 161614.i 1.09033 + 1.09033i
\(386\) −48506.0 −0.325552
\(387\) 88193.9i 0.588866i
\(388\) −83574.3 83574.3i −0.555149 0.555149i
\(389\) 139258.i 0.920283i −0.887846 0.460141i \(-0.847799\pi\)
0.887846 0.460141i \(-0.152201\pi\)
\(390\) 0 0
\(391\) −192613. −1.25989
\(392\) 38895.9 38895.9i 0.253123 0.253123i
\(393\) 192405. 1.24575
\(394\) 1399.39i 0.00901462i
\(395\) −91823.2 + 91823.2i −0.588516 + 0.588516i
\(396\) −29619.2 + 29619.2i −0.188879 + 0.188879i
\(397\) 25795.6 + 25795.6i 0.163668 + 0.163668i 0.784190 0.620521i \(-0.213079\pi\)
−0.620521 + 0.784190i \(0.713079\pi\)
\(398\) −112287. 112287.i −0.708865 0.708865i
\(399\) 4416.10 0.0277392
\(400\) 59062.1i 0.369138i
\(401\) −94955.8 94955.8i −0.590517 0.590517i 0.347254 0.937771i \(-0.387114\pi\)
−0.937771 + 0.347254i \(0.887114\pi\)
\(402\) 116299.i 0.719653i
\(403\) 0 0
\(404\) 9314.54 0.0570688
\(405\) −214504. + 214504.i −1.30775 + 1.30775i
\(406\) −180661. −1.09600
\(407\) 18249.1i 0.110167i
\(408\) 79937.2 79937.2i 0.480207 0.480207i
\(409\) 8116.40 8116.40i 0.0485195 0.0485195i −0.682431 0.730950i \(-0.739077\pi\)
0.730950 + 0.682431i \(0.239077\pi\)
\(410\) 231615. + 231615.i 1.37784 + 1.37784i
\(411\) 92462.3 + 92462.3i 0.547370 + 0.547370i
\(412\) 106674. 0.628438
\(413\) 38100.4i 0.223373i
\(414\) −57899.2 57899.2i −0.337809 0.337809i
\(415\) 100343.i 0.582630i
\(416\) 0 0
\(417\) −162824. −0.936369
\(418\) −885.971 + 885.971i −0.00507069 + 0.00507069i
\(419\) −223820. −1.27488 −0.637441 0.770499i \(-0.720007\pi\)
−0.637441 + 0.770499i \(0.720007\pi\)
\(420\) 262224.i 1.48653i
\(421\) −231747. + 231747.i −1.30753 + 1.30753i −0.384333 + 0.923195i \(0.625568\pi\)
−0.923195 + 0.384333i \(0.874432\pi\)
\(422\) 21141.3 21141.3i 0.118716 0.118716i
\(423\) −86036.3 86036.3i −0.480840 0.480840i
\(424\) −40316.6 40316.6i −0.224260 0.224260i
\(425\) −384683. −2.12973
\(426\) 238444.i 1.31392i
\(427\) −132989. 132989.i −0.729390 0.729390i
\(428\) 130403.i 0.711868i
\(429\) 0 0
\(430\) 156645. 0.847189
\(431\) −205616. + 205616.i −1.10689 + 1.10689i −0.113330 + 0.993557i \(0.536152\pi\)
−0.993557 + 0.113330i \(0.963848\pi\)
\(432\) −14074.7 −0.0754173
\(433\) 222253.i 1.18542i 0.805416 + 0.592710i \(0.201942\pi\)
−0.805416 + 0.592710i \(0.798058\pi\)
\(434\) −13305.5 + 13305.5i −0.0706403 + 0.0706403i
\(435\) −306379. + 306379.i −1.61913 + 1.61913i
\(436\) −119526. 119526.i −0.628764 0.628764i
\(437\) −1731.88 1731.88i −0.00906891 0.00906891i
\(438\) −57933.6 −0.301983
\(439\) 303638.i 1.57553i −0.615975 0.787765i \(-0.711238\pi\)
0.615975 0.787765i \(-0.288762\pi\)
\(440\) 52608.0 + 52608.0i 0.271736 + 0.271736i
\(441\) 152305.i 0.783135i
\(442\) 0 0
\(443\) 103827. 0.529060 0.264530 0.964377i \(-0.414783\pi\)
0.264530 + 0.964377i \(0.414783\pi\)
\(444\) −14804.8 + 14804.8i −0.0750996 + 0.0750996i
\(445\) 162328. 0.819736
\(446\) 109086.i 0.548401i
\(447\) 226678. 226678.i 1.13447 1.13447i
\(448\) 25166.2 25166.2i 0.125390 0.125390i
\(449\) −11231.3 11231.3i −0.0557104 0.0557104i 0.678703 0.734413i \(-0.262542\pi\)
−0.734413 + 0.678703i \(0.762542\pi\)
\(450\) −115635. 115635.i −0.571038 0.571038i
\(451\) 246003. 1.20945
\(452\) 23520.7i 0.115126i
\(453\) 126432. + 126432.i 0.616113 + 0.616113i
\(454\) 169943.i 0.824500i
\(455\) 0 0
\(456\) 1437.51 0.00691324
\(457\) −162517. + 162517.i −0.778155 + 0.778155i −0.979517 0.201362i \(-0.935463\pi\)
0.201362 + 0.979517i \(0.435463\pi\)
\(458\) −115187. −0.549124
\(459\) 91671.1i 0.435118i
\(460\) −102837. + 102837.i −0.485999 + 0.485999i
\(461\) −37275.2 + 37275.2i −0.175396 + 0.175396i −0.789345 0.613950i \(-0.789580\pi\)
