Properties

Label 3364.2.a.q.1.6
Level $3364$
Weight $2$
Character 3364.1
Self dual yes
Analytic conductor $26.862$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3364,2,Mod(1,3364)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3364.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3364, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3364 = 2^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3364.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-4,0,-1,0,-2,0,4,0,-5,0,4,0,17,0,-15,0,-11,0,-19,0,-3,0, 3,0,-16,0,0,0,9,0,-16,0,9,0,2,0,-9,0,-38,0,3,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(45)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.8616752400\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.3266578125.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 10x^{6} + 6x^{5} + 29x^{4} - 9x^{3} - 25x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.178891\) of defining polynomial
Character \(\chi\) \(=\) 3364.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.498509 q^{3} +1.93765 q^{5} +0.267484 q^{7} -2.75149 q^{9} -6.18245 q^{11} +3.63066 q^{13} +0.965937 q^{15} -3.20847 q^{17} -0.562951 q^{19} +0.133343 q^{21} +3.58574 q^{23} -1.24551 q^{25} -2.86717 q^{27} +2.38700 q^{31} -3.08201 q^{33} +0.518291 q^{35} -8.08624 q^{37} +1.80992 q^{39} +5.86162 q^{41} +8.47514 q^{43} -5.33143 q^{45} -5.79919 q^{47} -6.92845 q^{49} -1.59945 q^{51} -7.74932 q^{53} -11.9794 q^{55} -0.280636 q^{57} -12.0464 q^{59} -14.3583 q^{61} -0.735980 q^{63} +7.03496 q^{65} +12.0926 q^{67} +1.78752 q^{69} -1.35301 q^{71} -9.77812 q^{73} -0.620896 q^{75} -1.65371 q^{77} +3.54940 q^{79} +6.82516 q^{81} -8.00413 q^{83} -6.21690 q^{85} -10.0204 q^{89} +0.971145 q^{91} +1.18994 q^{93} -1.09080 q^{95} +4.53082 q^{97} +17.0109 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - q^{5} - 2 q^{7} + 4 q^{9} - 5 q^{11} + 4 q^{13} + 17 q^{15} - 15 q^{17} - 11 q^{19} - 19 q^{21} - 3 q^{23} + 3 q^{25} - 16 q^{27} + 9 q^{31} - 16 q^{33} + 9 q^{35} + 2 q^{37} - 9 q^{39}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.498509 0.287814 0.143907 0.989591i \(-0.454033\pi\)
0.143907 + 0.989591i \(0.454033\pi\)
\(4\) 0 0
\(5\) 1.93765 0.866544 0.433272 0.901263i \(-0.357359\pi\)
0.433272 + 0.901263i \(0.357359\pi\)
\(6\) 0 0
\(7\) 0.267484 0.101100 0.0505498 0.998722i \(-0.483903\pi\)
0.0505498 + 0.998722i \(0.483903\pi\)
\(8\) 0 0
\(9\) −2.75149 −0.917163
\(10\) 0 0
\(11\) −6.18245 −1.86408 −0.932040 0.362356i \(-0.881972\pi\)
−0.932040 + 0.362356i \(0.881972\pi\)
\(12\) 0 0
\(13\) 3.63066 1.00696 0.503482 0.864005i \(-0.332052\pi\)
0.503482 + 0.864005i \(0.332052\pi\)
\(14\) 0 0
\(15\) 0.965937 0.249404
\(16\) 0 0
\(17\) −3.20847 −0.778169 −0.389084 0.921202i \(-0.627209\pi\)
−0.389084 + 0.921202i \(0.627209\pi\)
\(18\) 0 0
\(19\) −0.562951 −0.129150 −0.0645749 0.997913i \(-0.520569\pi\)
−0.0645749 + 0.997913i \(0.520569\pi\)
\(20\) 0 0
\(21\) 0.133343 0.0290979
\(22\) 0 0
\(23\) 3.58574 0.747678 0.373839 0.927494i \(-0.378041\pi\)
0.373839 + 0.927494i \(0.378041\pi\)
\(24\) 0 0
\(25\) −1.24551 −0.249101
\(26\) 0 0
\(27\) −2.86717 −0.551787
\(28\) 0 0
\(29\) 0 0
\(30\) 0 0
\(31\) 2.38700 0.428718 0.214359 0.976755i \(-0.431234\pi\)
0.214359 + 0.976755i \(0.431234\pi\)
\(32\) 0 0
\(33\) −3.08201 −0.536509
\(34\) 0 0
\(35\) 0.518291 0.0876072
\(36\) 0 0
\(37\) −8.08624 −1.32937 −0.664685 0.747124i \(-0.731434\pi\)
−0.664685 + 0.747124i \(0.731434\pi\)
\(38\) 0 0
\(39\) 1.80992 0.289819
\(40\) 0 0
\(41\) 5.86162 0.915431 0.457716 0.889099i \(-0.348668\pi\)
0.457716 + 0.889099i \(0.348668\pi\)
\(42\) 0 0
\(43\) 8.47514 1.29245 0.646223 0.763149i \(-0.276348\pi\)
0.646223 + 0.763149i \(0.276348\pi\)
\(44\) 0 0
\(45\) −5.33143 −0.794762
\(46\) 0 0
\(47\) −5.79919 −0.845899 −0.422949 0.906153i \(-0.639005\pi\)
−0.422949 + 0.906153i \(0.639005\pi\)
\(48\) 0 0
\(49\) −6.92845 −0.989779
\(50\) 0 0
\(51\) −1.59945 −0.223968
\(52\) 0 0
\(53\) −7.74932 −1.06445 −0.532225 0.846603i \(-0.678644\pi\)
−0.532225 + 0.846603i \(0.678644\pi\)
\(54\) 0 0
\(55\) −11.9794 −1.61531
\(56\) 0 0
\(57\) −0.280636 −0.0371711
\(58\) 0 0
\(59\) −12.0464 −1.56831 −0.784156 0.620564i \(-0.786904\pi\)
−0.784156 + 0.620564i \(0.786904\pi\)
