Properties

Label 3364.2.a.p.1.6
Level $3364$
Weight $2$
Character 3364.1
Self dual yes
Analytic conductor $26.862$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3364,2,Mod(1,3364)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3364.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3364, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3364 = 2^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3364.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,5,0,10,0,7,0,11,0,9,0,14,0,10,0,5,0,9,0,-19,0,15,0,16,0, 20,0,0,0,-11,0,22,0,10,0,-16,0,22,0,1,0,15,0,32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(45)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.8616752400\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.6456289.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 12x^{4} + 3x^{3} + 40x^{2} + 6x - 29 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 116)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.08697\) of defining polynomial
Character \(\chi\) \(=\) 3364.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.08697 q^{3} +3.51360 q^{5} -1.08697 q^{7} +6.52935 q^{9} -1.84938 q^{11} +6.57945 q^{13} +10.8464 q^{15} -0.658856 q^{17} -3.32428 q^{19} -3.35542 q^{21} +3.89074 q^{23} +7.34540 q^{25} +10.8950 q^{27} -3.00066 q^{31} -5.70898 q^{33} -3.81916 q^{35} -6.08844 q^{37} +20.3105 q^{39} -5.19016 q^{41} +1.17695 q^{43} +22.9415 q^{45} -6.21164 q^{47} -5.81851 q^{49} -2.03387 q^{51} -1.40581 q^{53} -6.49799 q^{55} -10.2619 q^{57} -9.55267 q^{59} +8.30080 q^{61} -7.09718 q^{63} +23.1176 q^{65} -12.3977 q^{67} +12.0106 q^{69} +8.12645 q^{71} +8.61593 q^{73} +22.6750 q^{75} +2.01021 q^{77} -5.60250 q^{79} +14.0444 q^{81} -3.72172 q^{83} -2.31496 q^{85} -4.47002 q^{89} -7.15163 q^{91} -9.26292 q^{93} -11.6802 q^{95} -8.00445 q^{97} -12.0753 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{3} + 10 q^{5} + 7 q^{7} + 11 q^{9} + 9 q^{11} + 14 q^{13} + 10 q^{15} + 5 q^{17} + 9 q^{19} - 19 q^{21} + 15 q^{23} + 16 q^{25} + 20 q^{27} - 11 q^{31} + 22 q^{33} + 10 q^{35} - 16 q^{37} + 22 q^{39}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.08697 1.78226 0.891130 0.453748i \(-0.149913\pi\)
0.891130 + 0.453748i \(0.149913\pi\)
\(4\) 0 0
\(5\) 3.51360 1.57133 0.785665 0.618652i \(-0.212321\pi\)
0.785665 + 0.618652i \(0.212321\pi\)
\(6\) 0 0
\(7\) −1.08697 −0.410834 −0.205417 0.978675i \(-0.565855\pi\)
−0.205417 + 0.978675i \(0.565855\pi\)
\(8\) 0 0
\(9\) 6.52935 2.17645
\(10\) 0 0
\(11\) −1.84938 −0.557610 −0.278805 0.960348i \(-0.589938\pi\)
−0.278805 + 0.960348i \(0.589938\pi\)
\(12\) 0 0
\(13\) 6.57945 1.82481 0.912406 0.409287i \(-0.134222\pi\)
0.912406 + 0.409287i \(0.134222\pi\)
\(14\) 0 0
\(15\) 10.8464 2.80052
\(16\) 0 0
\(17\) −0.658856 −0.159796 −0.0798980 0.996803i \(-0.525459\pi\)
−0.0798980 + 0.996803i \(0.525459\pi\)
\(18\) 0 0
\(19\) −3.32428 −0.762642 −0.381321 0.924443i \(-0.624531\pi\)
−0.381321 + 0.924443i \(0.624531\pi\)
\(20\) 0 0
\(21\) −3.35542 −0.732213
\(22\) 0 0
\(23\) 3.89074 0.811275 0.405638 0.914034i \(-0.367050\pi\)
0.405638 + 0.914034i \(0.367050\pi\)
\(24\) 0 0
\(25\) 7.34540 1.46908
\(26\) 0 0
\(27\) 10.8950 2.09674
\(28\) 0 0
\(29\) 0 0
\(30\) 0 0
\(31\) −3.00066 −0.538934 −0.269467 0.963010i \(-0.586847\pi\)
−0.269467 + 0.963010i \(0.586847\pi\)
\(32\) 0 0
\(33\) −5.70898 −0.993806
\(34\) 0 0
\(35\) −3.81916 −0.645556
\(36\) 0 0
\(37\) −6.08844 −1.00093 −0.500466 0.865756i \(-0.666838\pi\)
−0.500466 + 0.865756i \(0.666838\pi\)
\(38\) 0 0
\(39\) 20.3105 3.25229
\(40\) 0 0
\(41\) −5.19016 −0.810567 −0.405284 0.914191i \(-0.632827\pi\)
−0.405284 + 0.914191i \(0.632827\pi\)
\(42\) 0 0
\(43\) 1.17695 0.179483 0.0897414 0.995965i \(-0.471396\pi\)
0.0897414 + 0.995965i \(0.471396\pi\)
\(44\) 0 0
\(45\) 22.9415 3.41992
\(46\) 0 0
\(47\) −6.21164 −0.906061 −0.453031 0.891495i \(-0.649657\pi\)
−0.453031 + 0.891495i \(0.649657\pi\)
\(48\) 0 0
\(49\) −5.81851 −0.831215
\(50\) 0 0
\(51\) −2.03387 −0.284798
\(52\) 0 0
\(53\) −1.40581 −0.193103 −0.0965516 0.995328i \(-0.530781\pi\)
−0.0965516 + 0.995328i \(0.530781\pi\)
\(54\) 0 0
\(55\) −6.49799 −0.876189
\(56\) 0 0
\(57\) −10.2619 −1.35923
\(58\) 0 0
\(59\) −9.55267 −1.24365 −0.621826 0.783156i \(-0.713609\pi\)
