Properties

Label 338.10.c
Level $338$
Weight $10$
Character orbit 338.c
Rep. character $\chi_{338}(191,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $230$
Sturm bound $455$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(455\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(338, [\chi])\).

Total New Old
Modular forms 846 230 616
Cusp forms 790 230 560
Eisenstein series 56 0 56

Trace form

\( 230 q + 16 q^{2} + 162 q^{3} - 29440 q^{4} - 1558 q^{5} - 2850 q^{7} - 8192 q^{8} - 743089 q^{9} + 41712 q^{10} - 39326 q^{11} - 82944 q^{12} - 192 q^{14} - 360776 q^{15} - 7536640 q^{16} - 29677 q^{17}+ \cdots + 3704648192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(338, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{10}^{\mathrm{old}}(338, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(338, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 2}\)