\(60\) 0 0
\(61\) −14.3583 −1.83839 −0.919196 0.393799i \(-0.871161\pi\)
−0.919196 + 0.393799i \(0.871161\pi\)
\(62\) 0 0
\(63\) −0.735980 −0.0927248
\(64\) 0 0
\(65\) 7.03496 0.872579
\(66\) 0 0
\(67\) 12.0926 1.47734 0.738671 0.674066i \(-0.235454\pi\)
0.738671 + 0.674066i \(0.235454\pi\)
\(68\) 0 0
\(69\) 1.78752 0.215193
\(70\) 0 0
\(71\) −1.35301 −0.160573 −0.0802865 0.996772i \(-0.525584\pi\)
−0.0802865 + 0.996772i \(0.525584\pi\)
\(72\) 0 0
\(73\) −9.77812 −1.14444 −0.572221 0.820099i \(-0.693918\pi\)
−0.572221 + 0.820099i \(0.693918\pi\)
\(74\) 0 0
\(75\) −0.620896 −0.0716949
\(76\) 0 0
\(77\) −1.65371 −0.188458
\(78\) 0 0
\(79\) 3.54940 0.399338 0.199669 0.979863i \(-0.436013\pi\)
0.199669 + 0.979863i \(0.436013\pi\)
\(80\) 0 0
\(81\) 6.82516 0.758351
\(82\) 0 0
\(83\) −8.00413 −0.878568 −0.439284 0.898348i \(-0.644768\pi\)
−0.439284 + 0.898348i \(0.644768\pi\)
\(84\) 0 0
\(85\) −6.21690 −0.674317
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.0204 −1.06216 −0.531081 0.847321i \(-0.678214\pi\)
−0.531081 + 0.847321i \(0.678214\pi\)
\(90\) 0 0
\(91\) 0.971145 0.101804
\(92\) 0 0
\(93\) 1.18994 0.123391
\(94\) 0 0
\(95\) −1.09080 −0.111914
\(96\) 0 0
\(97\) 4.53082 0.460035 0.230018 0.973186i \(-0.426122\pi\)
0.230018 + 0.973186i \(0.426122\pi\)
\(98\) 0 0
\(99\) 17.0109 1.70966
\(100\) 0 0
\(101\) −1.23526 −0.122913 −0.0614565 0.998110i \(-0.519575\pi\)
−0.0614565 + 0.998110i \(0.519575\pi\)
\(102\) 0 0
\(103\) 10.8296 1.06707 0.533535 0.845778i \(-0.320863\pi\)
0.533535 + 0.845778i \(0.320863\pi\)
\(104\) 0 0
\(105\) 0.258373 0.0252146
\(106\) 0 0
\(107\) −8.72039 −0.843032 −0.421516 0.906821i \(-0.638502\pi\)
−0.421516 + 0.906821i \(0.638502\pi\)
\(108\) 0 0
\(109\) −16.1356 −1.54551 −0.772753 0.634707i \(-0.781121\pi\)
−0.772753 + 0.634707i \(0.781121\pi\)
\(110\) 0 0
\(111\) −4.03106 −0.382612
\(112\) 0 0
\(113\) −15.8835 −1.49420 −0.747098 0.664714i \(-0.768553\pi\)
−0.747098 + 0.664714i \(0.768553\pi\)
\(114\) 0 0
\(115\) 6.94792 0.647896
\(116\) 0 0
\(117\) −9.98973 −0.923551
\(118\) 0 0
\(119\) −0.858216 −0.0786725
\(120\) 0 0
\(121\) 27.2227 2.47479
\(122\) 0 0
\(123\) 2.92207 0.263474
\(124\) 0 0
\(125\) −12.1016 −1.08240
\(126\) 0 0
\(127\) −15.6634 −1.38990 −0.694951 0.719057i \(-0.744574\pi\)
−0.694951 + 0.719057i \(0.744574\pi\)
\(128\) 0 0
\(129\) 4.22493 0.371984
\(130\) 0 0
\(131\) 12.6657 1.10661 0.553303 0.832980i \(-0.313367\pi\)
0.553303 + 0.832980i \(0.313367\pi\)
\(132\) 0 0
\(133\) −0.150580 −0.0130570
\(134\) 0 0
\(135\) −5.55557 −0.478148
\(136\) 0 0
\(137\) −4.45856 −0.380921 −0.190460 0.981695i \(-0.560998\pi\)
−0.190460 + 0.981695i \(0.560998\pi\)
\(138\) 0 0
\(139\) 3.22696 0.273707 0.136853 0.990591i \(-0.456301\pi\)
0.136853 + 0.990591i \(0.456301\pi\)
\(140\) 0 0
\(141\) −2.89095 −0.243462
\(142\) 0 0
\(143\) −22.4464 −1.87706
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −3.45390 −0.284872
\(148\) 0 0
\(149\) 4.31553 0.353542 0.176771 0.984252i \(-0.443435\pi\)
0.176771 + 0.984252i \(0.443435\pi\)
\(150\) 0 0
\(151\) 19.5819 1.59355 0.796775 0.604277i \(-0.206538\pi\)
0.796775 + 0.604277i \(0.206538\pi\)
\(152\) 0 0
\(153\) 8.82807 0.713707
\(154\) 0 0
\(155\) 4.62518 0.371503
\(156\) 0 0
\(157\) 0.568812 0.0453961 0.0226981 0.999742i \(-0.492774\pi\)
0.0226981 + 0.999742i \(0.492774\pi\)
\(158\) 0 0
\(159\) −3.86310 −0.306364
\(160\) 0 0
\(161\) 0.959129 0.0755900
\(162\) 0 0
\(163\) 18.8668 1.47776 0.738880 0.673837i \(-0.235355\pi\)
0.738880 + 0.673837i \(0.235355\pi\)
\(164\) 0 0
\(165\) −5.97186 −0.464908
\(166\) 0 0
\(167\) −12.0978 −0.936154 −0.468077 0.883688i \(-0.655053\pi\)
−0.468077 + 0.883688i \(0.655053\pi\)
\(168\) 0 0
\(169\) 0.181714 0.0139780
\(170\) 0 0
\(171\) 1.54895 0.118451
\(172\) 0 0
\(173\) 25.0399 1.90375 0.951875 0.306488i \(-0.0991539\pi\)
0.951875 + 0.306488i \(0.0991539\pi\)
\(174\) 0 0
\(175\) −0.333153 −0.0251840
\(176\) 0 0
\(177\) −6.00526 −0.451383
\(178\) 0 0
\(179\) 9.94203 0.743102 0.371551 0.928412i \(-0.378826\pi\)
0.371551 + 0.928412i \(0.378826\pi\)
\(180\) 0 0
\(181\) −4.94428 −0.367505 −0.183753 0.982973i \(-0.558825\pi\)
−0.183753 + 0.982973i \(0.558825\pi\)
\(182\) 0 0
\(183\) −7.15774 −0.529116
\(184\) 0 0