−0.621826 + 0.783156i \(0.713609\pi\)
\(60\) 0 0
\(61\) 8.30080 1.06281 0.531405 0.847118i \(-0.321664\pi\)
0.531405 + 0.847118i \(0.321664\pi\)
\(62\) 0 0
\(63\) −7.09718 −0.894161
\(64\) 0 0
\(65\) 23.1176 2.86738
\(66\) 0 0
\(67\) −12.3977 −1.51463 −0.757313 0.653052i \(-0.773488\pi\)
−0.757313 + 0.653052i \(0.773488\pi\)
\(68\) 0 0
\(69\) 12.0106 1.44590
\(70\) 0 0
\(71\) 8.12645 0.964433 0.482216 0.876052i \(-0.339832\pi\)
0.482216 + 0.876052i \(0.339832\pi\)
\(72\) 0 0
\(73\) 8.61593 1.00842 0.504209 0.863582i \(-0.331784\pi\)
0.504209 + 0.863582i \(0.331784\pi\)
\(74\) 0 0
\(75\) 22.6750 2.61828
\(76\) 0 0
\(77\) 2.01021 0.229085
\(78\) 0 0
\(79\) −5.60250 −0.630331 −0.315165 0.949037i \(-0.602060\pi\)
−0.315165 + 0.949037i \(0.602060\pi\)
\(80\) 0 0
\(81\) 14.0444 1.56049
\(82\) 0 0
\(83\) −3.72172 −0.408511 −0.204256 0.978918i \(-0.565477\pi\)
−0.204256 + 0.978918i \(0.565477\pi\)
\(84\) 0 0
\(85\) −2.31496 −0.251092
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.47002 −0.473821 −0.236910 0.971532i \(-0.576135\pi\)
−0.236910 + 0.971532i \(0.576135\pi\)
\(90\) 0 0
\(91\) −7.15163 −0.749695
\(92\) 0 0
\(93\) −9.26292 −0.960520
\(94\) 0 0
\(95\) −11.6802 −1.19836
\(96\) 0 0
\(97\) −8.00445 −0.812729 −0.406364 0.913711i \(-0.633204\pi\)
−0.406364 + 0.913711i \(0.633204\pi\)
\(98\) 0 0
\(99\) −12.0753 −1.21361
\(100\) 0 0
\(101\) 2.32228 0.231076 0.115538 0.993303i \(-0.463141\pi\)
0.115538 + 0.993303i \(0.463141\pi\)
\(102\) 0 0
\(103\) −7.70034 −0.758737 −0.379368 0.925246i \(-0.623859\pi\)
−0.379368 + 0.925246i \(0.623859\pi\)
\(104\) 0 0
\(105\) −11.7896 −1.15055
\(106\) 0 0
\(107\) 7.43577 0.718843 0.359422 0.933175i \(-0.382974\pi\)
0.359422 + 0.933175i \(0.382974\pi\)
\(108\) 0 0
\(109\) 5.96077 0.570938 0.285469 0.958388i \(-0.407851\pi\)
0.285469 + 0.958388i \(0.407851\pi\)
\(110\) 0 0
\(111\) −18.7948 −1.78392
\(112\) 0 0
\(113\) 18.1901 1.71118 0.855589 0.517656i \(-0.173195\pi\)
0.855589 + 0.517656i \(0.173195\pi\)
\(114\) 0 0
\(115\) 13.6705 1.27478
\(116\) 0 0
\(117\) 42.9596 3.97161
\(118\) 0 0
\(119\) 0.716154 0.0656497
\(120\) 0 0
\(121\) −7.57978 −0.689071
\(122\) 0 0
\(123\) −16.0219 −1.44464
\(124\) 0 0
\(125\) 8.24079 0.737078
\(126\) 0 0
\(127\) 4.19960 0.372655 0.186327 0.982488i \(-0.440342\pi\)
0.186327 + 0.982488i \(0.440342\pi\)
\(128\) 0 0
\(129\) 3.63320 0.319885
\(130\) 0 0
\(131\) 11.0211 0.962917 0.481458 0.876469i \(-0.340107\pi\)
0.481458 + 0.876469i \(0.340107\pi\)
\(132\) 0 0
\(133\) 3.61338 0.313320
\(134\) 0 0
\(135\) 38.2807 3.29467
\(136\) 0 0
\(137\) 9.32982 0.797100 0.398550 0.917147i \(-0.369514\pi\)
0.398550 + 0.917147i \(0.369514\pi\)
\(138\) 0 0
\(139\) 17.6662 1.49843 0.749213 0.662329i \(-0.230432\pi\)
0.749213 + 0.662329i \(0.230432\pi\)
\(140\) 0 0
\(141\) −19.1751 −1.61484
\(142\) 0 0
\(143\) −12.1679 −1.01753
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −17.9615 −1.48144
\(148\) 0 0
\(149\) 16.7796 1.37464 0.687321 0.726354i \(-0.258787\pi\)
0.687321 + 0.726354i \(0.258787\pi\)
\(150\) 0 0
\(151\) 0.679316 0.0552819 0.0276410 0.999618i \(-0.491200\pi\)
0.0276410 + 0.999618i \(0.491200\pi\)
\(152\) 0 0
\(153\) −4.30190 −0.347788
\(154\) 0 0
\(155\) −10.5431 −0.846843
\(156\) 0 0
\(157\) 1.22921 0.0981018 0.0490509 0.998796i \(-0.484380\pi\)
0.0490509 + 0.998796i \(0.484380\pi\)
\(158\) 0 0
\(159\) −4.33970 −0.344160
\(160\) 0 0
\(161\) −4.22910 −0.333300
\(162\) 0 0
\(163\) 10.1411 0.794313 0.397156 0.917751i \(-0.369997\pi\)
0.397156 + 0.917751i \(0.369997\pi\)
\(164\) 0 0
\(165\) −20.0591 −1.56160
\(166\) 0 0
\(167\) −19.7701 −1.52986 −0.764928 0.644116i \(-0.777225\pi\)
−0.764928 + 0.644116i \(0.777225\pi\)
\(168\) 0 0
\(169\) 30.2892 2.32994
\(170\) 0 0
\(171\) −21.7054 −1.65985
\(172\) 0 0
\(173\) −6.04054 −0.459254 −0.229627 0.973279i \(-0.573751\pi\)
−0.229627 + 0.973279i \(0.573751\pi\)
\(174\) 0 0
\(175\) −7.98419 −0.603548
\(176\) 0 0
\(177\) −29.4887 −2.21651
\(178\) 0 0
\(179\) −13.4038 −1.00184 −0.500922 0.865492i \(-0.667006\pi\)
−0.500922 + 0.865492i \(0.667006\pi\)
\(180\) 0 0
\(181\) 2.30153 0.171071 0.0855356 0.996335i \(-0.472740\pi\)
0.0855356 + 0.996335i \(0.472740\pi\)
\(182\) 0 0
\(183\) 25.6243 1.89420
\(184\) 0 0
\(185\) −21.3923 −1.57280
\(186\) 0 0
