Properties

Label 3362.2.a.d.1.1
Level $3362$
Weight $2$
Character 3362.1
Self dual yes
Analytic conductor $26.846$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3362,2,Mod(1,3362)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3362, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3362.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3362 = 2 \cdot 41^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3362.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,-2,2,1,2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.8457051596\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{61}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.40512\) of defining polynomial
Character \(\chi\) \(=\) 3362.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.40512 q^{5} +1.00000 q^{6} +1.00000 q^{7} -1.00000 q^{8} -2.00000 q^{9} +3.40512 q^{10} +3.40512 q^{11} -1.00000 q^{12} -5.40512 q^{13} -1.00000 q^{14} +3.40512 q^{15} +1.00000 q^{16} +6.40512 q^{17} +2.00000 q^{18} +1.40512 q^{19} -3.40512 q^{20} -1.00000 q^{21} -3.40512 q^{22} -6.40512 q^{23} +1.00000 q^{24} +6.59488 q^{25} +5.40512 q^{26} +5.00000 q^{27} +1.00000 q^{28} -3.00000 q^{29} -3.40512 q^{30} -0.594875 q^{31} -1.00000 q^{32} -3.40512 q^{33} -6.40512 q^{34} -3.40512 q^{35} -2.00000 q^{36} +2.00000 q^{37} -1.40512 q^{38} +5.40512 q^{39} +3.40512 q^{40} +1.00000 q^{42} +11.8102 q^{43} +3.40512 q^{44} +6.81025 q^{45} +6.40512 q^{46} +6.40512 q^{47} -1.00000 q^{48} -6.00000 q^{49} -6.59488 q^{50} -6.40512 q^{51} -5.40512 q^{52} +3.81025 q^{53} -5.00000 q^{54} -11.5949 q^{55} -1.00000 q^{56} -1.40512 q^{57} +3.00000 q^{58} +12.4051 q^{59} +3.40512 q^{60} -3.59488 q^{61} +0.594875 q^{62} -2.00000 q^{63} +1.00000 q^{64} +18.4051 q^{65} +3.40512 q^{66} -11.4051 q^{67} +6.40512 q^{68} +6.40512 q^{69} +3.40512 q^{70} +9.81025 q^{71} +2.00000 q^{72} -10.8102 q^{73} -2.00000 q^{74} -6.59488 q^{75} +1.40512 q^{76} +3.40512 q^{77} -5.40512 q^{78} +4.81025 q^{79} -3.40512 q^{80} +1.00000 q^{81} +6.00000 q^{83} -1.00000 q^{84} -21.8102 q^{85} -11.8102 q^{86} +3.00000 q^{87} -3.40512 q^{88} +3.40512 q^{89} -6.81025 q^{90} -5.40512 q^{91} -6.40512 q^{92} +0.594875 q^{93} -6.40512 q^{94} -4.78463 q^{95} +1.00000 q^{96} -5.81025 q^{97} +6.00000 q^{98} -6.81025 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} + q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 4 q^{9} - q^{10} - q^{11} - 2 q^{12} - 3 q^{13} - 2 q^{14} - q^{15} + 2 q^{16} + 5 q^{17} + 4 q^{18} - 5 q^{19} + q^{20} - 2 q^{21}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.40512 −1.52282 −0.761409 0.648272i \(-0.775492\pi\)
−0.761409 + 0.648272i \(0.775492\pi\)
\(6\) 1.00000 0.408248
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.00000 −0.666667
\(10\) 3.40512 1.07680
\(11\) 3.40512 1.02668 0.513342 0.858184i \(-0.328407\pi\)
0.513342 + 0.858184i \(0.328407\pi\)
\(12\) −1.00000 −0.288675
\(13\) −5.40512 −1.49911 −0.749556 0.661941i \(-0.769733\pi\)
−0.749556 + 0.661941i \(0.769733\pi\)
\(14\) −1.00000 −0.267261
\(15\) 3.40512 0.879199
\(16\) 1.00000 0.250000
\(17\) 6.40512 1.55347 0.776735 0.629827i \(-0.216874\pi\)
0.776735 + 0.629827i \(0.216874\pi\)
\(18\) 2.00000 0.471405
\(19\) 1.40512 0.322358 0.161179 0.986925i \(-0.448470\pi\)
0.161179 + 0.986925i \(0.448470\pi\)
\(20\) −3.40512 −0.761409
\(21\) −1.00000 −0.218218
\(22\) −3.40512 −0.725975
\(23\) −6.40512 −1.33556 −0.667780 0.744358i \(-0.732755\pi\)
−0.667780 + 0.744358i \(0.732755\pi\)
\(24\) 1.00000 0.204124