\(185\) −15.6683 −1.15196
\(186\) 0 0
\(187\) 19.8362 1.45057
\(188\) 0 0
\(189\) −0.766923 −0.0557854
\(190\) 0 0
\(191\) 7.50104 0.542757 0.271378 0.962473i \(-0.412521\pi\)
0.271378 + 0.962473i \(0.412521\pi\)
\(192\) 0 0
\(193\) 11.8818 0.855271 0.427635 0.903951i \(-0.359347\pi\)
0.427635 + 0.903951i \(0.359347\pi\)
\(194\) 0 0
\(195\) 3.50699 0.251141
\(196\) 0 0
\(197\) 22.3390 1.59159 0.795794 0.605568i \(-0.207054\pi\)
0.795794 + 0.605568i \(0.207054\pi\)
\(198\) 0 0
\(199\) −11.1648 −0.791453 −0.395727 0.918368i \(-0.629507\pi\)
−0.395727 + 0.918368i \(0.629507\pi\)
\(200\) 0 0
\(201\) 6.02825 0.425200
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 11.3578 0.793262
\(206\) 0 0
\(207\) −9.86612 −0.685743
\(208\) 0 0
\(209\) 3.48042 0.240745
\(210\) 0 0
\(211\) −10.2812 −0.707784 −0.353892 0.935286i \(-0.615142\pi\)
−0.353892 + 0.935286i \(0.615142\pi\)
\(212\) 0 0
\(213\) −0.674489 −0.0462152
\(214\) 0 0
\(215\) 16.4219 1.11996
\(216\) 0 0
\(217\) 0.638485 0.0433432
\(218\) 0 0
\(219\) −4.87448 −0.329387
\(220\) 0 0
\(221\) −11.6489 −0.783588
\(222\) 0 0
\(223\) −24.1973 −1.62037 −0.810186 0.586173i \(-0.800634\pi\)
−0.810186 + 0.586173i \(0.800634\pi\)
\(224\) 0 0
\(225\) 3.42700 0.228466
\(226\) 0 0
\(227\) −18.2464 −1.21106 −0.605530 0.795823i \(-0.707039\pi\)
−0.605530 + 0.795823i \(0.707039\pi\)
\(228\) 0 0
\(229\) −16.3646 −1.08141 −0.540703 0.841214i \(-0.681842\pi\)
−0.540703 + 0.841214i \(0.681842\pi\)
\(230\) 0 0
\(231\) −0.824389 −0.0542408
\(232\) 0 0
\(233\) −13.8382 −0.906568 −0.453284 0.891366i \(-0.649748\pi\)
−0.453284 + 0.891366i \(0.649748\pi\)
\(234\) 0 0
\(235\) −11.2368 −0.733009
\(236\) 0 0
\(237\) 1.76941 0.114935
\(238\) 0 0
\(239\) 0.783539 0.0506829 0.0253415 0.999679i \(-0.491933\pi\)
0.0253415 + 0.999679i \(0.491933\pi\)
\(240\) 0 0
\(241\) 23.6055 1.52056 0.760281 0.649595i \(-0.225061\pi\)
0.760281 + 0.649595i \(0.225061\pi\)
\(242\) 0 0
\(243\) 12.0039 0.770051
\(244\) 0 0
\(245\) −13.4249 −0.857687
\(246\) 0 0
\(247\) −2.04388 −0.130049
\(248\) 0 0
\(249\) −3.99013 −0.252864
\(250\) 0 0
\(251\) −12.6595 −0.799058 −0.399529 0.916721i \(-0.630826\pi\)
−0.399529 + 0.916721i \(0.630826\pi\)
\(252\) 0 0
\(253\) −22.1687 −1.39373
\(254\) 0 0
\(255\) −3.09918 −0.194078
\(256\) 0 0
\(257\) 10.3460 0.645366 0.322683 0.946507i \(-0.395415\pi\)
0.322683 + 0.946507i \(0.395415\pi\)
\(258\) 0 0
\(259\) −2.16294 −0.134399
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −16.0395 −0.989035 −0.494517 0.869168i \(-0.664655\pi\)
−0.494517 + 0.869168i \(0.664655\pi\)
\(264\) 0 0
\(265\) −15.0155 −0.922393
\(266\) 0 0
\(267\) −4.99527 −0.305705
\(268\) 0 0
\(269\) −8.93282 −0.544643 −0.272322 0.962206i \(-0.587791\pi\)
−0.272322 + 0.962206i \(0.587791\pi\)
\(270\) 0 0
\(271\) 26.0649 1.58333 0.791666 0.610955i \(-0.209214\pi\)
0.791666 + 0.610955i \(0.209214\pi\)
\(272\) 0 0
\(273\) 0.484125 0.0293006
\(274\) 0 0
\(275\) 7.70028 0.464344
\(276\) 0 0
\(277\) −18.8513 −1.13266 −0.566331 0.824178i \(-0.691638\pi\)
−0.566331 + 0.824178i \(0.691638\pi\)
\(278\) 0 0
\(279\) −6.56780 −0.393204
\(280\) 0 0
\(281\) 20.4308 1.21880 0.609401 0.792862i \(-0.291410\pi\)
0.609401 + 0.792862i \(0.291410\pi\)
\(282\) 0 0
\(283\) 24.1511 1.43563 0.717816 0.696232i \(-0.245142\pi\)
0.717816 + 0.696232i \(0.245142\pi\)
\(284\) 0 0
\(285\) −0.543775 −0.0322104
\(286\) 0 0
\(287\) 1.56789 0.0925497
\(288\) 0 0
\(289\) −6.70571 −0.394454
\(290\) 0 0
\(291\) 2.25866 0.132405
\(292\) 0 0
\(293\) −0.901085 −0.0526420 −0.0263210 0.999654i \(-0.508379\pi\)
−0.0263210 + 0.999654i \(0.508379\pi\)
\(294\) 0 0
\(295\) −23.3418 −1.35901
\(296\) 0 0
\(297\) 17.7261 1.02857
\(298\) 0 0
\(299\) 13.0186 0.752886
\(300\) 0 0
\(301\) 2.26697 0.130666
\(302\) 0 0
\(303\) −0.615788 −0.0353761
\(304\) 0 0
\(305\) −27.8214 −1.59305
\(306\) 0 0
\(307\) −2.26687 −0.129377 −0.0646885 0.997906i \(-0.520605\pi\)
−0.0646885 + 0.997906i \(0.520605\pi\)
\(308\) 0 0
\(309\) 5.39864 0.307118
\(310\) 0 0
\(311\) 30.8593 1.74987 0.874936 0.484239i \(-0.160903\pi\)
0.874936 + 0.484239i \(0.160903\pi\)
\(312\) 0 0
\(313\) 6.37922 0.360575 0.180288 0.983614i \(-0.442297\pi\)
0.180288 + 0.983614i \(0.442297\pi\)
\(314\) 0 0