0.613950 + 0.789345i \(0.289580\pi\)
\(462\) −139257. 139257.i −0.652427 0.652427i
\(463\) −137439. 137439.i −0.641134 0.641134i 0.309700 0.950834i \(-0.399771\pi\)
−0.950834 + 0.309700i \(0.899771\pi\)
\(464\) −58807.9 −0.273149
\(465\) 45129.2i 0.208714i
\(466\) 108914. + 108914.i 0.501546 + 0.501546i
\(467\) 49120.0i 0.225229i 0.993639 + 0.112615i \(0.0359225\pi\)
−0.993639 + 0.112615i \(0.964077\pi\)
\(468\) 0 0
\(469\) 238473. 1.08416
\(470\) −152813. + 152813.i −0.691774 + 0.691774i
\(471\) −50963.0 −0.229728
\(472\) 12402.3i 0.0556696i
\(473\) 83188.1 83188.1i 0.371825 0.371825i
\(474\) 79120.4 79120.4i 0.352153 0.352153i
\(475\) −3458.88 3458.88i −0.0153302 0.0153302i
\(476\) 163912. + 163912.i 0.723433 + 0.723433i
\(477\) 157868. 0.693837
\(478\) 128358.i 0.561782i
\(479\) 262401. + 262401.i 1.14365 + 1.14365i 0.987777 + 0.155875i \(0.0498197\pi\)
0.155875 + 0.987777i \(0.450180\pi\)
\(480\) 85357.9i 0.370477i
\(481\) 0 0
\(482\) 277582. 1.19481
\(483\) 272217. 272217.i 1.16686 1.16686i
\(484\) −61251.9 −0.261474
\(485\) 581248.i 2.47103i
\(486\) 149203. 149203.i 0.631691 0.631691i
\(487\) −52753.7 + 52753.7i −0.222431 + 0.222431i −0.809521 0.587090i \(-0.800273\pi\)
0.587090 + 0.809521i \(0.300273\pi\)
\(488\) −43290.0 43290.0i −0.181781 0.181781i
\(489\) −115461. 115461.i −0.482856 0.482856i
\(490\) 270516. 1.12668
\(491\) 17315.8i 0.0718258i 0.999355 + 0.0359129i \(0.0114339\pi\)
−0.999355 + 0.0359129i \(0.988566\pi\)
\(492\) −199573. 199573.i −0.824464 0.824464i
\(493\) 383027.i 1.57593i
\(494\) 0 0
\(495\) −205998. −0.840721
\(496\) −4331.16 + 4331.16i −0.0176052 + 0.0176052i
\(497\) 488934. 1.97942
\(498\) 86462.0i 0.348631i
\(499\) −76303.8 + 76303.8i −0.306440 + 0.306440i −0.843527 0.537087i \(-0.819525\pi\)
0.537087 + 0.843527i \(0.319525\pi\)
\(500\) −66287.4 + 66287.4i −0.265149 + 0.265149i
\(501\) 332933. + 332933.i 1.32642 + 1.32642i
\(502\) 59461.1 + 59461.1i 0.235953 + 0.235953i
\(503\) −332406. −1.31381 −0.656906 0.753973i \(-0.728135\pi\)
−0.656906 + 0.753973i \(0.728135\pi\)
\(504\) 98543.6i 0.387943i
\(505\) 32390.7 + 32390.7i 0.127010 + 0.127010i
\(506\) 109226.i 0.426603i
\(507\) 0 0
\(508\) −236535. −0.916575
\(509\) 103718. 103718.i 0.400330 0.400330i −0.478020 0.878349i \(-0.658645\pi\)
0.878349 + 0.478020i \(0.158645\pi\)
\(510\) 555952. 2.13746
\(511\) 118794.i 0.454938i
\(512\) 8192.00 8192.00i 0.0312500 0.0312500i
\(513\) 824.261 824.261i 0.00313206 0.00313206i
\(514\) 25673.5 + 25673.5i 0.0971759 + 0.0971759i
\(515\) 370950. + 370950.i 1.39862 + 1.39862i
\(516\) −134975. −0.506937
\(517\) 162306.i 0.607230i
\(518\) −30357.6 30357.6i −0.113138 0.113138i
\(519\) 78.1612i 0.000290173i
\(520\) 0 0
\(521\) −510268. −1.87985 −0.939923 0.341385i \(-0.889104\pi\)
−0.939923 + 0.341385i \(0.889104\pi\)
\(522\) 115137. 115137.i 0.422547 0.422547i
\(523\) −531190. −1.94199 −0.970993 0.239108i \(-0.923145\pi\)
−0.970993 + 0.239108i \(0.923145\pi\)
\(524\) 128425.i 0.467723i
\(525\) 543666. 543666.i 1.97248 1.97248i
\(526\) 119700. 119700.i 0.432636 0.432636i
\(527\) −28209.7 28209.7i −0.101573 0.101573i
\(528\) −45330.2 45330.2i −0.162600 0.162600i
\(529\) 66328.4 0.237022
\(530\) 280396.i 0.998207i
\(531\) 24281.9 + 24281.9i 0.0861179 + 0.0861179i
\(532\) 2947.64i 0.0104148i
\(533\) 0 0
\(534\) −139872. −0.490510
\(535\) 453467. 453467.i 1.58430 1.58430i
\(536\) 77626.6 0.270197
\(537\) 303753.i 1.05335i
\(538\) −161315. + 161315.i −0.557329 + 0.557329i
\(539\) 143660. 143660.i 0.494491 0.494491i
\(540\) −48943.8 48943.8i −0.167846 0.167846i
\(541\) −266982. 266982.i −0.912194 0.912194i 0.0842501 0.996445i \(-0.473151\pi\)