\(187\) 1.21848 0.0891039
\(188\) 0 0
\(189\) −11.8425 −0.861413
\(190\) 0 0
\(191\) −26.8511 −1.94287 −0.971437 0.237298i \(-0.923738\pi\)
−0.971437 + 0.237298i \(0.923738\pi\)
\(192\) 0 0
\(193\) −10.1495 −0.730575 −0.365288 0.930895i \(-0.619029\pi\)
−0.365288 + 0.930895i \(0.619029\pi\)
\(194\) 0 0
\(195\) 71.3631 5.11042
\(196\) 0 0
\(197\) 2.47663 0.176453 0.0882264 0.996100i \(-0.471880\pi\)
0.0882264 + 0.996100i \(0.471880\pi\)
\(198\) 0 0
\(199\) 9.25795 0.656279 0.328139 0.944629i \(-0.393578\pi\)
0.328139 + 0.944629i \(0.393578\pi\)
\(200\) 0 0
\(201\) −38.2714 −2.69946
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −18.2362 −1.27367
\(206\) 0 0
\(207\) 25.4040 1.76570
\(208\) 0 0
\(209\) 6.14787 0.425257
\(210\) 0 0
\(211\) −22.2137 −1.52925 −0.764626 0.644474i \(-0.777076\pi\)
−0.764626 + 0.644474i \(0.777076\pi\)
\(212\) 0 0
\(213\) 25.0861 1.71887
\(214\) 0 0
\(215\) 4.13532 0.282027
\(216\) 0 0
\(217\) 3.26161 0.221412
\(218\) 0 0
\(219\) 26.5971 1.79726
\(220\) 0 0
\(221\) −4.33491 −0.291598
\(222\) 0 0
\(223\) 27.0264 1.80982 0.904909 0.425605i \(-0.139939\pi\)
0.904909 + 0.425605i \(0.139939\pi\)
\(224\) 0 0
\(225\) 47.9607 3.19738
\(226\) 0 0
\(227\) 2.17148 0.144126 0.0720632 0.997400i \(-0.477042\pi\)
0.0720632 + 0.997400i \(0.477042\pi\)
\(228\) 0 0
\(229\) −14.0851 −0.930768 −0.465384 0.885109i \(-0.654084\pi\)
−0.465384 + 0.885109i \(0.654084\pi\)
\(230\) 0 0
\(231\) 6.20546 0.408289
\(232\) 0 0
\(233\) 7.98101 0.522854 0.261427 0.965223i \(-0.415807\pi\)
0.261427 + 0.965223i \(0.415807\pi\)
\(234\) 0 0
\(235\) −21.8252 −1.42372
\(236\) 0 0
\(237\) −17.2947 −1.12341
\(238\) 0 0
\(239\) −18.8987 −1.22245 −0.611227 0.791455i \(-0.709324\pi\)
−0.611227 + 0.791455i \(0.709324\pi\)
\(240\) 0 0
\(241\) −10.6416 −0.685484 −0.342742 0.939430i \(-0.611356\pi\)
−0.342742 + 0.939430i \(0.611356\pi\)
\(242\) 0 0
\(243\) 10.6696 0.684454
\(244\) 0 0
\(245\) −20.4439 −1.30611
\(246\) 0 0
\(247\) −21.8719 −1.39168
\(248\) 0 0
\(249\) −11.4888 −0.728074
\(250\) 0 0
\(251\) −1.26206 −0.0796604 −0.0398302 0.999206i \(-0.512682\pi\)
−0.0398302 + 0.999206i \(0.512682\pi\)
\(252\) 0 0
\(253\) −7.19546 −0.452375
\(254\) 0 0
\(255\) −7.14619 −0.447512
\(256\) 0 0
\(257\) −5.78081 −0.360597 −0.180298 0.983612i \(-0.557706\pi\)
−0.180298 + 0.983612i \(0.557706\pi\)
\(258\) 0 0
\(259\) 6.61792 0.411217
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 23.9520 1.47694 0.738472 0.674284i \(-0.235548\pi\)
0.738472 + 0.674284i \(0.235548\pi\)
\(264\) 0 0
\(265\) −4.93947 −0.303429
\(266\) 0 0
\(267\) −13.7988 −0.844472
\(268\) 0 0
\(269\) 7.56477 0.461232 0.230616 0.973045i \(-0.425926\pi\)
0.230616 + 0.973045i \(0.425926\pi\)
\(270\) 0 0
\(271\) −19.0739 −1.15866 −0.579328 0.815095i \(-0.696685\pi\)
−0.579328 + 0.815095i \(0.696685\pi\)
\(272\) 0 0
\(273\) −22.0768 −1.33615
\(274\) 0 0
\(275\) −13.5844 −0.819173
\(276\) 0 0
\(277\) −4.14362 −0.248966 −0.124483 0.992222i \(-0.539727\pi\)
−0.124483 + 0.992222i \(0.539727\pi\)
\(278\) 0 0
\(279\) −19.5923 −1.17296
\(280\) 0 0
\(281\) 0.576507 0.0343915 0.0171958 0.999852i \(-0.494526\pi\)
0.0171958 + 0.999852i \(0.494526\pi\)
\(282\) 0 0
\(283\) 23.6545 1.40611 0.703056 0.711134i \(-0.251818\pi\)
0.703056 + 0.711134i \(0.251818\pi\)
\(284\) 0 0
\(285\) −36.0564 −2.13579
\(286\) 0 0
\(287\) 5.64153 0.333009
\(288\) 0 0
\(289\) −16.5659 −0.974465
\(290\) 0 0
\(291\) −24.7095 −1.44849
\(292\) 0 0
\(293\) 5.09064 0.297399 0.148699 0.988882i \(-0.452491\pi\)
0.148699 + 0.988882i \(0.452491\pi\)
\(294\) 0 0
\(295\) −33.5643 −1.95419
\(296\) 0 0
\(297\) −20.1490 −1.16916
\(298\) 0 0
\(299\) 25.5989 1.48042
\(300\) 0 0
\(301\) −1.27930 −0.0737377
\(302\) 0 0
\(303\) 7.16881 0.411837
\(304\) 0 0
\(305\) 29.1657 1.67002
\(306\) 0 0
\(307\) 27.9505 1.59522 0.797609 0.603175i \(-0.206098\pi\)
0.797609 + 0.603175i \(0.206098\pi\)
\(308\) 0 0
\(309\) −23.7707 −1.35227
\(310\) 0 0
\(311\) −16.4496 −0.932773 −0.466386 0.884581i \(-0.654444\pi\)
−0.466386 + 0.884581i \(0.654444\pi\)
\(312\) 0 0
\(313\) 2.86030 0.161673 0.0808367 0.996727i \(-0.474241\pi\)
0.0808367 + 0.996727i \(0.474241\pi\)
\(314\) 0 0
\(315\) −24.9367 −1.40502
\(316\) 0 0
\(317\) −22.8470 −1.28321 −0.641607 0.767034i \(-0.721732\pi\)