\(315\) −1.42607 −0.0803501
\(316\) 0 0
\(317\) −10.5309 −0.591473 −0.295737 0.955270i \(-0.595565\pi\)
−0.295737 + 0.955270i \(0.595565\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −4.34719 −0.242637
\(322\) 0 0
\(323\) 1.80621 0.100500
\(324\) 0 0
\(325\) −4.52201 −0.250836
\(326\) 0 0
\(327\) −8.04372 −0.444819
\(328\) 0 0
\(329\) −1.55119 −0.0855200
\(330\) 0 0
\(331\) 3.07669 0.169110 0.0845552 0.996419i \(-0.473053\pi\)
0.0845552 + 0.996419i \(0.473053\pi\)
\(332\) 0 0
\(333\) 22.2492 1.21925
\(334\) 0 0
\(335\) 23.4312 1.28018
\(336\) 0 0
\(337\) −15.0517 −0.819919 −0.409960 0.912104i \(-0.634457\pi\)
−0.409960 + 0.912104i \(0.634457\pi\)
\(338\) 0 0
\(339\) −7.91807 −0.430051
\(340\) 0 0
\(341\) −14.7575 −0.799164
\(342\) 0 0
\(343\) −3.72564 −0.201166
\(344\) 0 0
\(345\) 3.46360 0.186474
\(346\) 0 0
\(347\) −22.9764 −1.23344 −0.616719 0.787184i \(-0.711538\pi\)
−0.616719 + 0.787184i \(0.711538\pi\)
\(348\) 0 0
\(349\) −3.47138 −0.185819 −0.0929094 0.995675i \(-0.529617\pi\)
−0.0929094 + 0.995675i \(0.529617\pi\)
\(350\) 0 0
\(351\) −10.4097 −0.555630
\(352\) 0 0
\(353\) 7.15857 0.381012 0.190506 0.981686i \(-0.438987\pi\)
0.190506 + 0.981686i \(0.438987\pi\)
\(354\) 0 0
\(355\) −2.62167 −0.139144
\(356\) 0 0
\(357\) −0.427828 −0.0226431
\(358\) 0 0
\(359\) −16.9081 −0.892376 −0.446188 0.894939i \(-0.647219\pi\)
−0.446188 + 0.894939i \(0.647219\pi\)
\(360\) 0 0
\(361\) −18.6831 −0.983320
\(362\) 0 0
\(363\) 13.5708 0.712280
\(364\) 0 0
\(365\) −18.9466 −0.991710
\(366\) 0 0
\(367\) −22.4984 −1.17441 −0.587204 0.809439i \(-0.699771\pi\)
−0.587204 + 0.809439i \(0.699771\pi\)
\(368\) 0 0
\(369\) −16.1282 −0.839600
\(370\) 0 0
\(371\) −2.07282 −0.107615
\(372\) 0 0
\(373\) −7.53650 −0.390225 −0.195113 0.980781i \(-0.562507\pi\)
−0.195113 + 0.980781i \(0.562507\pi\)
\(374\) 0 0
\(375\) −6.03276 −0.311531
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 11.5167 0.591571 0.295785 0.955254i \(-0.404419\pi\)
0.295785 + 0.955254i \(0.404419\pi\)
\(380\) 0 0
\(381\) −7.80834 −0.400034
\(382\) 0 0
\(383\) −38.3541 −1.95980 −0.979901 0.199484i \(-0.936073\pi\)
−0.979901 + 0.199484i \(0.936073\pi\)
\(384\) 0 0
\(385\) −3.20431 −0.163307
\(386\) 0 0
\(387\) −23.3192 −1.18538
\(388\) 0 0
\(389\) −33.0783 −1.67714 −0.838569 0.544795i \(-0.816607\pi\)
−0.838569 + 0.544795i \(0.816607\pi\)
\(390\) 0 0
\(391\) −11.5047 −0.581820
\(392\) 0 0
\(393\) 6.31395 0.318497
\(394\) 0 0
\(395\) 6.87750 0.346044
\(396\) 0 0
\(397\) 27.7994 1.39521 0.697606 0.716481i \(-0.254249\pi\)
0.697606 + 0.716481i \(0.254249\pi\)
\(398\) 0 0
\(399\) −0.0750657 −0.00375799
\(400\) 0 0
\(401\) 8.67153 0.433036 0.216518 0.976279i \(-0.430530\pi\)
0.216518 + 0.976279i \(0.430530\pi\)
\(402\) 0 0
\(403\) 8.66639 0.431704
\(404\) 0 0
\(405\) 13.2248 0.657145
\(406\) 0 0
\(407\) 49.9928 2.47805
\(408\) 0 0
\(409\) 12.4891 0.617548 0.308774 0.951135i \(-0.400081\pi\)
0.308774 + 0.951135i \(0.400081\pi\)
\(410\) 0 0
\(411\) −2.22263 −0.109634
\(412\) 0 0
\(413\) −3.22223 −0.158556
\(414\) 0 0
\(415\) −15.5092 −0.761318
\(416\) 0 0
\(417\) 1.60867 0.0787768
\(418\) 0 0
\(419\) 17.6374 0.861645 0.430823 0.902437i \(-0.358223\pi\)
0.430823 + 0.902437i \(0.358223\pi\)
\(420\) 0 0
\(421\) 16.8056 0.819054 0.409527 0.912298i \(-0.365694\pi\)
0.409527 + 0.912298i \(0.365694\pi\)
\(422\) 0 0
\(423\) 15.9564 0.775827
\(424\) 0 0
\(425\) 3.99617 0.193843
\(426\) 0 0
\(427\) −3.84062 −0.185861
\(428\) 0 0
\(429\) −11.1897 −0.540245
\(430\) 0 0
\(431\) 9.31283 0.448583 0.224292 0.974522i \(-0.427993\pi\)
0.224292 + 0.974522i \(0.427993\pi\)
\(432\) 0 0
\(433\) 2.38638 0.114682 0.0573410 0.998355i \(-0.481738\pi\)
0.0573410 + 0.998355i \(0.481738\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.01859 −0.0965625
\(438\) 0 0
\(439\) 32.1760 1.53567 0.767837 0.640645i \(-0.221333\pi\)
0.767837 + 0.640645i \(0.221333\pi\)
\(440\) 0 0
\(441\) 19.0636 0.907789
\(442\) 0 0
\(443\) 29.2967 1.39193 0.695964 0.718077i \(-0.254977\pi\)
0.695964 + 0.718077i \(0.254977\pi\)
\(444\) 0 0
\(445\) −19.4161 −0.920411
\(446\) 0 0
\(447\) 2.15133 0.101754
\(448\) 0 0
\(449\) −6.83909 −0.322757 −0.161378 0.986893i \(-0.551594\pi\)
−0.161378 + 0.986893i \(0.551594\pi\)