−0.996445 + 0.0842501i \(0.973151\pi\)
\(542\) 218701. 0.744478
\(543\) 161923.i 0.549174i
\(544\) 53356.1 + 53356.1i 0.180296 + 0.180296i
\(545\) 831284.i 2.79870i
\(546\) 0 0
\(547\) 412153. 1.37748 0.688738 0.725010i \(-0.258165\pi\)
0.688738 + 0.725010i \(0.258165\pi\)
\(548\) −61716.3 + 61716.3i −0.205513 + 0.205513i
\(549\) 169511. 0.562411
\(550\) 218143.i 0.721135i
\(551\) 3443.99 3443.99i 0.0113438 0.0113438i
\(552\) 88610.8 88610.8i 0.290809 0.290809i
\(553\) 162238. + 162238.i 0.530519 + 0.530519i
\(554\) −109898. 109898.i −0.358073 0.358073i
\(555\) −102966. −0.334277
\(556\) 108681.i 0.351564i
\(557\) 147814. + 147814.i 0.476438 + 0.476438i 0.903990 0.427553i \(-0.140624\pi\)
−0.427553 + 0.903990i \(0.640624\pi\)
\(558\) 16959.6i 0.0544686i
\(559\) 0 0
\(560\) 175028. 0.558124
\(561\) 295244. 295244.i 0.938115 0.938115i
\(562\) −99683.1 −0.315609
\(563\) 213487.i 0.673527i −0.941589 0.336763i \(-0.890668\pi\)
0.941589 0.336763i \(-0.109332\pi\)
\(564\) 131673. 131673.i 0.413940 0.413940i
\(565\) 81791.8 81791.8i 0.256220 0.256220i
\(566\) 81485.2 + 81485.2i 0.254358 + 0.254358i
\(567\) 378996. + 378996.i 1.17888 + 1.17888i
\(568\) 159156. 0.493316
\(569\) 430345.i 1.32921i −0.747196 0.664603i \(-0.768601\pi\)
0.747196 0.664603i \(-0.231399\pi\)
\(570\) 4998.85 + 4998.85i 0.0153858 + 0.0153858i
\(571\) 413840.i 1.26929i 0.772805 + 0.634644i \(0.218853\pi\)
−0.772805 + 0.634644i \(0.781147\pi\)
\(572\) 0 0
\(573\) 155802. 0.474530
\(574\) 409228. 409228.i 1.24206 1.24206i
\(575\) −426423. −1.28975
\(576\) 32077.5i 0.0966842i
\(577\) −349122. + 349122.i −1.04864 + 1.04864i −0.0498841 + 0.998755i \(0.515885\pi\)
−0.998755 + 0.0498841i \(0.984115\pi\)
\(578\) −180476. + 180476.i −0.540213 + 0.540213i
\(579\) 145342. + 145342.i 0.433544 + 0.433544i
\(580\) −204501. 204501.i −0.607909 0.607909i
\(581\) 177292. 0.525214
\(582\) 500838.i 1.47860i
\(583\) −148908. 148908.i −0.438106 0.438106i
\(584\) 38669.2i 0.113381i
\(585\) 0 0
\(586\) −345432. −1.00593
\(587\) 5609.16 5609.16i 0.0162788 0.0162788i −0.698921 0.715199i \(-0.746336\pi\)
0.715199 + 0.698921i \(0.246336\pi\)
\(588\) −233092. −0.674177
\(589\) 507.295i 0.00146228i
\(590\) 43128.2 43128.2i 0.123896 0.123896i
\(591\) −4193.09 + 4193.09i −0.0120049 + 0.0120049i
\(592\) −9881.86 9881.86i −0.0281965 0.0281965i
\(593\) −135707. 135707.i −0.385917 0.385917i 0.487312 0.873228i \(-0.337978\pi\)
−0.873228 + 0.487312i \(0.837978\pi\)
\(594\) −51984.2 −0.147333
\(595\) 1.13999e6i 3.22008i
\(596\) 151302. + 151302.i 0.425943 + 0.425943i
\(597\) 672907.i 1.88802i
\(598\) 0 0
\(599\) 43856.1 0.122230 0.0611149 0.998131i \(-0.480534\pi\)
0.0611149 + 0.998131i \(0.480534\pi\)
\(600\) 176972. 176972.i 0.491588 0.491588i
\(601\) −239364. −0.662690 −0.331345 0.943510i \(-0.607502\pi\)
−0.331345 + 0.943510i \(0.607502\pi\)
\(602\) 276768.i 0.763701i
\(603\) −151982. + 151982.i −0.417981 + 0.417981i
\(604\) −84390.1 + 84390.1i −0.231322 + 0.231322i
\(605\) −213000. 213000.i −0.581926 0.581926i
\(606\) −27909.8 27909.8i −0.0759995 0.0759995i
\(607\) 713286. 1.93591 0.967957 0.251116i \(-0.0807975\pi\)
0.967957 + 0.251116i \(0.0807975\pi\)
\(608\) 959.503i 0.00259561i
\(609\) 541326. + 541326.i 1.45957 + 1.45957i
\(610\) 301076.i 0.809127i
\(611\) 0 0
\(612\) −208927. −0.557817
\(613\) −25856.4 + 25856.4i −0.0688093 + 0.0688093i −0.740674 0.671865i \(-0.765494\pi\)
0.671865 + 0.740674i \(0.265494\pi\)
\(614\) −67309.7 −0.178542
\(615\) 1.38800e6i 3.66978i
\(616\) 92950.3 92950.3i 0.244957 0.244957i
\(617\) −344111. + 344111.i −0.903917 + 0.903917i −0.995772 0.0918557i \(-0.970720\pi\)
0.0918557 + 0.995772i \(0.470720\pi\)