−0.641607 + 0.767034i \(0.721732\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 22.9540 1.28117
\(322\) 0 0
\(323\) 2.19022 0.121867
\(324\) 0 0
\(325\) 48.3287 2.68079
\(326\) 0 0
\(327\) 18.4007 1.01756
\(328\) 0 0
\(329\) 6.75184 0.372241
\(330\) 0 0
\(331\) −26.0822 −1.43361 −0.716803 0.697276i \(-0.754395\pi\)
−0.716803 + 0.697276i \(0.754395\pi\)
\(332\) 0 0
\(333\) −39.7536 −2.17848
\(334\) 0 0
\(335\) −43.5607 −2.37998
\(336\) 0 0
\(337\) 31.6599 1.72462 0.862312 0.506377i \(-0.169016\pi\)
0.862312 + 0.506377i \(0.169016\pi\)
\(338\) 0 0
\(339\) 56.1521 3.04976
\(340\) 0 0
\(341\) 5.54936 0.300515
\(342\) 0 0
\(343\) 13.9333 0.752326
\(344\) 0 0
\(345\) 42.2004 2.27199
\(346\) 0 0
\(347\) −9.10528 −0.488797 −0.244399 0.969675i \(-0.578591\pi\)
−0.244399 + 0.969675i \(0.578591\pi\)
\(348\) 0 0
\(349\) −6.07146 −0.324998 −0.162499 0.986709i \(-0.551955\pi\)
−0.162499 + 0.986709i \(0.551955\pi\)
\(350\) 0 0
\(351\) 71.6831 3.82616
\(352\) 0 0
\(353\) 0.308919 0.0164421 0.00822106 0.999966i \(-0.497383\pi\)
0.00822106 + 0.999966i \(0.497383\pi\)
\(354\) 0 0
\(355\) 28.5531 1.51544
\(356\) 0 0
\(357\) 2.21074 0.117005
\(358\) 0 0
\(359\) −18.7602 −0.990123 −0.495062 0.868858i \(-0.664854\pi\)
−0.495062 + 0.868858i \(0.664854\pi\)
\(360\) 0 0
\(361\) −7.94916 −0.418377
\(362\) 0 0
\(363\) −23.3985 −1.22810
\(364\) 0 0
\(365\) 30.2729 1.58456
\(366\) 0 0
\(367\) 19.8789 1.03767 0.518835 0.854875i \(-0.326366\pi\)
0.518835 + 0.854875i \(0.326366\pi\)
\(368\) 0 0
\(369\) −33.8884 −1.76416
\(370\) 0 0
\(371\) 1.52807 0.0793334
\(372\) 0 0
\(373\) 13.7685 0.712908 0.356454 0.934313i \(-0.383986\pi\)
0.356454 + 0.934313i \(0.383986\pi\)
\(374\) 0 0
\(375\) 25.4390 1.31367
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 26.2032 1.34597 0.672985 0.739656i \(-0.265012\pi\)
0.672985 + 0.739656i \(0.265012\pi\)
\(380\) 0 0
\(381\) 12.9640 0.664168
\(382\) 0 0
\(383\) 7.17470 0.366610 0.183305 0.983056i \(-0.441320\pi\)
0.183305 + 0.983056i \(0.441320\pi\)
\(384\) 0 0
\(385\) 7.06309 0.359968
\(386\) 0 0
\(387\) 7.68471 0.390636
\(388\) 0 0
\(389\) −14.1936 −0.719642 −0.359821 0.933021i \(-0.617162\pi\)
−0.359821 + 0.933021i \(0.617162\pi\)
\(390\) 0 0
\(391\) −2.56344 −0.129639
\(392\) 0 0
\(393\) 34.0217 1.71617
\(394\) 0 0
\(395\) −19.6850 −0.990458
\(396\) 0 0
\(397\) −28.7763 −1.44424 −0.722121 0.691766i \(-0.756833\pi\)
−0.722121 + 0.691766i \(0.756833\pi\)
\(398\) 0 0
\(399\) 11.1544 0.558417
\(400\) 0 0
\(401\) 17.1244 0.855154 0.427577 0.903979i \(-0.359367\pi\)
0.427577 + 0.903979i \(0.359367\pi\)
\(402\) 0 0
\(403\) −19.7427 −0.983452
\(404\) 0 0
\(405\) 49.3464 2.45204
\(406\) 0 0
\(407\) 11.2599 0.558130
\(408\) 0 0
\(409\) 2.96364 0.146542 0.0732712 0.997312i \(-0.476656\pi\)
0.0732712 + 0.997312i \(0.476656\pi\)
\(410\) 0 0
\(411\) 28.8008 1.42064
\(412\) 0 0
\(413\) 10.3834 0.510934
\(414\) 0 0
\(415\) −13.0766 −0.641906
\(416\) 0 0
\(417\) 54.5349 2.67059
\(418\) 0 0
\(419\) 7.46230 0.364557 0.182278 0.983247i \(-0.441653\pi\)
0.182278 + 0.983247i \(0.441653\pi\)
\(420\) 0 0
\(421\) 4.68009 0.228094 0.114047 0.993475i \(-0.463619\pi\)
0.114047 + 0.993475i \(0.463619\pi\)
\(422\) 0 0
\(423\) −40.5580 −1.97200
\(424\) 0 0
\(425\) −4.83956 −0.234753
\(426\) 0 0
\(427\) −9.02268 −0.436638
\(428\) 0 0
\(429\) −37.5620 −1.81351
\(430\) 0 0
\(431\) 14.9667 0.720921 0.360461 0.932774i \(-0.382620\pi\)
0.360461 + 0.932774i \(0.382620\pi\)
\(432\) 0 0
\(433\) 28.0408 1.34755 0.673776 0.738935i \(-0.264671\pi\)
0.673776 + 0.738935i \(0.264671\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.9339 −0.618713
\(438\) 0 0
\(439\) −19.3075 −0.921495 −0.460747 0.887531i \(-0.652419\pi\)
−0.460747 + 0.887531i \(0.652419\pi\)
\(440\) 0 0
\(441\) −37.9911 −1.80910
\(442\) 0 0
\(443\) 30.8972 1.46797 0.733984 0.679167i \(-0.237659\pi\)
0.733984 + 0.679167i \(0.237659\pi\)
\(444\) 0 0
\(445\) −15.7059 −0.744529
\(446\) 0 0
\(447\) 51.7982 2.44997
\(448\) 0 0
\(449\) −28.8238 −1.36028 −0.680139 0.733083i \(-0.738081\pi\)
−0.680139 + 0.733083i \(0.738081\pi\)
\(450\) 0 0
\(451\) 9.59860 0.451980
\(452\) 0 0
\(453\) 2.09702 0.0985268
\(454\) 0 0
\(455\) −25.1280 −1.17802
\(456\) 0 0
\(457\) −35.7451 −1.67209 −0.836044 0.548663i \(-0.815137\pi\)
