gp: [N,k,chi] = [3375,1,Mod(26,3375)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3375.26");
S:= CuspForms(chi, 1);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3375, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 4]))
B = ModularForms(chi, 1).cuspidal_submodule().basis()
N = [B[i] for i in range(len(B))]
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 3375 Z ) × \left(\mathbb{Z}/3375\mathbb{Z}\right)^\times ( Z / 3 3 7 5 Z ) × .
n n n
1001 1001 1 0 0 1
2377 2377 2 3 7 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
ζ 20 4 \zeta_{20}^{4} ζ 2 0 4
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace is the entire newspace S 1 n e w ( 3375 , [ χ ] ) S_{1}^{\mathrm{new}}(3375, [\chi]) S 1 n e w ( 3 3 7 5 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 + T 6 + 6 T 4 + ⋯ + 1 T^{8} + T^{6} + 6 T^{4} + \cdots + 1 T 8 + T 6 + 6 T 4 + ⋯ + 1
T^8 + T^6 + 6*T^4 - 4*T^2 + 1
3 3 3
T 8 T^{8} T 8
T^8
5 5 5
T 8 T^{8} T 8
T^8
7 7 7
( T 2 − T − 1 ) 4 (T^{2} - T - 1)^{4} ( T 2 − T − 1 ) 4
(T^2 - T - 1)^4
11 11 1 1
T 8 − T 6 + T 4 + ⋯ + 1 T^{8} - T^{6} + T^{4} + \cdots + 1 T 8 − T 6 + T 4 + ⋯ + 1
T^8 - T^6 + T^4 - T^2 + 1
13 13 1 3
T 8 T^{8} T 8
T^8
17 17 1 7
T 8 − T 6 + T 4 + ⋯ + 1 T^{8} - T^{6} + T^{4} + \cdots + 1 T 8 − T 6 + T 4 + ⋯ + 1
T^8 - T^6 + T^4 - T^2 + 1
19 19 1 9
( T 4 − T 3 + T 2 + ⋯ + 1 ) 2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} ( T 4 − T 3 + T 2 + ⋯ + 1 ) 2
(T^4 - T^3 + T^2 - T + 1)^2
23 23 2 3
T 8 − T 6 + T 4 + ⋯ + 1 T^{8} - T^{6} + T^{4} + \cdots + 1 T 8 − T 6 + T 4 + ⋯ + 1
T^8 - T^6 + T^4 - T^2 + 1
29 29 2 9
T 8 + T 6 + 6 T 4 + ⋯ + 1 T^{8} + T^{6} + 6 T^{4} + \cdots + 1 T 8 + T 6 + 6 T 4 + ⋯ + 1
T^8 + T^6 + 6*T^4 - 4*T^2 + 1
31 31 3 1
T 8 T^{8} T 8
T^8
37 37 3 7
( T 4 + 2 T 3 + 4 T 2 + ⋯ + 1 ) 2 (T^{4} + 2 T^{3} + 4 T^{2} + \cdots + 1)^{2} ( T 4 + 2 T 3 + 4 T 2 + ⋯ + 1 ) 2
(T^4 + 2*T^3 + 4*T^2 + 3*T + 1)^2
41 41 4 1
T 8 − T 6 + T 4 + ⋯ + 1 T^{8} - T^{6} + T^{4} + \cdots + 1 T 8 − T 6 + T 4 + ⋯ + 1
T^8 - T^6 + T^4 - T^2 + 1
43 43 4 3
T 8 T^{8} T 8
T^8
47 47 4 7
T 8 + T 6 + 6 T 4 + ⋯ + 1 T^{8} + T^{6} + 6 T^{4} + \cdots + 1 T 8 + T 6 + 6 T 4 + ⋯ + 1
T^8 + T^6 + 6*T^4 - 4*T^2 + 1
53 53 5 3
T 8 − 4 T 6 + ⋯ + 1 T^{8} - 4 T^{6} + \cdots + 1 T 8 − 4 T 6 + ⋯ + 1
T^8 - 4*T^6 + 6*T^4 + T^2 + 1
59 59 5 9
T 8 T^{8} T 8
T^8
61 61 6 1
( T 4 − T 3 + T 2 + ⋯ + 1 ) 2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} ( T 4 − T 3 + T 2 + ⋯ + 1 ) 2
(T^4 - T^3 + T^2 - T + 1)^2
67 67 6 7
( T 4 − 2 T 3 + 4 T 2 + ⋯ + 1 ) 2 (T^{4} - 2 T^{3} + 4 T^{2} + \cdots + 1)^{2} ( T 4 − 2 T 3 + 4 T 2 + ⋯ + 1 ) 2
(T^4 - 2*T^3 + 4*T^2 - 3*T + 1)^2
71 71 7 1
T 8 + T 6 + 6 T 4 + ⋯ + 1 T^{8} + T^{6} + 6 T^{4} + \cdots + 1 T 8 + T 6 + 6 T 4 + ⋯ + 1
T^8 + T^6 + 6*T^4 - 4*T^2 + 1
73 73 7 3
T 8 T^{8} T 8
T^8
79 79 7 9
( T 4 + 3 T 3 + 4 T 2 + ⋯ + 1 ) 2 (T^{4} + 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} ( T 4 + 3 T 3 + 4 T 2 + ⋯ + 1 ) 2
(T^4 + 3*T^3 + 4*T^2 + 2*T + 1)^2
83 83 8 3
T 8 − 4 T 6 + ⋯ + 1 T^{8} - 4 T^{6} + \cdots + 1 T 8 − 4 T 6 + ⋯ + 1
T^8 - 4*T^6 + 6*T^4 + T^2 + 1
89 89 8 9
T 8 − T 6 + T 4 + ⋯ + 1 T^{8} - T^{6} + T^{4} + \cdots + 1 T 8 − T 6 + T 4 + ⋯ + 1
T^8 - T^6 + T^4 - T^2 + 1
97 97 9 7
( T 4 − T 3 + T 2 + ⋯ + 1 ) 2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} ( T 4 − T 3 + T 2 + ⋯ + 1 ) 2
(T^4 - T^3 + T^2 - T + 1)^2
show more
show less