\(618\) −319633. 319633.i −0.836902 0.836902i
\(619\) −112057. 112057.i −0.292453 0.292453i 0.545596 0.838049i \(-0.316303\pi\)
−0.838049 + 0.545596i \(0.816303\pi\)
\(620\) −30122.6 −0.0783627
\(621\) 101618.i 0.263504i
\(622\) −183323. 183323.i −0.473845 0.473845i
\(623\) 286809.i 0.738954i
\(624\) 0 0
\(625\) 115759. 0.296343
\(626\) −195387. + 195387.i −0.498593 + 0.498593i
\(627\) 5309.38 0.0135055
\(628\) 34016.6i 0.0862524i
\(629\) 64362.5 64362.5i 0.162679 0.162679i
\(630\) −342679. + 342679.i −0.863389 + 0.863389i
\(631\) 59131.7 + 59131.7i 0.148512 + 0.148512i 0.777453 0.628941i \(-0.216511\pi\)
−0.628941 + 0.777453i \(0.716511\pi\)
\(632\) 52810.9 + 52810.9i 0.132218 + 0.132218i
\(633\) −126694. −0.316191
\(634\) 55065.5i 0.136994i
\(635\) −822535. 822535.i −2.03989 2.03989i
\(636\) 241606.i 0.597302i
\(637\) 0 0
\(638\) −217204. −0.533614
\(639\) −311604. + 311604.i −0.763135 + 0.763135i
\(640\) 56974.3 0.139097
\(641\) 195783.i 0.476496i 0.971204 + 0.238248i \(0.0765731\pi\)
−0.971204 + 0.238248i \(0.923427\pi\)
\(642\) −390734. + 390734.i −0.948007 + 0.948007i
\(643\) −241575. + 241575.i −0.584293 + 0.584293i −0.936080 0.351787i \(-0.885574\pi\)
0.351787 + 0.936080i \(0.385574\pi\)
\(644\) 181698. + 181698.i 0.438105 + 0.438105i
\(645\) −469366. 469366.i −1.12822 1.12822i
\(646\) −6249.43 −0.0149753
\(647\) 778145.i 1.85888i −0.368970 0.929441i \(-0.620289\pi\)
0.368970 0.929441i \(-0.379711\pi\)
\(648\) 123369. + 123369.i 0.293803 + 0.293803i
\(649\) 45807.3i 0.108754i
\(650\) 0 0
\(651\) 79736.5 0.188146
\(652\) 77067.3 77067.3i 0.181290 0.181290i
\(653\) 542695. 1.27271 0.636355 0.771396i \(-0.280441\pi\)
0.636355 + 0.771396i \(0.280441\pi\)
\(654\) 716285.i 1.67467i
\(655\) −446591. + 446591.i −1.04094 + 1.04094i
\(656\) 133210. 133210.i 0.309549 0.309549i
\(657\) 75708.8 + 75708.8i 0.175394 + 0.175394i
\(658\) 269997. + 269997.i 0.623602 + 0.623602i
\(659\) 776835. 1.78878 0.894392 0.447284i \(-0.147609\pi\)
0.894392 + 0.447284i \(0.147609\pi\)
\(660\) 315266.i 0.723750i
\(661\) −461004. 461004.i −1.05512 1.05512i −0.998389 0.0567313i \(-0.981932\pi\)
−0.0567313 0.998389i \(-0.518068\pi\)
\(662\) 151163.i 0.344928i
\(663\) 0 0
\(664\) 57711.2 0.130895
\(665\) −10250.2 + 10250.2i −0.0231788 + 0.0231788i
\(666\) 38694.5 0.0872370
\(667\) 424588.i 0.954368i
\(668\) −222224. + 222224.i −0.498011 + 0.498011i
\(669\) −326861. + 326861.i −0.730316 + 0.730316i
\(670\) 269941. + 269941.i 0.601339 + 0.601339i
\(671\) −159890. 159890.i −0.355120 0.355120i
\(672\) −150814. −0.333968
\(673\) 734600.i 1.62189i 0.585124 + 0.810944i \(0.301046\pi\)
−0.585124 + 0.810944i \(0.698954\pi\)
\(674\) 26180.8 + 26180.8i 0.0576319 + 0.0576319i
\(675\) 202949.i 0.445431i
\(676\) 0 0
\(677\) −275668. −0.601464 −0.300732 0.953709i \(-0.597231\pi\)
−0.300732 + 0.953709i \(0.597231\pi\)
\(678\) −70476.7 + 70476.7i −0.153316 + 0.153316i
\(679\) −1.02698e6 −2.22752
\(680\) 371084.i 0.802518i
\(681\) 509210. 509210.i 1.09800 1.09800i
\(682\) −15996.9 + 15996.9i −0.0343929 + 0.0343929i
\(683\) −19994.2 19994.2i −0.0428611 0.0428611i 0.685351 0.728213i \(-0.259649\pi\)
−0.728213 + 0.685351i \(0.759649\pi\)
\(684\) −1878.57 1878.57i −0.00401527 0.00401527i
\(685\) −429228. −0.914760
\(686\) 5896.62i 0.0125301i
\(687\) 345141. + 345141.i 0.731279 + 0.731279i
\(688\) 90092.4i 0.190332i
\(689\) 0 0
\(690\) 616276. 1.29443
\(691\) 232076. 232076.i 0.486042 0.486042i −0.421013 0.907055i \(-0.638325\pi\)
0.907055 + 0.421013i \(0.138325\pi\)
\(692\) −52.1707 −0.000108947
\(693\) 363967.i 0.757871i
\(694\) 123598. 123598.i 0.256620 0.256620i