−0.836044 + 0.548663i \(0.815137\pi\)
\(458\) 0 0
\(459\) −7.17823 −0.335051
\(460\) 0 0
\(461\) −14.2728 −0.664750 −0.332375 0.943147i \(-0.607850\pi\)
−0.332375 + 0.943147i \(0.607850\pi\)
\(462\) 0 0
\(463\) −33.7695 −1.56940 −0.784701 0.619875i \(-0.787183\pi\)
−0.784701 + 0.619875i \(0.787183\pi\)
\(464\) 0 0
\(465\) −32.5462 −1.50929
\(466\) 0 0
\(467\) −31.9927 −1.48044 −0.740222 0.672362i \(-0.765280\pi\)
−0.740222 + 0.672362i \(0.765280\pi\)
\(468\) 0 0
\(469\) 13.4759 0.622260
\(470\) 0 0
\(471\) 3.79453 0.174843
\(472\) 0 0
\(473\) −2.17663 −0.100081
\(474\) 0 0
\(475\) −24.4182 −1.12038
\(476\) 0 0
\(477\) −9.17905 −0.420280
\(478\) 0 0
\(479\) 36.0481 1.64708 0.823539 0.567259i \(-0.191996\pi\)
0.823539 + 0.567259i \(0.191996\pi\)
\(480\) 0 0
\(481\) −40.0586 −1.82651
\(482\) 0 0
\(483\) −13.0551 −0.594027
\(484\) 0 0
\(485\) −28.1245 −1.27707
\(486\) 0 0
\(487\) 25.8247 1.17023 0.585115 0.810951i \(-0.301049\pi\)
0.585115 + 0.810951i \(0.301049\pi\)
\(488\) 0 0
\(489\) 31.3052 1.41567
\(490\) 0 0
\(491\) 2.05490 0.0927365 0.0463683 0.998924i \(-0.485235\pi\)
0.0463683 + 0.998924i \(0.485235\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −42.4277 −1.90698
\(496\) 0 0
\(497\) −8.83317 −0.396222
\(498\) 0 0
\(499\) 3.22792 0.144501 0.0722507 0.997387i \(-0.476982\pi\)
0.0722507 + 0.997387i \(0.476982\pi\)
\(500\) 0 0
\(501\) −61.0296 −2.72660
\(502\) 0 0
\(503\) 15.7898 0.704033 0.352017 0.935994i \(-0.385496\pi\)
0.352017 + 0.935994i \(0.385496\pi\)
\(504\) 0 0
\(505\) 8.15958 0.363096
\(506\) 0 0
\(507\) 93.5017 4.15255
\(508\) 0 0
\(509\) −2.86681 −0.127069 −0.0635346 0.997980i \(-0.520237\pi\)
−0.0635346 + 0.997980i \(0.520237\pi\)
\(510\) 0 0
\(511\) −9.36521 −0.414293
\(512\) 0 0
\(513\) −36.2180 −1.59906
\(514\) 0 0
\(515\) −27.0559 −1.19223
\(516\) 0 0
\(517\) 11.4877 0.505229
\(518\) 0 0
\(519\) −18.6469 −0.818509
\(520\) 0 0
\(521\) 24.8422 1.08835 0.544177 0.838970i \(-0.316842\pi\)
0.544177 + 0.838970i \(0.316842\pi\)
\(522\) 0 0
\(523\) −5.39629 −0.235963 −0.117982 0.993016i \(-0.537642\pi\)
−0.117982 + 0.993016i \(0.537642\pi\)
\(524\) 0 0
\(525\) −24.6469 −1.07568
\(526\) 0 0
\(527\) 1.97700 0.0861195
\(528\) 0 0
\(529\) −7.86215 −0.341833
\(530\) 0 0
\(531\) −62.3727 −2.70675
\(532\) 0 0
\(533\) −34.1484 −1.47913
\(534\) 0 0
\(535\) 26.1263 1.12954
\(536\) 0 0
\(537\) −41.3770 −1.78555
\(538\) 0 0
\(539\) 10.7606 0.463494
\(540\) 0 0
\(541\) −29.6695 −1.27559 −0.637795 0.770206i \(-0.720153\pi\)
−0.637795 + 0.770206i \(0.720153\pi\)
\(542\) 0 0
\(543\) 7.10473 0.304893
\(544\) 0 0
\(545\) 20.9438 0.897133
\(546\) 0 0
\(547\) 25.3031 1.08188 0.540941 0.841060i \(-0.318068\pi\)
0.540941 + 0.841060i \(0.318068\pi\)
\(548\) 0 0
\(549\) 54.1989 2.31315
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 6.08973 0.258961
\(554\) 0 0
\(555\) −66.0374 −2.80313
\(556\) 0 0
\(557\) 17.7392 0.751636 0.375818 0.926694i \(-0.377362\pi\)
0.375818 + 0.926694i \(0.377362\pi\)
\(558\) 0 0
\(559\) 7.74367 0.327522
\(560\) 0 0
\(561\) 3.76140 0.158806
\(562\) 0 0
\(563\) 38.5300 1.62385 0.811923 0.583764i \(-0.198421\pi\)
0.811923 + 0.583764i \(0.198421\pi\)
\(564\) 0 0
\(565\) 63.9127 2.68883
\(566\) 0 0
\(567\) −15.2658 −0.641102
\(568\) 0 0
\(569\) 41.8338 1.75377 0.876883 0.480704i \(-0.159619\pi\)
0.876883 + 0.480704i \(0.159619\pi\)
\(570\) 0 0
\(571\) −14.0139 −0.586462 −0.293231 0.956042i \(-0.594730\pi\)
−0.293231 + 0.956042i \(0.594730\pi\)
\(572\) 0 0
\(573\) −82.8883 −3.46271
\(574\) 0 0
\(575\) 28.5790 1.19183
\(576\) 0 0
\(577\) 10.5338 0.438529 0.219264 0.975665i \(-0.429634\pi\)
0.219264 + 0.975665i \(0.429634\pi\)
\(578\) 0 0
\(579\) −31.3311 −1.30208
\(580\) 0 0
\(581\) 4.04538 0.167830
\(582\) 0 0
\(583\) 2.59989 0.107676
\(584\) 0 0
\(585\) 150.943 6.24072
\(586\) 0 0
\(587\) −11.8349 −0.488481 −0.244240 0.969715i \(-0.578539\pi\)
−0.244240 + 0.969715i \(0.578539\pi\)
\(588\) 0 0
\(589\) 9.97502 0.411014
\(590\) 0 0
\(591\) 7.64528 0.314485
\(592\) 0 0
\(593\) 0.120568 0.00495114 0.00247557 0.999997i \(-0.499212\pi\)
0.00247557 + 0.999997i \(0.499212\pi\)
\(594\) 0 0
\(595\) 2.51628 0.103157
\(596\) 0 0
\(597\) 28.5790 1.16966
\(598\) 0 0
\(599\) −11.2858 −0.461125 −0.230562 0.973058i \(-0.574057\pi\)