\(450\) 0 0
\(451\) −36.2392 −1.70644
\(452\) 0 0
\(453\) 9.76173 0.458646
\(454\) 0 0
\(455\) 1.88174 0.0882174
\(456\) 0 0
\(457\) −2.37038 −0.110882 −0.0554408 0.998462i \(-0.517656\pi\)
−0.0554408 + 0.998462i \(0.517656\pi\)
\(458\) 0 0
\(459\) 9.19923 0.429383
\(460\) 0 0
\(461\) 20.6640 0.962417 0.481209 0.876606i \(-0.340198\pi\)
0.481209 + 0.876606i \(0.340198\pi\)
\(462\) 0 0
\(463\) −5.94160 −0.276130 −0.138065 0.990423i \(-0.544088\pi\)
−0.138065 + 0.990423i \(0.544088\pi\)
\(464\) 0 0
\(465\) 2.30569 0.106924
\(466\) 0 0
\(467\) 21.4516 0.992664 0.496332 0.868133i \(-0.334680\pi\)
0.496332 + 0.868133i \(0.334680\pi\)
\(468\) 0 0
\(469\) 3.23457 0.149359
\(470\) 0 0
\(471\) 0.283558 0.0130657
\(472\) 0 0
\(473\) −52.3971 −2.40922
\(474\) 0 0
\(475\) 0.701158 0.0321714
\(476\) 0 0
\(477\) 21.3222 0.976275
\(478\) 0 0
\(479\) 5.28551 0.241501 0.120751 0.992683i \(-0.461470\pi\)
0.120751 + 0.992683i \(0.461470\pi\)
\(480\) 0 0
\(481\) −29.3584 −1.33863
\(482\) 0 0
\(483\) 0.478134 0.0217559
\(484\) 0 0
\(485\) 8.77916 0.398641
\(486\) 0 0
\(487\) 1.56145 0.0707561 0.0353781 0.999374i \(-0.488736\pi\)
0.0353781 + 0.999374i \(0.488736\pi\)
\(488\) 0 0
\(489\) 9.40525 0.425320
\(490\) 0 0
\(491\) 16.4010 0.740165 0.370082 0.928999i \(-0.379329\pi\)
0.370082 + 0.928999i \(0.379329\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 32.9613 1.48150
\(496\) 0 0
\(497\) −0.361910 −0.0162339
\(498\) 0 0
\(499\) 19.4787 0.871985 0.435993 0.899950i \(-0.356397\pi\)
0.435993 + 0.899950i \(0.356397\pi\)
\(500\) 0 0
\(501\) −6.03085 −0.269438
\(502\) 0 0
\(503\) −6.53697 −0.291469 −0.145734 0.989324i \(-0.546555\pi\)
−0.145734 + 0.989324i \(0.546555\pi\)
\(504\) 0 0
\(505\) −2.39350 −0.106510
\(506\) 0 0
\(507\) 0.0905862 0.00402307
\(508\) 0 0
\(509\) 28.6063 1.26795 0.633976 0.773353i \(-0.281422\pi\)
0.633976 + 0.773353i \(0.281422\pi\)
\(510\) 0 0
\(511\) −2.61549 −0.115703
\(512\) 0 0
\(513\) 1.61407 0.0712631
\(514\) 0 0
\(515\) 20.9840 0.924664
\(516\) 0 0
\(517\) 35.8532 1.57682
\(518\) 0 0
\(519\) 12.4826 0.547926
\(520\) 0 0
\(521\) −12.5478 −0.549731 −0.274866 0.961483i \(-0.588633\pi\)
−0.274866 + 0.961483i \(0.588633\pi\)
\(522\) 0 0
\(523\) −16.8553 −0.737031 −0.368516 0.929622i \(-0.620134\pi\)
−0.368516 + 0.929622i \(0.620134\pi\)
\(524\) 0 0
\(525\) −0.166080 −0.00724832
\(526\) 0 0
\(527\) −7.65862 −0.333615
\(528\) 0 0
\(529\) −10.1425 −0.440977
\(530\) 0 0
\(531\) 33.1456 1.43840
\(532\) 0 0
\(533\) 21.2816 0.921807
\(534\) 0 0
\(535\) −16.8971 −0.730524
\(536\) 0 0
\(537\) 4.95619 0.213875
\(538\) 0 0
\(539\) 42.8348 1.84503
\(540\) 0 0
\(541\) 23.9231 1.02853 0.514267 0.857630i \(-0.328064\pi\)
0.514267 + 0.857630i \(0.328064\pi\)
\(542\) 0 0
\(543\) −2.46477 −0.105773
\(544\) 0 0
\(545\) −31.2651 −1.33925
\(546\) 0 0
\(547\) −16.7482 −0.716100 −0.358050 0.933702i \(-0.616558\pi\)
−0.358050 + 0.933702i \(0.616558\pi\)
\(548\) 0 0
\(549\) 39.5067 1.68611
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0.949408 0.0403729
\(554\) 0 0
\(555\) −7.81080 −0.331550
\(556\) 0 0
\(557\) −5.21880 −0.221127 −0.110564 0.993869i \(-0.535266\pi\)
−0.110564 + 0.993869i \(0.535266\pi\)
\(558\) 0 0
\(559\) 30.7704 1.30145
\(560\) 0 0
\(561\) 9.88853 0.417494
\(562\) 0 0
\(563\) −8.88005 −0.374250 −0.187125 0.982336i \(-0.559917\pi\)
−0.187125 + 0.982336i \(0.559917\pi\)
\(564\) 0 0
\(565\) −30.7767 −1.29479
\(566\) 0 0
\(567\) 1.82562 0.0766689
\(568\) 0 0
\(569\) 21.1360 0.886067 0.443034 0.896505i \(-0.353902\pi\)
0.443034 + 0.896505i \(0.353902\pi\)
\(570\) 0 0
\(571\) −4.85753 −0.203281 −0.101641 0.994821i \(-0.532409\pi\)
−0.101641 + 0.994821i \(0.532409\pi\)
\(572\) 0 0
\(573\) 3.73934 0.156213
\(574\) 0 0
\(575\) −4.46606 −0.186248
\(576\) 0 0
\(577\) 29.0667 1.21006 0.605031 0.796202i \(-0.293161\pi\)
0.605031 + 0.796202i \(0.293161\pi\)
\(578\) 0 0
\(579\) 5.92318 0.246159
\(580\) 0 0
\(581\) −2.14098 −0.0888228
\(582\) 0 0
\(583\) 47.9098 1.98422
\(584\) 0 0
\(585\) −19.3566 −0.800298
\(586\) 0 0
\(587\) −38.1573 −1.57492 −0.787461 0.616365i \(-0.788605\pi\)
−0.787461 + 0.616365i \(0.788605\pi\)
\(588\) 0 0
\(589\) −1.34376 −0.0553688
\(590\) 0 0
\(591\) 11.1362 0.458082
\(592\) 0 0