\(695\) 377932. 377932.i 0.782427 0.782427i
\(696\) 176210. + 176210.i 0.363758 + 0.363758i
\(697\) 867623. + 867623.i 1.78593 + 1.78593i
\(698\) −525311. −1.07822
\(699\) 652691.i 1.33584i
\(700\) 362884. + 362884.i 0.740579 + 0.740579i
\(701\) 645341.i 1.31327i 0.754209 + 0.656634i \(0.228020\pi\)
−0.754209 + 0.656634i \(0.771980\pi\)
\(702\) 0 0
\(703\) 1157.43 0.00234199
\(704\) 30256.8 30256.8i 0.0610489 0.0610489i
\(705\) 915767. 1.84250
\(706\) 548165.i 1.09977i
\(707\) 57229.4 57229.4i 0.114493 0.114493i
\(708\) −37161.8 + 37161.8i −0.0741362 + 0.0741362i
\(709\) −66968.7 66968.7i −0.133223 0.133223i 0.637351 0.770574i \(-0.280030\pi\)
−0.770574 + 0.637351i \(0.780030\pi\)
\(710\) 553454. + 553454.i 1.09790 + 1.09790i
\(711\) −206792. −0.409067
\(712\) 93361.0i 0.184164i
\(713\) −31270.6 31270.6i −0.0615116 0.0615116i
\(714\) 982284.i 1.92682i
\(715\) 0 0
\(716\) −202748. −0.395485
\(717\) −384608. + 384608.i −0.748135 + 0.748135i
\(718\) −99095.8 −0.192223
\(719\) 667521.i 1.29124i 0.763659 + 0.645620i \(0.223401\pi\)
−0.763659 + 0.645620i \(0.776599\pi\)
\(720\) −111547. + 111547.i −0.215176 + 0.215176i
\(721\) 655413. 655413.i 1.26079 1.26079i
\(722\) 260586. + 260586.i 0.499892 + 0.499892i
\(723\) −831738. 831738.i −1.59115 1.59115i
\(724\) 108080. 0.206190
\(725\) 847979.i 1.61328i
\(726\) 183533. + 183533.i 0.348210 + 0.348210i
\(727\) 208700.i 0.394870i 0.980316 + 0.197435i \(0.0632611\pi\)
−0.980316 + 0.197435i \(0.936739\pi\)
\(728\) 0 0
\(729\) −269577. −0.507257
\(730\) 134470. 134470.i 0.252336 0.252336i
\(731\) 586789. 1.09811
\(732\) 259425.i 0.484162i
\(733\) 351672. 351672.i 0.654530 0.654530i −0.299550 0.954080i \(-0.596837\pi\)
0.954080 + 0.299550i \(0.0968367\pi\)
\(734\) 337352. 337352.i 0.626169 0.626169i
\(735\) −810564. 810564.i −1.50042 1.50042i
\(736\) 59145.5 + 59145.5i 0.109186 + 0.109186i
\(737\) 286710. 0.527847
\(738\) 521612.i 0.957712i
\(739\) 350623. + 350623.i 0.642024 + 0.642024i 0.951053 0.309029i \(-0.100004\pi\)
−0.309029 + 0.951053i \(0.600004\pi\)
\(740\) 68727.0i 0.125506i
\(741\) 0 0
\(742\) −495418. −0.899837
\(743\) −619690. + 619690.i −1.12253 + 1.12253i −0.131166 + 0.991360i \(0.541872\pi\)
−0.991360 + 0.131166i \(0.958128\pi\)
\(744\) 25955.5 0.0468903
\(745\) 1.05228e6i 1.89592i
\(746\) 209405. 209405.i 0.376279 0.376279i
\(747\) −112990. + 112990.i −0.202488 + 0.202488i
\(748\) 197068. + 197068.i 0.352220 + 0.352220i
\(749\) −801207. 801207.i −1.42817 1.42817i
\(750\) 397242. 0.706209
\(751\) 256027.i 0.453947i −0.973901 0.226974i \(-0.927117\pi\)
0.973901 0.226974i \(-0.0728831\pi\)
\(752\) 87888.3 + 87888.3i 0.155416 + 0.155416i
\(753\) 356335.i 0.628446i
\(754\) 0 0
\(755\) −586922. −1.02964
\(756\) −86476.2 + 86476.2i −0.151305 + 0.151305i
\(757\) 963391. 1.68117 0.840583 0.541683i \(-0.182213\pi\)
0.840583 + 0.541683i \(0.182213\pi\)
\(758\) 502002.i 0.873709i
\(759\) 327280. 327280.i 0.568115 0.568115i
\(760\) −3336.61 + 3336.61i −0.00577668 + 0.00577668i
\(761\) 276390. + 276390.i 0.477257 + 0.477257i 0.904253 0.426996i \(-0.140428\pi\)
−0.426996 + 0.904253i \(0.640428\pi\)
\(762\) 708746. + 708746.i 1.22062 + 1.22062i
\(763\) −1.46875e6 −2.52290
\(764\) 103994.i 0.178165i
\(765\) −726530. 726530.i −1.24145 1.24145i
\(766\) 80928.3i 0.137925i
\(767\) 0 0
\(768\) −49092.5 −0.0832324
\(769\) −132903. + 132903.i −0.224740 + 0.224740i −0.810491 0.585751i \(-0.800800\pi\)
0.585751 + 0.810491i \(0.300800\pi\)
\(770\) 646457. 1.09033
\(771\) 153854.i 0.258822i
\(772\) −97011.9 + 97011.9i −0.162776 + 0.162776i
\(773\) 372392. 372392.i 0.623221 0.623221i −0.323133 0.946354i \(-0.604736\pi\)