−0.230562 + 0.973058i \(0.574057\pi\)
\(600\) 0 0
\(601\) 35.1184 1.43251 0.716255 0.697839i \(-0.245855\pi\)
0.716255 + 0.697839i \(0.245855\pi\)
\(602\) 0 0
\(603\) −80.9493 −3.29651
\(604\) 0 0
\(605\) −26.6323 −1.08276
\(606\) 0 0
\(607\) 10.9968 0.446346 0.223173 0.974779i \(-0.428359\pi\)
0.223173 + 0.974779i \(0.428359\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −40.8692 −1.65339
\(612\) 0 0
\(613\) 15.0695 0.608652 0.304326 0.952568i \(-0.401569\pi\)
0.304326 + 0.952568i \(0.401569\pi\)
\(614\) 0 0
\(615\) −56.2944 −2.27001
\(616\) 0 0
\(617\) 28.5894 1.15096 0.575482 0.817814i \(-0.304814\pi\)
0.575482 + 0.817814i \(0.304814\pi\)
\(618\) 0 0
\(619\) −18.3546 −0.737733 −0.368866 0.929482i \(-0.620254\pi\)
−0.368866 + 0.929482i \(0.620254\pi\)
\(620\) 0 0
\(621\) 42.3896 1.70103
\(622\) 0 0
\(623\) 4.85875 0.194662
\(624\) 0 0
\(625\) −7.77214 −0.310886
\(626\) 0 0
\(627\) 18.9783 0.757918
\(628\) 0 0
\(629\) 4.01140 0.159945
\(630\) 0 0
\(631\) −11.7582 −0.468087 −0.234043 0.972226i \(-0.575196\pi\)
−0.234043 + 0.972226i \(0.575196\pi\)
\(632\) 0 0
\(633\) −68.5728 −2.72553
\(634\) 0 0
\(635\) 14.7557 0.585564
\(636\) 0 0
\(637\) −38.2826 −1.51681
\(638\) 0 0
\(639\) 53.0605 2.09904
\(640\) 0 0
\(641\) 21.9735 0.867902 0.433951 0.900936i \(-0.357119\pi\)
0.433951 + 0.900936i \(0.357119\pi\)
\(642\) 0 0
\(643\) −4.75625 −0.187568 −0.0937841 0.995593i \(-0.529896\pi\)
−0.0937841 + 0.995593i \(0.529896\pi\)
\(644\) 0 0
\(645\) 12.7656 0.502645
\(646\) 0 0
\(647\) 19.6242 0.771509 0.385754 0.922602i \(-0.373941\pi\)
0.385754 + 0.922602i \(0.373941\pi\)
\(648\) 0 0
\(649\) 17.6665 0.693472
\(650\) 0 0
\(651\) 10.0685 0.394614
\(652\) 0 0
\(653\) 27.1866 1.06389 0.531947 0.846778i \(-0.321461\pi\)
0.531947 + 0.846778i \(0.321461\pi\)
\(654\) 0 0
\(655\) 38.7237 1.51306
\(656\) 0 0
\(657\) 56.2564 2.19477
\(658\) 0 0
\(659\) −46.3597 −1.80592 −0.902959 0.429727i \(-0.858610\pi\)
−0.902959 + 0.429727i \(0.858610\pi\)
\(660\) 0 0
\(661\) −7.34570 −0.285715 −0.142857 0.989743i \(-0.545629\pi\)
−0.142857 + 0.989743i \(0.545629\pi\)
\(662\) 0 0
\(663\) −13.3817 −0.519703
\(664\) 0 0
\(665\) 12.6960 0.492329
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 83.4294 3.22557
\(670\) 0 0
\(671\) −15.3514 −0.592633
\(672\) 0 0
\(673\) −34.4626 −1.32844 −0.664218 0.747539i \(-0.731235\pi\)
−0.664218 + 0.747539i \(0.731235\pi\)
\(674\) 0 0
\(675\) 80.0280 3.08028
\(676\) 0 0
\(677\) −21.9239 −0.842605 −0.421302 0.906920i \(-0.638427\pi\)
−0.421302 + 0.906920i \(0.638427\pi\)
\(678\) 0 0
\(679\) 8.70056 0.333897
\(680\) 0 0
\(681\) 6.70329 0.256871
\(682\) 0 0
\(683\) −30.6793 −1.17391 −0.586956 0.809619i \(-0.699674\pi\)
−0.586956 + 0.809619i \(0.699674\pi\)
\(684\) 0 0
\(685\) 32.7813 1.25251
\(686\) 0 0
\(687\) −43.4802 −1.65887
\(688\) 0 0
\(689\) −9.24948 −0.352377
\(690\) 0 0
\(691\) 5.81672 0.221279 0.110639 0.993861i \(-0.464710\pi\)
0.110639 + 0.993861i \(0.464710\pi\)
\(692\) 0 0
\(693\) 13.1254 0.498593
\(694\) 0 0
\(695\) 62.0719 2.35452
\(696\) 0 0
\(697\) 3.41957 0.129525
\(698\) 0 0
\(699\) 24.6371 0.931861
\(700\) 0 0
\(701\) 2.40593 0.0908707 0.0454354 0.998967i \(-0.485532\pi\)
0.0454354 + 0.998967i \(0.485532\pi\)
\(702\) 0 0
\(703\) 20.2397 0.763354
\(704\) 0 0
\(705\) −67.3737 −2.53744
\(706\) 0 0
\(707\) −2.52424 −0.0949338
\(708\) 0 0
\(709\) 13.5346 0.508302 0.254151 0.967165i \(-0.418204\pi\)
0.254151 + 0.967165i \(0.418204\pi\)
\(710\) 0 0
\(711\) −36.5807 −1.37188
\(712\) 0 0
\(713\) −11.6748 −0.437223
\(714\) 0 0
\(715\) −42.7532 −1.59888
\(716\) 0 0
\(717\) −58.3396 −2.17873
\(718\) 0 0
\(719\) −1.83647 −0.0684889 −0.0342444 0.999413i \(-0.510902\pi\)
−0.0342444 + 0.999413i \(0.510902\pi\)
\(720\) 0 0
\(721\) 8.37000 0.311715
\(722\) 0 0
\(723\) −32.8502 −1.22171
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −1.01846 −0.0377727 −0.0188863 0.999822i \(-0.506012\pi\)
−0.0188863 + 0.999822i \(0.506012\pi\)
\(728\) 0 0
\(729\) −9.19654 −0.340613
\(730\) 0 0
\(731\) −0.775439 −0.0286806
\(732\) 0 0
\(733\) −35.3992 −1.30750 −0.653750 0.756711i \(-0.726805\pi\)
−0.653750 + 0.756711i \(0.726805\pi\)
\(734\) 0 0
\(735\) −63.1097 −2.32783
\(736\) 0 0
\(737\) 22.9282 0.844570
\(738\) 0 0
\(739\) 3.05344 0.112322 0.0561612 0.998422i \(-0.482114\pi\)
