Properties

Label 338.3.f
Level $338$
Weight $3$
Character orbit 338.f
Rep. character $\chi_{338}(19,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $100$
Newform subspaces $12$
Sturm bound $136$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 338.f (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 12 \)
Sturm bound: \(136\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(338, [\chi])\).

Total New Old
Modular forms 420 100 320
Cusp forms 308 100 208
Eisenstein series 112 0 112

Trace form

\( 100 q + 2 q^{2} - 6 q^{5} + 24 q^{7} + 8 q^{8} - 138 q^{9} + 30 q^{10} + 24 q^{11} - 32 q^{14} - 72 q^{15} + 200 q^{16} - 36 q^{17} - 108 q^{18} + 12 q^{19} - 12 q^{20} + 60 q^{21} + 48 q^{22} + 24 q^{23}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(338, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
338.3.f.a 338.f 13.f $4$ $9.210$ \(\Q(\zeta_{12})\) None 338.3.d.b \(-2\) \(-8\) \(16\) \(-10\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}-4\zeta_{12}^{2}q^{3}+\cdots\)
338.3.f.b 338.f 13.f $4$ $9.210$ \(\Q(\zeta_{12})\) None 26.3.d.a \(-2\) \(0\) \(-12\) \(-4\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+2\zeta_{12}q^{4}+\cdots\)
338.3.f.c 338.f 13.f $4$ $9.210$ \(\Q(\zeta_{12})\) None 26.3.f.a \(-2\) \(0\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(\zeta_{12}+\cdots)q^{3}+\cdots\)
338.3.f.d 338.f 13.f $4$ $9.210$ \(\Q(\zeta_{12})\) None 26.3.f.a \(-2\) \(0\) \(0\) \(22\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\cdots)q^{3}+\cdots\)
338.3.f.e 338.f 13.f $4$ $9.210$ \(\Q(\zeta_{12})\) None 338.3.d.b \(2\) \(-8\) \(-16\) \(10\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\zeta_{12}+\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}-4\zeta_{12}^{2}q^{3}+\cdots\)
338.3.f.f 338.f 13.f $4$ $9.210$ \(\Q(\zeta_{12})\) None 26.3.f.a \(2\) \(0\) \(0\) \(20\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\zeta_{12}+\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(\zeta_{12}+\zeta_{12}^{3})q^{3}+\cdots\)
338.3.f.g 338.f 13.f $4$ $9.210$ \(\Q(\zeta_{12})\) None 26.3.d.a \(2\) \(0\) \(12\) \(4\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\zeta_{12}+\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+2\zeta_{12}q^{4}+\cdots\)
338.3.f.h 338.f 13.f $8$ $9.210$ 8.0.\(\cdots\).1 None 26.3.f.b \(-4\) \(0\) \(6\) \(-8\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\beta _{3}+\beta _{4})q^{2}+(\beta _{2}-\beta _{5})q^{3}-2\beta _{5}q^{4}+\cdots\)
338.3.f.i 338.f 13.f $8$ $9.210$ 8.0.\(\cdots\).1 None 26.3.f.b \(4\) \(0\) \(-6\) \(2\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\beta _{3}+\beta _{4})q^{2}+(\beta _{2}-\beta _{5})q^{3}+2\beta _{5}q^{4}+\cdots\)
338.3.f.j 338.f 13.f $8$ $9.210$ 8.0.\(\cdots\).1 None 26.3.f.b \(4\) \(0\) \(-6\) \(8\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\beta _{3}-\beta _{4})q^{2}+(\beta _{2}-\beta _{5})q^{3}-2\beta _{5}q^{4}+\cdots\)
338.3.f.k 338.f 13.f $24$ $9.210$ None 338.3.d.h \(-12\) \(8\) \(-16\) \(24\) $\mathrm{SU}(2)[C_{12}]$
338.3.f.l 338.f 13.f $24$ $9.210$ None 338.3.d.h \(12\) \(8\) \(16\) \(-24\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{3}^{\mathrm{old}}(338, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(338, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 2}\)