0.946354 + 0.323133i \(0.104736\pi\)
\(774\) 176388. + 176388.i 0.294433 + 0.294433i
\(775\) −62453.0 62453.0i −0.103980 0.103980i
\(776\) −334297. −0.555149
\(777\) 181925.i 0.301335i
\(778\) −278516. 278516.i −0.460141 0.460141i
\(779\) 15602.5i 0.0257110i
\(780\) 0 0
\(781\) 587835. 0.963725
\(782\) −385226. + 385226.i −0.629944 + 0.629944i
\(783\) 202076. 0.329603
\(784\) 155583.i 0.253123i
\(785\) 118290. 118290.i 0.191960 0.191960i
\(786\) 384810. 384810.i 0.622875 0.622875i
\(787\) −273464. 273464.i −0.441521 0.441521i 0.451002 0.892523i \(-0.351067\pi\)
−0.892523 + 0.451002i \(0.851067\pi\)
\(788\) −2798.79 2798.79i −0.00450731 0.00450731i
\(789\) −717330. −1.15230
\(790\) 367293.i 0.588516i
\(791\) −144514. 144514.i −0.230970 0.230970i
\(792\) 118477.i 0.188879i
\(793\) 0 0
\(794\) 103182. 0.163668
\(795\) −840170. + 840170.i −1.32933 + 1.32933i
\(796\) −449148. −0.708865
\(797\) 838853.i 1.32059i −0.751005 0.660297i \(-0.770431\pi\)
0.751005 0.660297i \(-0.229569\pi\)
\(798\) 8832.21 8832.21i 0.0138696 0.0138696i
\(799\) −572433. + 572433.i −0.896668 + 0.896668i
\(800\) 118124. + 118124.i 0.184569 + 0.184569i
\(801\) 182787. + 182787.i 0.284892 + 0.284892i
\(802\) −379823. −0.590517
\(803\) 142823.i 0.221497i
\(804\) −232598. 232598.i −0.359826 0.359826i
\(805\) 1.26368e6i 1.95006i
\(806\) 0 0
\(807\) 966720. 1.48441
\(808\) 18629.1 18629.1i 0.0285344 0.0285344i
\(809\) −560469. −0.856356 −0.428178 0.903694i \(-0.640844\pi\)
−0.428178 + 0.903694i \(0.640844\pi\)
\(810\) 858016.i 1.30775i
\(811\) 2176.16 2176.16i 0.00330863 0.00330863i −0.705451 0.708759i \(-0.749255\pi\)
0.708759 + 0.705451i \(0.249255\pi\)
\(812\) −361322. + 361322.i −0.548002 + 0.548002i
\(813\) −655308. 655308.i −0.991436 0.991436i
\(814\) −36498.2 36498.2i −0.0550837 0.0550837i
\(815\) 535993. 0.806945
\(816\) 319749.i 0.480207i
\(817\) 5276.12 + 5276.12i 0.00790443 + 0.00790443i
\(818\) 32465.6i 0.0485195i
\(819\) 0 0
\(820\) 926458. 1.37784
\(821\) 79463.3 79463.3i 0.117891 0.117891i −0.645700 0.763591i \(-0.723434\pi\)
0.763591 + 0.645700i \(0.223434\pi\)
\(822\) 369849. 0.547370
\(823\) 651622.i 0.962047i 0.876708 + 0.481023i \(0.159735\pi\)
−0.876708 + 0.481023i \(0.840265\pi\)
\(824\) 213347. 213347.i 0.314219 0.314219i
\(825\) 653638. 653638.i 0.960349 0.960349i
\(826\) −76200.9 76200.9i −0.111686 0.111686i
\(827\) 458846. + 458846.i 0.670897 + 0.670897i 0.957923 0.287026i \(-0.0926665\pi\)
−0.287026 + 0.957923i \(0.592667\pi\)
\(828\) −231597. −0.337809
\(829\) 1.22076e6i 1.77631i 0.459540 + 0.888157i \(0.348014\pi\)
−0.459540 + 0.888157i \(0.651986\pi\)
\(830\) 200687. + 200687.i 0.291315 + 0.291315i
\(831\) 658590.i 0.953703i
\(832\) 0 0
\(833\) 1.01334e6 1.46038
\(834\) −325649. + 325649.i −0.468185 + 0.468185i
\(835\) −1.54554e6 −2.21670
\(836\) 3543.88i 0.00507069i
\(837\) 14882.7 14882.7i 0.0212438 0.0212438i
\(838\) −447639. + 447639.i −0.637441 + 0.637441i
\(839\) −608696. 608696.i −0.864722 0.864722i 0.127160 0.991882i \(-0.459414\pi\)
−0.991882 + 0.127160i \(0.959414\pi\)
\(840\) −524447. 524447.i −0.743264 0.743264i
\(841\) 137048. 0.193767
\(842\) 926990.i 1.30753i
\(843\) 298687. + 298687.i 0.420302 + 0.420302i
\(844\) 84565.3i 0.118716i
\(845\) 0 0
\(846\) −344145. −0.480840
\(847\) −376338. + 376338.i −0.524579 + 0.524579i
\(848\) −161266. −0.224260
\(849\) 488319.i 0.677467i
\(850\) −769366. + 769366.i −1.06487 + 1.06487i
\(851\) 71346.1 71346.1i 0.0985171 0.0985171i
\(852\) −476889. 476889.i −0.656959 0.656959i
\(853\) −835615. 835615.i −1.14844 1.14844i −0.986860 0.161579i \(-0.948341\pi\)
−0.161579 0.986860i \(-0.551659\pi\)
\(854\) −531956. −0.729390