\(593\) −16.1688 −0.663973 −0.331986 0.943284i \(-0.607719\pi\)
−0.331986 + 0.943284i \(0.607719\pi\)
\(594\) 0 0
\(595\) −1.66292 −0.0681732
\(596\) 0 0
\(597\) −5.56577 −0.227792
\(598\) 0 0
\(599\) 28.2890 1.15586 0.577928 0.816088i \(-0.303861\pi\)
0.577928 + 0.816088i \(0.303861\pi\)
\(600\) 0 0
\(601\) −10.2439 −0.417856 −0.208928 0.977931i \(-0.566997\pi\)
−0.208928 + 0.977931i \(0.566997\pi\)
\(602\) 0 0
\(603\) −33.2726 −1.35496
\(604\) 0 0
\(605\) 52.7481 2.14452
\(606\) 0 0
\(607\) 45.3280 1.83981 0.919903 0.392147i \(-0.128267\pi\)
0.919903 + 0.392147i \(0.128267\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −21.0549 −0.851790
\(612\) 0 0
\(613\) −23.8059 −0.961512 −0.480756 0.876854i \(-0.659638\pi\)
−0.480756 + 0.876854i \(0.659638\pi\)
\(614\) 0 0
\(615\) 5.66195 0.228312
\(616\) 0 0
\(617\) −21.6000 −0.869583 −0.434791 0.900531i \(-0.643178\pi\)
−0.434791 + 0.900531i \(0.643178\pi\)
\(618\) 0 0
\(619\) −15.2773 −0.614046 −0.307023 0.951702i \(-0.599333\pi\)
−0.307023 + 0.951702i \(0.599333\pi\)
\(620\) 0 0
\(621\) −10.2809 −0.412559
\(622\) 0 0
\(623\) −2.68030 −0.107384
\(624\) 0 0
\(625\) −17.2212 −0.688847
\(626\) 0 0
\(627\) 1.73502 0.0692900
\(628\) 0 0
\(629\) 25.9445 1.03447
\(630\) 0 0
\(631\) 29.2658 1.16505 0.582527 0.812811i \(-0.302064\pi\)
0.582527 + 0.812811i \(0.302064\pi\)
\(632\) 0 0
\(633\) −5.12525 −0.203710
\(634\) 0 0
\(635\) −30.3502 −1.20441
\(636\) 0 0
\(637\) −25.1549 −0.996672
\(638\) 0 0
\(639\) 3.72280 0.147272
\(640\) 0 0
\(641\) 1.68377 0.0665048 0.0332524 0.999447i \(-0.489413\pi\)
0.0332524 + 0.999447i \(0.489413\pi\)
\(642\) 0 0
\(643\) −48.0543 −1.89508 −0.947538 0.319642i \(-0.896437\pi\)
−0.947538 + 0.319642i \(0.896437\pi\)
\(644\) 0 0
\(645\) 8.18644 0.322341
\(646\) 0 0
\(647\) 14.7176 0.578608 0.289304 0.957237i \(-0.406576\pi\)
0.289304 + 0.957237i \(0.406576\pi\)
\(648\) 0 0
\(649\) 74.4765 2.92346
\(650\) 0 0
\(651\) 0.318291 0.0124748
\(652\) 0 0
\(653\) −21.4828 −0.840687 −0.420343 0.907365i \(-0.638090\pi\)
−0.420343 + 0.907365i \(0.638090\pi\)
\(654\) 0 0
\(655\) 24.5417 0.958922
\(656\) 0 0
\(657\) 26.9044 1.04964
\(658\) 0 0
\(659\) 34.3590 1.33844 0.669218 0.743066i \(-0.266629\pi\)
0.669218 + 0.743066i \(0.266629\pi\)
\(660\) 0 0
\(661\) −17.4294 −0.677924 −0.338962 0.940800i \(-0.610076\pi\)
−0.338962 + 0.940800i \(0.610076\pi\)
\(662\) 0 0
\(663\) −5.80707 −0.225528
\(664\) 0 0
\(665\) −0.291773 −0.0113145
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −12.0626 −0.466366
\(670\) 0 0
\(671\) 88.7695 3.42691
\(672\) 0 0
\(673\) −21.6549 −0.834735 −0.417367 0.908738i \(-0.637047\pi\)
−0.417367 + 0.908738i \(0.637047\pi\)
\(674\) 0 0
\(675\) 3.57107 0.137451
\(676\) 0 0
\(677\) 32.0534 1.23191 0.615956 0.787781i \(-0.288770\pi\)
0.615956 + 0.787781i \(0.288770\pi\)
\(678\) 0 0
\(679\) 1.21192 0.0465094
\(680\) 0 0
\(681\) −9.09602 −0.348560
\(682\) 0 0
\(683\) 10.1276 0.387523 0.193762 0.981049i \(-0.437931\pi\)
0.193762 + 0.981049i \(0.437931\pi\)
\(684\) 0 0
\(685\) −8.63914 −0.330085
\(686\) 0 0
\(687\) −8.15792 −0.311244
\(688\) 0 0
\(689\) −28.1352 −1.07186
\(690\) 0 0
\(691\) 25.9048 0.985465 0.492733 0.870181i \(-0.335998\pi\)
0.492733 + 0.870181i \(0.335998\pi\)
\(692\) 0 0
\(693\) 4.55016 0.172846
\(694\) 0 0
\(695\) 6.25272 0.237179
\(696\) 0 0
\(697\) −18.8068 −0.712360
\(698\) 0 0
\(699\) −6.89845 −0.260923
\(700\) 0 0
\(701\) −3.55651 −0.134328 −0.0671638 0.997742i \(-0.521395\pi\)
−0.0671638 + 0.997742i \(0.521395\pi\)
\(702\) 0 0
\(703\) 4.55215 0.171688
\(704\) 0 0
\(705\) −5.60165 −0.210970
\(706\) 0 0
\(707\) −0.330413 −0.0124265
\(708\) 0 0
\(709\) −34.8259 −1.30791 −0.653956 0.756532i \(-0.726892\pi\)
−0.653956 + 0.756532i \(0.726892\pi\)
\(710\) 0 0
\(711\) −9.76613 −0.366258
\(712\) 0 0
\(713\) 8.55916 0.320543
\(714\) 0 0
\(715\) −43.4933 −1.62656
\(716\) 0 0
\(717\) 0.390601 0.0145873
\(718\) 0 0
\(719\) −7.83549 −0.292215 −0.146107 0.989269i \(-0.546674\pi\)
−0.146107 + 0.989269i \(0.546674\pi\)
\(720\) 0 0
\(721\) 2.89674 0.107880
\(722\) 0 0
\(723\) 11.7675 0.437639
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 7.51051 0.278549 0.139275 0.990254i \(-0.455523\pi\)
0.139275 + 0.990254i \(0.455523\pi\)
\(728\) 0 0