0.0561612 + 0.998422i \(0.482114\pi\)
\(740\) 0 0
\(741\) −67.5179 −2.48033
\(742\) 0 0
\(743\) −43.5694 −1.59840 −0.799202 0.601062i \(-0.794744\pi\)
−0.799202 + 0.601062i \(0.794744\pi\)
\(744\) 0 0
\(745\) 58.9570 2.16002
\(746\) 0 0
\(747\) −24.3004 −0.889105
\(748\) 0 0
\(749\) −8.08243 −0.295325
\(750\) 0 0
\(751\) 37.2765 1.36024 0.680120 0.733101i \(-0.261928\pi\)
0.680120 + 0.733101i \(0.261928\pi\)
\(752\) 0 0
\(753\) −3.89593 −0.141976
\(754\) 0 0
\(755\) 2.38684 0.0868662
\(756\) 0 0
\(757\) −36.1528 −1.31399 −0.656997 0.753893i \(-0.728174\pi\)
−0.656997 + 0.753893i \(0.728174\pi\)
\(758\) 0 0
\(759\) −22.2121 −0.806250
\(760\) 0 0
\(761\) 45.3811 1.64506 0.822532 0.568719i \(-0.192561\pi\)
0.822532 + 0.568719i \(0.192561\pi\)
\(762\) 0 0
\(763\) −6.47915 −0.234561
\(764\) 0 0
\(765\) −15.1152 −0.546490
\(766\) 0 0
\(767\) −62.8513 −2.26943
\(768\) 0 0
\(769\) 7.78374 0.280689 0.140344 0.990103i \(-0.455179\pi\)
0.140344 + 0.990103i \(0.455179\pi\)
\(770\) 0 0
\(771\) −17.8451 −0.642677
\(772\) 0 0
\(773\) 7.79698 0.280438 0.140219 0.990121i \(-0.455219\pi\)
0.140219 + 0.990121i \(0.455219\pi\)
\(774\) 0 0
\(775\) −22.0410 −0.791736
\(776\) 0 0
\(777\) 20.4293 0.732897
\(778\) 0 0
\(779\) 17.2536 0.618173
\(780\) 0 0
\(781\) −15.0289 −0.537777
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.31896 0.154150
\(786\) 0 0
\(787\) −33.7649 −1.20359 −0.601794 0.798652i \(-0.705547\pi\)
−0.601794 + 0.798652i \(0.705547\pi\)
\(788\) 0 0
\(789\) 73.9390 2.63230
\(790\) 0 0
\(791\) −19.7720 −0.703010
\(792\) 0 0
\(793\) 54.6147 1.93943
\(794\) 0 0
\(795\) −15.2480 −0.540790
\(796\) 0 0
\(797\) −40.4846 −1.43404 −0.717019 0.697053i \(-0.754494\pi\)
−0.717019 + 0.697053i \(0.754494\pi\)
\(798\) 0 0
\(799\) 4.09258 0.144785
\(800\) 0 0
\(801\) −29.1863 −1.03125
\(802\) 0 0
\(803\) −15.9341 −0.562304
\(804\) 0 0
\(805\) −14.8594 −0.523724
\(806\) 0 0
\(807\) 23.3522 0.822036
\(808\) 0 0
\(809\) 48.1307 1.69219 0.846093 0.533036i \(-0.178949\pi\)
0.846093 + 0.533036i \(0.178949\pi\)
\(810\) 0 0
\(811\) 26.2797 0.922806 0.461403 0.887191i \(-0.347346\pi\)
0.461403 + 0.887191i \(0.347346\pi\)
\(812\) 0 0
\(813\) −58.8804 −2.06503
\(814\) 0 0
\(815\) 35.6318 1.24813
\(816\) 0 0
\(817\) −3.91250 −0.136881
\(818\) 0 0
\(819\) −46.6955 −1.63167
\(820\) 0 0
\(821\) −44.2778 −1.54531 −0.772653 0.634829i \(-0.781070\pi\)
−0.772653 + 0.634829i \(0.781070\pi\)
\(822\) 0 0
\(823\) −9.86111 −0.343737 −0.171868 0.985120i \(-0.554980\pi\)
−0.171868 + 0.985120i \(0.554980\pi\)
\(824\) 0 0
\(825\) −41.9347 −1.45998
\(826\) 0 0
\(827\) −18.0405 −0.627329 −0.313664 0.949534i \(-0.601557\pi\)
−0.313664 + 0.949534i \(0.601557\pi\)
\(828\) 0 0
\(829\) −11.5967 −0.402770 −0.201385 0.979512i \(-0.564544\pi\)
−0.201385 + 0.979512i \(0.564544\pi\)
\(830\) 0 0
\(831\) −12.7912 −0.443722
\(832\) 0 0
\(833\) 3.83356 0.132825
\(834\) 0 0
\(835\) −69.4642 −2.40391
\(836\) 0 0
\(837\) −32.6921 −1.13000
\(838\) 0 0
\(839\) −0.831794 −0.0287167 −0.0143584 0.999897i \(-0.504571\pi\)
−0.0143584 + 0.999897i \(0.504571\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0 0
\(843\) 1.77966 0.0612946
\(844\) 0 0
\(845\) 106.424 3.66110
\(846\) 0 0
\(847\) 8.23896 0.283094
\(848\) 0 0
\(849\) 73.0205 2.50606
\(850\) 0 0
\(851\) −23.6885 −0.812032
\(852\) 0 0
\(853\) −3.70379 −0.126815 −0.0634077 0.997988i \(-0.520197\pi\)
−0.0634077 + 0.997988i \(0.520197\pi\)
\(854\) 0 0
\(855\) −76.2641 −2.60818
\(856\) 0 0
\(857\) −10.1813 −0.347788 −0.173894 0.984764i \(-0.555635\pi\)
−0.173894 + 0.984764i \(0.555635\pi\)
\(858\) 0 0
\(859\) −21.9534 −0.749039 −0.374519 0.927219i \(-0.622192\pi\)
−0.374519 + 0.927219i \(0.622192\pi\)
\(860\) 0 0
\(861\) 17.4152 0.593508
\(862\) 0 0
\(863\) 35.5775 1.21107 0.605537 0.795817i \(-0.292959\pi\)
0.605537 + 0.795817i \(0.292959\pi\)
\(864\) 0 0
\(865\) −21.2240 −0.721639
\(866\) 0 0
\(867\) −51.1384 −1.73675
\(868\) 0 0
\(869\) 10.3612 0.351479
\(870\) 0 0
\(871\) −81.5704 −2.76391
\(872\) 0 0
\(873\) −52.2639 −1.76886
\(874\) 0 0
\(875\) −8.95745 −0.302817
\(876\) 0 0
\(877\) 3.30041 0.111447 0.0557235 0.998446i \(-0.482253\pi\)
0.0557235 + 0.998446i \(0.482253\pi\)
\(878\) 0 0
\(879\) 15.7146 0.530042
\(880\) 0 0