\(855\) 13065.2i 0.0178724i
\(856\) −260805. 260805.i −0.355934 0.355934i
\(857\) 1.00820e6i 1.37273i −0.727256 0.686366i \(-0.759205\pi\)
0.727256 0.686366i \(-0.240795\pi\)
\(858\) 0 0
\(859\) −766118. −1.03827 −0.519134 0.854693i \(-0.673745\pi\)
−0.519134 + 0.854693i \(0.673745\pi\)
\(860\) 313290. 313290.i 0.423594 0.423594i
\(861\) −2.45239e6 −3.30814
\(862\) 822466.i 1.10689i
\(863\) −205886. + 205886.i −0.276442 + 0.276442i −0.831687 0.555245i \(-0.812625\pi\)
0.555245 + 0.831687i \(0.312625\pi\)
\(864\) −28149.4 + 28149.4i −0.0377087 + 0.0377087i
\(865\) −181.420 181.420i −0.000242467 0.000242467i
\(866\) 444506. + 444506.i 0.592710 + 0.592710i
\(867\) 1.08155e6 1.43882
\(868\) 53222.1i 0.0706403i
\(869\) 195055. + 195055.i 0.258296 + 0.258296i
\(870\) 1.22552e6i 1.61913i
\(871\) 0 0
\(872\) −478102. −0.628764
\(873\) 654506. 654506.i 0.858786 0.858786i
\(874\) −6927.53 −0.00906891
\(875\) 814552.i 1.06390i
\(876\) −115867. + 115867.i −0.150991 + 0.150991i
\(877\) 888049. 888049.i 1.15462 1.15462i 0.169001 0.985616i \(-0.445946\pi\)
0.985616 0.169001i \(-0.0540540\pi\)
\(878\) −607276. 607276.i −0.787765 0.787765i
\(879\) 1.03504e6 + 1.03504e6i 1.33961 + 1.33961i
\(880\) 210432. 0.271736
\(881\) 375767.i 0.484136i −0.970259 0.242068i \(-0.922174\pi\)
0.970259 0.242068i \(-0.0778256\pi\)
\(882\) 304610. + 304610.i 0.391568 + 0.391568i
\(883\) 420890.i 0.539818i −0.962886 0.269909i \(-0.913006\pi\)
0.962886 0.269909i \(-0.0869936\pi\)
\(884\) 0 0
\(885\) −258456. −0.329989
\(886\) 207655. 207655.i 0.264530 0.264530i
\(887\) 1.04182e6 1.32417 0.662086 0.749428i \(-0.269671\pi\)
0.662086 + 0.749428i \(0.269671\pi\)
\(888\) 59219.3i 0.0750996i
\(889\) −1.45329e6 + 1.45329e6i −1.83887 + 1.83887i
\(890\) 324657. 324657.i 0.409868 0.409868i
\(891\) 455658. + 455658.i 0.573963 + 0.573963i
\(892\) −218171. 218171.i −0.274201 0.274201i
\(893\) −10294.1 −0.0129088
\(894\) 906711.i 1.13447i
\(895\) −705041. 705041.i −0.880174 0.880174i
\(896\) 100665.i 0.125390i
\(897\) 0 0
\(898\) −44925.1 −0.0557104
\(899\) 62184.2 62184.2i 0.0769415 0.0769415i
\(900\) −462541. −0.571038
\(901\) 1.05036e6i 1.29386i
\(902\) 492006. 492006.i 0.604724 0.604724i
\(903\) −829299. + 829299.i −1.01703 + 1.01703i
\(904\) −47041.5 47041.5i −0.0575631 0.0575631i
\(905\) 375840. + 375840.i 0.458888 + 0.458888i
\(906\) 505727. 0.616113
\(907\) 1.12762e6i 1.37071i 0.728207 + 0.685357i \(0.240354\pi\)
−0.728207 + 0.685357i \(0.759646\pi\)
\(908\) 339885. + 339885.i 0.412250 + 0.412250i
\(909\) 72946.1i 0.0882824i
\(910\) 0 0
\(911\) 621926. 0.749380 0.374690 0.927150i \(-0.377749\pi\)
0.374690 + 0.927150i \(0.377749\pi\)
\(912\) 2875.02 2875.02i 0.00345662 0.00345662i
\(913\) 213154. 0.255712
\(914\) 650068.i 0.778155i
\(915\) −902135. + 902135.i −1.07753 + 1.07753i
\(916\) −230373. + 230373.i −0.274562 + 0.274562i
\(917\) 789058. + 789058.i 0.938362 + 0.938362i
\(918\) −183342. 183342.i −0.217559 0.217559i
\(919\) 212127. 0.251169 0.125584 0.992083i \(-0.459919\pi\)
0.125584 + 0.992083i \(0.459919\pi\)
\(920\) 411349.i 0.485999i
\(921\) 201685. + 201685.i 0.237768 + 0.237768i
\(922\) 149101.i 0.175396i
\(923\) 0 0
\(924\) −557027. −0.652427
\(925\) 142491. 142491.i 0.166535 0.166535i
\(926\) −549757. −0.641134
\(927\) 835406.i 0.972160i
\(928\) −117616. + 117616.i −0.136575 + 0.136575i
\(929\) 329117. 329117.i 0.381346 0.381346i −0.490241 0.871587i \(-0.663091\pi\)
0.871587 + 0.490241i \(0.163091\pi\)
\(930\) 90258.4 + 90258.4i 0.104357 + 0.104357i
\(931\) 9111.50 + 9111.50i 0.0105121 + 0.0105121i
\(932\) 435655. 0.501546
\(933\) 1.09861e6i 1.26206i
\(934\) 98240.0 + 98240.0i 0.112615 + 0.112615i