\(729\) −14.4914 −0.536719
\(730\) 0 0
\(731\) −27.1922 −1.00574
\(732\) 0 0
\(733\) 27.2379 1.00605 0.503027 0.864271i \(-0.332220\pi\)
0.503027 + 0.864271i \(0.332220\pi\)
\(734\) 0 0
\(735\) −6.69245 −0.246855
\(736\) 0 0
\(737\) −74.7617 −2.75388
\(738\) 0 0
\(739\) −9.99385 −0.367630 −0.183815 0.982961i \(-0.558845\pi\)
−0.183815 + 0.982961i \(0.558845\pi\)
\(740\) 0 0
\(741\) −1.01889 −0.0374300
\(742\) 0 0
\(743\) −25.6412 −0.940686 −0.470343 0.882484i \(-0.655870\pi\)
−0.470343 + 0.882484i \(0.655870\pi\)
\(744\) 0 0
\(745\) 8.36198 0.306359
\(746\) 0 0
\(747\) 22.0233 0.805790
\(748\) 0 0
\(749\) −2.33257 −0.0852301
\(750\) 0 0
\(751\) 40.1392 1.46470 0.732349 0.680929i \(-0.238424\pi\)
0.732349 + 0.680929i \(0.238424\pi\)
\(752\) 0 0
\(753\) −6.31085 −0.229980
\(754\) 0 0
\(755\) 37.9428 1.38088
\(756\) 0 0
\(757\) 4.12630 0.149973 0.0749865 0.997185i \(-0.476109\pi\)
0.0749865 + 0.997185i \(0.476109\pi\)
\(758\) 0 0
\(759\) −11.0513 −0.401136
\(760\) 0 0
\(761\) −32.5074 −1.17839 −0.589196 0.807990i \(-0.700555\pi\)
−0.589196 + 0.807990i \(0.700555\pi\)
\(762\) 0 0
\(763\) −4.31601 −0.156250
\(764\) 0 0
\(765\) 17.1057 0.618459
\(766\) 0 0
\(767\) −43.7366 −1.57924
\(768\) 0 0
\(769\) 11.6275 0.419300 0.209650 0.977777i \(-0.432768\pi\)
0.209650 + 0.977777i \(0.432768\pi\)
\(770\) 0 0
\(771\) 5.15757 0.185745
\(772\) 0 0
\(773\) 7.96103 0.286338 0.143169 0.989698i \(-0.454271\pi\)
0.143169 + 0.989698i \(0.454271\pi\)
\(774\) 0 0
\(775\) −2.97302 −0.106794
\(776\) 0 0
\(777\) −1.07825 −0.0386819
\(778\) 0 0
\(779\) −3.29980 −0.118228
\(780\) 0 0
\(781\) 8.36493 0.299321
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.10216 0.0393378
\(786\) 0 0
\(787\) 2.35358 0.0838962 0.0419481 0.999120i \(-0.486644\pi\)
0.0419481 + 0.999120i \(0.486644\pi\)
\(788\) 0 0
\(789\) −7.99581 −0.284658
\(790\) 0 0
\(791\) −4.24859 −0.151062
\(792\) 0 0
\(793\) −52.1302 −1.85120
\(794\) 0 0
\(795\) −7.48535 −0.265478
\(796\) 0 0
\(797\) −19.0106 −0.673391 −0.336695 0.941614i \(-0.609309\pi\)
−0.336695 + 0.941614i \(0.609309\pi\)
\(798\) 0 0
\(799\) 18.6065 0.658252
\(800\) 0 0
\(801\) 27.5711 0.974176
\(802\) 0 0
\(803\) 60.4528 2.13333
\(804\) 0 0
\(805\) 1.85846 0.0655021
\(806\) 0 0
\(807\) −4.45309 −0.156756
\(808\) 0 0
\(809\) 35.6176 1.25225 0.626124 0.779724i \(-0.284641\pi\)
0.626124 + 0.779724i \(0.284641\pi\)
\(810\) 0 0
\(811\) −15.6295 −0.548827 −0.274414 0.961612i \(-0.588484\pi\)
−0.274414 + 0.961612i \(0.588484\pi\)
\(812\) 0 0
\(813\) 12.9936 0.455705
\(814\) 0 0
\(815\) 36.5572 1.28054
\(816\) 0 0
\(817\) −4.77108 −0.166919
\(818\) 0 0
\(819\) −2.67210 −0.0933706
\(820\) 0 0
\(821\) −14.8071 −0.516773 −0.258386 0.966042i \(-0.583191\pi\)
−0.258386 + 0.966042i \(0.583191\pi\)
\(822\) 0 0
\(823\) 14.8341 0.517083 0.258542 0.966000i \(-0.416758\pi\)
0.258542 + 0.966000i \(0.416758\pi\)
\(824\) 0 0
\(825\) 3.83866 0.133645
\(826\) 0 0
\(827\) 34.0092 1.18262 0.591308 0.806446i \(-0.298612\pi\)
0.591308 + 0.806446i \(0.298612\pi\)
\(828\) 0 0
\(829\) −25.0496 −0.870010 −0.435005 0.900428i \(-0.643253\pi\)
−0.435005 + 0.900428i \(0.643253\pi\)
\(830\) 0 0
\(831\) −9.39752 −0.325996
\(832\) 0 0
\(833\) 22.2297 0.770215
\(834\) 0 0
\(835\) −23.4413 −0.811219
\(836\) 0 0
\(837\) −6.84393 −0.236561
\(838\) 0 0
\(839\) −40.5261 −1.39912 −0.699558 0.714576i \(-0.746620\pi\)
−0.699558 + 0.714576i \(0.746620\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0 0
\(843\) 10.1850 0.350788
\(844\) 0 0
\(845\) 0.352099 0.0121126
\(846\) 0 0
\(847\) 7.28165 0.250200
\(848\) 0 0
\(849\) 12.0395 0.413196
\(850\) 0 0
\(851\) −28.9952 −0.993941
\(852\) 0 0
\(853\) 24.9274 0.853497 0.426749 0.904370i \(-0.359659\pi\)
0.426749 + 0.904370i \(0.359659\pi\)
\(854\) 0 0
\(855\) 3.00133 0.102643
\(856\) 0 0
\(857\) 6.91827 0.236324 0.118162 0.992994i \(-0.462300\pi\)
0.118162 + 0.992994i \(0.462300\pi\)
\(858\) 0 0
\(859\) 11.7507 0.400928 0.200464 0.979701i \(-0.435755\pi\)
0.200464 + 0.979701i \(0.435755\pi\)
\(860\) 0 0
\(861\) 0.781608 0.0266371
\(862\) 0 0
\(863\) −17.1630 −0.584235 −0.292117 0.956382i \(-0.594360\pi\)
−0.292117 + 0.956382i \(0.594360\pi\)
\(864\) 0 0
\(865\) 48.5186 1.64968
\(866\) 0 0
\(867\) −3.34286 −0.113529
