Properties

Label 3375.1.o.a
Level 33753375
Weight 11
Character orbit 3375.o
Analytic conductor 1.6841.684
Analytic rank 00
Dimension 88
Projective image A5A_{5}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3375,1,Mod(26,3375)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3375.26"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3375, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 4])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: N N == 3375=3353 3375 = 3^{3} \cdot 5^{3}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3375.o (of order 1010, degree 44, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.684344417641.68434441764
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: Q(ζ20)\Q(\zeta_{20})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8x6+x4x2+1 x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 675)
Projective image: A5A_{5}
Projective field: Galois closure of 5.1.31640625.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ209+ζ205)q2+(ζ208ζ2041)q4+(ζ208+ζ202)q7+(ζ209++ζ203)q8ζ207q11++(2ζ209+2ζ205++ζ20)q98+O(q100) q + (\zeta_{20}^{9} + \zeta_{20}^{5}) q^{2} + ( - \zeta_{20}^{8} - \zeta_{20}^{4} - 1) q^{4} + ( - \zeta_{20}^{8} + \zeta_{20}^{2}) q^{7} + ( - \zeta_{20}^{9} + \cdots + \zeta_{20}^{3}) q^{8} - \zeta_{20}^{7} q^{11} + \cdots + (2 \zeta_{20}^{9} + 2 \zeta_{20}^{5} + \cdots + \zeta_{20}) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q4+4q7+2q19+4q222q28+6q344q374q46+4q49+2q58+2q616q64+4q67+4q766q794q82+2q88+2q94+2q97+O(q100) 8 q - 4 q^{4} + 4 q^{7} + 2 q^{19} + 4 q^{22} - 2 q^{28} + 6 q^{34} - 4 q^{37} - 4 q^{46} + 4 q^{49} + 2 q^{58} + 2 q^{61} - 6 q^{64} + 4 q^{67} + 4 q^{76} - 6 q^{79} - 4 q^{82} + 2 q^{88} + 2 q^{94} + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3375Z)×\left(\mathbb{Z}/3375\mathbb{Z}\right)^\times.

nn 10011001 23772377
χ(n)\chi(n) 1-1 ζ204\zeta_{20}^{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
26.1
0.587785 0.809017i
−0.587785 + 0.809017i
0.951057 + 0.309017i
−0.951057 0.309017i
0.951057 0.309017i
−0.951057 + 0.309017i
0.587785 + 0.809017i
−0.587785 0.809017i
−0.587785 + 0.190983i 0 −0.500000 + 0.363271i 0 0 −0.618034 0.587785 0.809017i 0 0
26.2 0.587785 0.190983i 0 −0.500000 + 0.363271i 0 0 −0.618034 −0.587785 + 0.809017i 0 0
701.1 −0.951057 + 1.30902i 0 −0.500000 1.53884i 0 0 1.61803 0.951057 + 0.309017i 0 0
701.2 0.951057 1.30902i 0 −0.500000 1.53884i 0 0 1.61803 −0.951057 0.309017i 0 0
2051.1 −0.951057 1.30902i 0 −0.500000 + 1.53884i 0 0 1.61803 0.951057 0.309017i 0 0
2051.2 0.951057 + 1.30902i 0 −0.500000 + 1.53884i 0 0 1.61803 −0.951057 + 0.309017i 0 0
2726.1 −0.587785 0.190983i 0 −0.500000 0.363271i 0 0 −0.618034 0.587785 + 0.809017i 0 0
2726.2 0.587785 + 0.190983i 0 −0.500000 0.363271i 0 0 −0.618034 −0.587785 0.809017i 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 26.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
25.d even 5 1 inner
75.j odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3375.1.o.a 8
3.b odd 2 1 inner 3375.1.o.a 8
5.b even 2 1 675.1.o.a 8
5.c odd 4 1 3375.1.m.a 8
5.c odd 4 1 3375.1.m.b 8
15.d odd 2 1 675.1.o.a 8
15.e even 4 1 3375.1.m.a 8
15.e even 4 1 3375.1.m.b 8
25.d even 5 1 inner 3375.1.o.a 8
25.e even 10 1 675.1.o.a 8
25.f odd 20 1 3375.1.m.a 8
25.f odd 20 1 3375.1.m.b 8
45.h odd 6 2 2025.1.y.a 16
45.j even 6 2 2025.1.y.a 16
75.h odd 10 1 675.1.o.a 8
75.j odd 10 1 inner 3375.1.o.a 8
75.l even 20 1 3375.1.m.a 8
75.l even 20 1 3375.1.m.b 8
225.u even 30 2 2025.1.y.a 16
225.v odd 30 2 2025.1.y.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
675.1.o.a 8 5.b even 2 1
675.1.o.a 8 15.d odd 2 1
675.1.o.a 8 25.e even 10 1
675.1.o.a 8 75.h odd 10 1
2025.1.y.a 16 45.h odd 6 2
2025.1.y.a 16 45.j even 6 2
2025.1.y.a 16 225.u even 30 2
2025.1.y.a 16 225.v odd 30 2
3375.1.m.a 8 5.c odd 4 1
3375.1.m.a 8 15.e even 4 1
3375.1.m.a 8 25.f odd 20 1
3375.1.m.a 8 75.l even 20 1
3375.1.m.b 8 5.c odd 4 1
3375.1.m.b 8 15.e even 4 1
3375.1.m.b 8 25.f odd 20 1
3375.1.m.b 8 75.l even 20 1
3375.1.o.a 8 1.a even 1 1 trivial
3375.1.o.a 8 3.b odd 2 1 inner
3375.1.o.a 8 25.d even 5 1 inner
3375.1.o.a 8 75.j odd 10 1 inner

Hecke kernels

This newform subspace is the entire newspace S1new(3375,[χ])S_{1}^{\mathrm{new}}(3375, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+T6+6T4++1 T^{8} + T^{6} + 6 T^{4} + \cdots + 1 Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 (T2T1)4 (T^{2} - T - 1)^{4} Copy content Toggle raw display
1111 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
1919 (T4T3+T2++1)2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
2323 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
2929 T8+T6+6T4++1 T^{8} + T^{6} + 6 T^{4} + \cdots + 1 Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 (T4+2T3+4T2++1)2 (T^{4} + 2 T^{3} + 4 T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
4141 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
4343 T8 T^{8} Copy content Toggle raw display
4747 T8+T6+6T4++1 T^{8} + T^{6} + 6 T^{4} + \cdots + 1 Copy content Toggle raw display
5353 T84T6++1 T^{8} - 4 T^{6} + \cdots + 1 Copy content Toggle raw display
5959 T8 T^{8} Copy content Toggle raw display
6161 (T4T3+T2++1)2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
6767 (T42T3+4T2++1)2 (T^{4} - 2 T^{3} + 4 T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
7171 T8+T6+6T4++1 T^{8} + T^{6} + 6 T^{4} + \cdots + 1 Copy content Toggle raw display
7373 T8 T^{8} Copy content Toggle raw display
7979 (T4+3T3+4T2++1)2 (T^{4} + 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
8383 T84T6++1 T^{8} - 4 T^{6} + \cdots + 1 Copy content Toggle raw display
8989 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
9797 (T4T3+T2++1)2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
show more
show less