\(881\) 54.4844 1.83563 0.917814 0.397011i \(-0.129953\pi\)
0.917814 + 0.397011i \(0.129953\pi\)
\(882\) 0 0
\(883\) −46.5935 −1.56800 −0.783999 0.620763i \(-0.786823\pi\)
−0.783999 + 0.620763i \(0.786823\pi\)
\(884\) 0 0
\(885\) −103.612 −3.48287
\(886\) 0 0
\(887\) −41.1122 −1.38041 −0.690206 0.723613i \(-0.742480\pi\)
−0.690206 + 0.723613i \(0.742480\pi\)
\(888\) 0 0
\(889\) −4.56482 −0.153099
\(890\) 0 0
\(891\) −25.9735 −0.870144
\(892\) 0 0
\(893\) 20.6492 0.691001
\(894\) 0 0
\(895\) −47.0955 −1.57423
\(896\) 0 0
\(897\) 79.0230 2.63850
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0.926229 0.0308571
\(902\) 0 0
\(903\) −3.94916 −0.131420
\(904\) 0 0
\(905\) 8.08665 0.268809
\(906\) 0 0
\(907\) 22.3443 0.741931 0.370966 0.928647i \(-0.379027\pi\)
0.370966 + 0.928647i \(0.379027\pi\)
\(908\) 0 0
\(909\) 15.1630 0.502925
\(910\) 0 0
\(911\) −32.2237 −1.06762 −0.533810 0.845605i \(-0.679240\pi\)
−0.533810 + 0.845605i \(0.679240\pi\)
\(912\) 0 0
\(913\) 6.88288 0.227790
\(914\) 0 0
\(915\) 90.0336 2.97642
\(916\) 0 0
\(917\) −11.9795 −0.395599
\(918\) 0 0
\(919\) −33.8688 −1.11723 −0.558614 0.829428i \(-0.688667\pi\)
−0.558614 + 0.829428i \(0.688667\pi\)
\(920\) 0 0
\(921\) 86.2821 2.84309
\(922\) 0 0
\(923\) 53.4676 1.75991
\(924\) 0 0
\(925\) −44.7220 −1.47045
\(926\) 0 0
\(927\) −50.2782 −1.65135
\(928\) 0 0
\(929\) −42.4834 −1.39383 −0.696917 0.717152i \(-0.745445\pi\)
−0.696917 + 0.717152i \(0.745445\pi\)
\(930\) 0 0
\(931\) 19.3424 0.633920
\(932\) 0 0
\(933\) −50.7794 −1.66244
\(934\) 0 0
\(935\) 4.28124 0.140012
\(936\) 0 0
\(937\) 18.3549 0.599629 0.299814 0.953998i \(-0.403075\pi\)
0.299814 + 0.953998i \(0.403075\pi\)
\(938\) 0 0
\(939\) 8.82963 0.288144
\(940\) 0 0
\(941\) 55.0896 1.79587 0.897934 0.440130i \(-0.145067\pi\)
0.897934 + 0.440130i \(0.145067\pi\)
\(942\) 0 0
\(943\) −20.1936 −0.657593
\(944\) 0 0
\(945\) −41.6097 −1.35356
\(946\) 0 0
\(947\) 48.2394 1.56757 0.783785 0.621032i \(-0.213286\pi\)
0.783785 + 0.621032i \(0.213286\pi\)
\(948\) 0 0
\(949\) 56.6881 1.84017
\(950\) 0 0
\(951\) −70.5278 −2.28702
\(952\) 0 0
\(953\) 31.6040 1.02375 0.511877 0.859059i \(-0.328950\pi\)
0.511877 + 0.859059i \(0.328950\pi\)
\(954\) 0 0
\(955\) −94.3439 −3.05290
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.1412 −0.327476
\(960\) 0 0
\(961\) −21.9961 −0.709551
\(962\) 0 0
\(963\) 48.5508 1.56453
\(964\) 0 0
\(965\) −35.6612 −1.14798
\(966\) 0 0
\(967\) −7.76191 −0.249606 −0.124803 0.992182i \(-0.539830\pi\)
−0.124803 + 0.992182i \(0.539830\pi\)
\(968\) 0 0
\(969\) 6.76114 0.217199
\(970\) 0 0
\(971\) −1.30184 −0.0417779 −0.0208890 0.999782i \(-0.506650\pi\)
−0.0208890 + 0.999782i \(0.506650\pi\)
\(972\) 0 0
\(973\) −19.2025 −0.615605
\(974\) 0 0
\(975\) 149.189 4.77787
\(976\) 0 0
\(977\) 25.6371 0.820203 0.410101 0.912040i \(-0.365493\pi\)
0.410101 + 0.912040i \(0.365493\pi\)
\(978\) 0 0
\(979\) 8.26677 0.264207
\(980\) 0 0
\(981\) 38.9200 1.24262
\(982\) 0 0
\(983\) 10.7333 0.342338 0.171169 0.985242i \(-0.445246\pi\)
0.171169 + 0.985242i \(0.445246\pi\)
\(984\) 0 0
\(985\) 8.70190 0.277266
\(986\) 0 0
\(987\) 20.8427 0.663430
\(988\) 0 0
\(989\) 4.57920 0.145610
\(990\) 0 0
\(991\) 22.9452 0.728877 0.364438 0.931227i \(-0.381261\pi\)
0.364438 + 0.931227i \(0.381261\pi\)
\(992\) 0 0
\(993\) −80.5148 −2.55506
\(994\) 0 0
\(995\) 32.5287 1.03123
\(996\) 0 0
\(997\) −42.8898 −1.35833 −0.679167 0.733984i \(-0.737659\pi\)
−0.679167 + 0.733984i \(0.737659\pi\)
\(998\) 0 0
\(999\) −66.3335 −2.09870
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3364.2.a.p.1.6 6
29.4 even 14 116.2.g.b.45.1 12
29.12 odd 4 3364.2.c.j.1681.12 12
29.17 odd 4 3364.2.c.j.1681.1 12
29.22 even 14 116.2.g.b.49.1 yes 12
29.28 even 2 3364.2.a.m.1.1 6
87.62 odd 14 1044.2.u.c.973.2 12
87.80 odd 14 1044.2.u.c.397.2 12
116.51 odd 14 464.2.u.g.49.2 12
116.91 odd 14 464.2.u.g.161.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
116.2.g.b.45.1 12 29.4 even 14
116.2.g.b.49.1 yes 12 29.22 even 14
464.2.u.g.49.2 12 116.51 odd 14
464.2.u.g.161.2 12 116.91 odd 14
1044.2.u.c.397.2 12 87.80 odd 14
1044.2.u.c.973.2 12 87.62 odd 14
3364.2.a.m.1.1 6 29.28 even 2
3364.2.a.p.1.6 6 1.1 even 1 trivial
3364.2.c.j.1681.1 12 29.17 odd 4
3364.2.c.j.1681.12 12 29.12 odd 4