\(868\) 0 0
\(869\) −21.9440 −0.744398
\(870\) 0 0
\(871\) 43.9041 1.48763
\(872\) 0 0
\(873\) −12.4665 −0.421927
\(874\) 0 0
\(875\) −3.23699 −0.109430
\(876\) 0 0
\(877\) 14.9090 0.503440 0.251720 0.967800i \(-0.419004\pi\)
0.251720 + 0.967800i \(0.419004\pi\)
\(878\) 0 0
\(879\) −0.449199 −0.0151511
\(880\) 0 0
\(881\) −35.7490 −1.20441 −0.602207 0.798340i \(-0.705712\pi\)
−0.602207 + 0.798340i \(0.705712\pi\)
\(882\) 0 0
\(883\) 49.6477 1.67078 0.835390 0.549658i \(-0.185242\pi\)
0.835390 + 0.549658i \(0.185242\pi\)
\(884\) 0 0
\(885\) −11.6361 −0.391143
\(886\) 0 0
\(887\) −30.5983 −1.02739 −0.513695 0.857973i \(-0.671724\pi\)
−0.513695 + 0.857973i \(0.671724\pi\)
\(888\) 0 0
\(889\) −4.18971 −0.140518
\(890\) 0 0
\(891\) −42.1962 −1.41363
\(892\) 0 0
\(893\) 3.26466 0.109248
\(894\) 0 0
\(895\) 19.2642 0.643931
\(896\) 0 0
\(897\) 6.48990 0.216691
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 24.8635 0.828322
\(902\) 0 0
\(903\) 1.13010 0.0376075
\(904\) 0 0
\(905\) −9.58029 −0.318460
\(906\) 0 0
\(907\) 12.3531 0.410177 0.205088 0.978743i \(-0.434252\pi\)
0.205088 + 0.978743i \(0.434252\pi\)
\(908\) 0 0
\(909\) 3.39881 0.112731
\(910\) 0 0
\(911\) −42.2608 −1.40016 −0.700081 0.714064i \(-0.746853\pi\)
−0.700081 + 0.714064i \(0.746853\pi\)
\(912\) 0 0
\(913\) 49.4852 1.63772
\(914\) 0 0
\(915\) −13.8692 −0.458502
\(916\) 0 0
\(917\) 3.38787 0.111877
\(918\) 0 0
\(919\) −6.72007 −0.221675 −0.110837 0.993839i \(-0.535353\pi\)
−0.110837 + 0.993839i \(0.535353\pi\)
\(920\) 0 0
\(921\) −1.13005 −0.0372366
\(922\) 0 0
\(923\) −4.91233 −0.161691
\(924\) 0 0
\(925\) 10.0715 0.331148
\(926\) 0 0
\(927\) −29.7975 −0.978678
\(928\) 0 0
\(929\) 37.2715 1.22284 0.611419 0.791307i \(-0.290599\pi\)
0.611419 + 0.791307i \(0.290599\pi\)
\(930\) 0 0
\(931\) 3.90038 0.127830
\(932\) 0 0
\(933\) 15.3837 0.503638
\(934\) 0 0
\(935\) 38.4357 1.25698
\(936\) 0 0
\(937\) 5.20730 0.170115 0.0850576 0.996376i \(-0.472893\pi\)
0.0850576 + 0.996376i \(0.472893\pi\)
\(938\) 0 0
\(939\) 3.18010 0.103779
\(940\) 0 0
\(941\) 0.339552 0.0110691 0.00553454 0.999985i \(-0.498238\pi\)
0.00553454 + 0.999985i \(0.498238\pi\)
\(942\) 0 0
\(943\) 21.0182 0.684448
\(944\) 0 0
\(945\) −1.48603 −0.0483405
\(946\) 0 0
\(947\) −31.9120 −1.03700 −0.518500 0.855077i \(-0.673510\pi\)
−0.518500 + 0.855077i \(0.673510\pi\)
\(948\) 0 0
\(949\) −35.5011 −1.15241
\(950\) 0 0
\(951\) −5.24974 −0.170234
\(952\) 0 0
\(953\) 14.9302 0.483637 0.241819 0.970321i \(-0.422256\pi\)
0.241819 + 0.970321i \(0.422256\pi\)
\(954\) 0 0
\(955\) 14.5344 0.470323
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.19260 −0.0385109
\(960\) 0 0
\(961\) −25.3022 −0.816201
\(962\) 0 0
\(963\) 23.9940 0.773197
\(964\) 0 0
\(965\) 23.0228 0.741130
\(966\) 0 0
\(967\) 25.5534 0.821741 0.410871 0.911694i \(-0.365225\pi\)
0.410871 + 0.911694i \(0.365225\pi\)
\(968\) 0 0
\(969\) 0.900412 0.0289254
\(970\) 0 0
\(971\) −33.0036 −1.05914 −0.529568 0.848268i \(-0.677646\pi\)
−0.529568 + 0.848268i \(0.677646\pi\)
\(972\) 0 0
\(973\) 0.863161 0.0276717
\(974\) 0 0
\(975\) −2.25426 −0.0721942
\(976\) 0 0
\(977\) 27.5051 0.879966 0.439983 0.898006i \(-0.354984\pi\)
0.439983 + 0.898006i \(0.354984\pi\)
\(978\) 0 0
\(979\) 61.9507 1.97995
\(980\) 0 0
\(981\) 44.3968 1.41748
\(982\) 0 0
\(983\) 54.4728 1.73741 0.868707 0.495327i \(-0.164952\pi\)
0.868707 + 0.495327i \(0.164952\pi\)
\(984\) 0 0
\(985\) 43.2852 1.37918
\(986\) 0 0
\(987\) −0.773283 −0.0246139
\(988\) 0 0
\(989\) 30.3896 0.966334
\(990\) 0 0
\(991\) −3.84175 −0.122037 −0.0610186 0.998137i \(-0.519435\pi\)
−0.0610186 + 0.998137i \(0.519435\pi\)
\(992\) 0 0
\(993\) 1.53376 0.0486724
\(994\) 0 0
\(995\) −21.6335 −0.685829
\(996\) 0 0
\(997\) −3.05652 −0.0968011 −0.0484005 0.998828i \(-0.515412\pi\)
−0.0484005 + 0.998828i \(0.515412\pi\)
\(998\) 0 0
\(999\) 23.1846 0.733529
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3364.2.a.q.1.6 8
29.12 odd 4 3364.2.c.k.1681.11 16
29.17 odd 4 3364.2.c.k.1681.6 16
29.28 even 2 3364.2.a.r.1.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3364.2.a.q.1.6 8 1.1 even 1 trivial
3364.2.a.r.1.3 yes 8 29.28 even 2
3364.2.c.k.1681.6 16 29.17 odd 4
3364.2.c.k.1681.11 16 29.12 odd 4