\(935\) 1.37058e6i 1.56777i
\(936\) 0 0
\(937\) 860175. 0.979733 0.489867 0.871797i \(-0.337045\pi\)
0.489867 + 0.871797i \(0.337045\pi\)
\(938\) 476945. 476945.i 0.542079 0.542079i
\(939\) 1.17090e6 1.32797
\(940\) 611252.i 0.691774i
\(941\) 976348. 976348.i 1.10262 1.10262i 0.108525 0.994094i \(-0.465387\pi\)
0.994094 0.108525i \(-0.0346128\pi\)
\(942\) −101926. + 101926.i −0.114864 + 0.114864i
\(943\) 961765. + 961765.i 1.08155 + 1.08155i
\(944\) −24804.6 24804.6i −0.0278348 0.0278348i
\(945\) −601431. −0.673476
\(946\) 332752.i 0.371825i
\(947\) −74686.8 74686.8i −0.0832806 0.0832806i 0.664239 0.747520i \(-0.268756\pi\)
−0.747520 + 0.664239i \(0.768756\pi\)
\(948\) 316482.i 0.352153i
\(949\) 0 0
\(950\) −13835.5 −0.0153302
\(951\) −164996. + 164996.i −0.182437 + 0.182437i
\(952\) 655650. 0.723433
\(953\) 1.20235e6i 1.32387i 0.749562 + 0.661935i \(0.230264\pi\)
−0.749562 + 0.661935i \(0.769736\pi\)
\(954\) 315736. 315736.i 0.346918 0.346918i
\(955\) −361632. + 361632.i −0.396515 + 0.396515i
\(956\) −256716. 256716.i −0.280891 0.280891i
\(957\) 650824. + 650824.i 0.710624 + 0.710624i
\(958\) 1.04960e6 1.14365
\(959\) 758381.i 0.824614i
\(960\) −170716. 170716.i −0.185239 0.185239i
\(961\) 914361.i 0.990082i
\(962\) 0 0
\(963\) 1.02124e6 1.10122
\(964\) 555164. 555164.i 0.597403 0.597403i
\(965\) −674705. −0.724535
\(966\) 1.08887e6i 1.16686i
\(967\) 641718. 641718.i 0.686264 0.686264i −0.275140 0.961404i \(-0.588724\pi\)
0.961404 + 0.275140i \(0.0887241\pi\)
\(968\) −122504. + 122504.i −0.130737 + 0.130737i
\(969\) 18725.6 + 18725.6i 0.0199429 + 0.0199429i
\(970\) −1.16250e6 1.16250e6i −1.23552 1.23552i
\(971\) −260542. −0.276337 −0.138168 0.990409i \(-0.544121\pi\)
−0.138168 + 0.990409i \(0.544121\pi\)
\(972\) 596812.i 0.631691i
\(973\) −667748. 667748.i −0.705321 0.705321i
\(974\) 211015.i 0.222431i
\(975\) 0 0
\(976\) −173160. −0.181781
\(977\) 1.20062e6 1.20062e6i 1.25781 1.25781i 0.305680 0.952134i \(-0.401116\pi\)
0.952134 0.305680i \(-0.0988839\pi\)
\(978\) −461844. −0.482856
\(979\) 344825.i 0.359777i
\(980\) 541031. 541031.i 0.563339 0.563339i
\(981\) 936055. 936055.i 0.972665 0.972665i
\(982\) 34631.7 + 34631.7i 0.0359129 + 0.0359129i
\(983\) 156188. + 156188.i 0.161637 + 0.161637i 0.783291 0.621655i \(-0.213539\pi\)
−0.621655 + 0.783291i \(0.713539\pi\)
\(984\) −798292. −0.824464
\(985\) 19465.2i 0.0200625i
\(986\) −766055. 766055.i −0.787963 0.787963i
\(987\) 1.61802e6i 1.66092i
\(988\) 0 0
\(989\) 650459. 0.665009
\(990\) −411995. + 411995.i −0.420361 + 0.420361i
\(991\) 440953. 0.448998 0.224499 0.974474i \(-0.427925\pi\)
0.224499 + 0.974474i \(0.427925\pi\)
\(992\) 17324.6i 0.0176052i
\(993\) 452939. 452939.i 0.459347 0.459347i
\(994\) 977868. 977868.i 0.989709 0.989709i
\(995\) −1.56188e6 1.56188e6i −1.57762 1.57762i
\(996\) −172924. 172924.i −0.174316 0.174316i
\(997\) −853876. −0.859023 −0.429511 0.903061i \(-0.641314\pi\)
−0.429511 + 0.903061i \(0.641314\pi\)
\(998\) 305215.i 0.306440i
\(999\) 33956.1 + 33956.1i 0.0340241 + 0.0340241i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.5.d.h.239.1 8
13.3 even 3 26.5.f.a.19.2 yes 8
13.5 odd 4 338.5.d.e.99.1 8
13.7 odd 12 26.5.f.a.11.2 8
13.8 odd 4 inner 338.5.d.h.99.1 8
13.12 even 2 338.5.d.e.239.1 8
39.20 even 12 234.5.bb.c.37.1 8
39.29 odd 6 234.5.bb.c.19.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.5.f.a.11.2 8 13.7 odd 12
26.5.f.a.19.2 yes 8 13.3 even 3
234.5.bb.c.19.1 8 39.29 odd 6
234.5.bb.c.37.1 8 39.20 even 12
338.5.d.e.99.1 8 13.5 odd 4
338.5.d.e.239.1 8 13.12 even 2
338.5.d.h.99.1 8 13.8 odd 4 inner
338.5.d.h.239.1 8 1.1 even 1 trivial