\(25\) 6.59488 1.31898
\(26\) 5.40512 1.06003
\(27\) 5.00000 0.962250
\(28\) 1.00000 0.188982
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) −3.40512 −0.621688
\(31\) −0.594875 −0.106843 −0.0534214 0.998572i \(-0.517013\pi\)
−0.0534214 + 0.998572i \(0.517013\pi\)
\(32\) −1.00000 −0.176777
\(33\) −3.40512 −0.592756
\(34\) −6.40512 −1.09847
\(35\) −3.40512 −0.575571
\(36\) −2.00000 −0.333333
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −1.40512 −0.227941
\(39\) 5.40512 0.865513
\(40\) 3.40512 0.538398
\(41\) 0 0
\(42\) 1.00000 0.154303
\(43\) 11.8102 1.80105 0.900523 0.434808i \(-0.143184\pi\)
0.900523 + 0.434808i \(0.143184\pi\)
\(44\) 3.40512 0.513342
\(45\) 6.81025 1.01521
\(46\) 6.40512 0.944384
\(47\) 6.40512 0.934283 0.467142 0.884182i \(-0.345284\pi\)
0.467142 + 0.884182i \(0.345284\pi\)
\(48\) −1.00000 −0.144338
\(49\) −6.00000 −0.857143
\(50\) −6.59488 −0.932656
\(51\) −6.40512 −0.896897
\(52\) −5.40512 −0.749556
\(53\) 3.81025 0.523378 0.261689 0.965152i \(-0.415721\pi\)
0.261689 + 0.965152i \(0.415721\pi\)
\(54\) −5.00000 −0.680414
\(55\) −11.5949 −1.56345
\(56\) −1.00000 −0.133631
\(57\) −1.40512 −0.186113
\(58\) 3.00000 0.393919
\(59\) 12.4051 1.61501 0.807505 0.589861i \(-0.200817\pi\)
0.807505 + 0.589861i \(0.200817\pi\)
\(60\) 3.40512 0.439600
\(61\) −3.59488 −0.460277 −0.230138 0.973158i \(-0.573918\pi\)
−0.230138 + 0.973158i \(0.573918\pi\)
\(62\) 0.594875 0.0755492
\(63\) −2.00000 −0.251976
\(64\) 1.00000 0.125000
\(65\) 18.4051 2.28287
\(66\) 3.40512 0.419142
\(67\) −11.4051 −1.39336 −0.696679 0.717383i \(-0.745340\pi\)
−0.696679 + 0.717383i \(0.745340\pi\)
\(68\) 6.40512 0.776735
\(69\) 6.40512 0.771086
\(70\) 3.40512 0.406990
\(71\) 9.81025 1.16426 0.582131 0.813095i \(-0.302219\pi\)
0.582131 + 0.813095i \(0.302219\pi\)
\(72\) 2.00000 0.235702
\(73\) −10.8102 −1.26524 −0.632622 0.774461i \(-0.718021\pi\)
−0.632622 + 0.774461i \(0.718021\pi\)
\(74\) −2.00000 −0.232495
\(75\) −6.59488 −0.761511
\(76\) 1.40512 0.161179
\(77\) 3.40512 0.388050
\(78\) −5.40512 −0.612010
\(79\) 4.81025 0.541195 0.270598 0.962693i \(-0.412779\pi\)
0.270598 + 0.962693i \(0.412779\pi\)
\(80\) −3.40512 −0.380705
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) −1.00000 −0.109109
\(85\) −21.8102 −2.36565
\(86\) −11.8102 −1.27353
\(87\) 3.00000 0.321634
\(88\) −3.40512 −0.362988
\(89\) 3.40512 0.360943 0.180471 0.983580i \(-0.442238\pi\)
0.180471 + 0.983580i \(0.442238\pi\)
\(90\) −6.81025 −0.717863
\(91\) −5.40512 −0.566611
\(92\) −6.40512 −0.667780
\(93\) 0.594875 0.0616857
\(94\) −6.40512 −0.660638
\(95\) −4.78463 −0.490892
\(96\) 1.00000 0.102062
\(97\) −5.81025 −0.589941 −0.294971 0.955506i \(-0.595310\pi\)
−0.294971 + 0.955506i \(0.595310\pi\)
\(98\) 6.00000 0.606092
\(99\) −6.81025 −0.684456
\(100\) 6.59488 0.659488
\(101\) −19.2154 −1.91200 −0.956001 0.293365i \(-0.905225\pi\)
−0.956001 + 0.293365i \(0.905225\pi\)
\(102\) 6.40512 0.634202
\(103\) 2.81025 0.276902 0.138451 0.990369i \(-0.455788\pi\)
0.138451 + 0.990369i \(0.455788\pi\)
\(104\) 5.40512 0.530016
\(105\) 3.40512 0.332306
\(106\) −3.81025 −0.370084
\(107\) 18.4051 1.77929 0.889645 0.456652i \(-0.150952\pi\)
0.889645 + 0.456652i \(0.150952\pi\)
\(108\) 5.00000 0.481125
\(109\) −5.81025 −0.556521 −0.278260 0.960506i \(-0.589758\pi\)
−0.278260 + 0.960506i \(0.589758\pi\)
\(110\) 11.5949 1.10553
\(111\) −2.00000 −0.189832
\(112\) 1.00000 0.0944911
\(113\) −12.8102 −1.20509 −0.602543 0.798086i \(-0.705846\pi\)
−0.602543 + 0.798086i \(0.705846\pi\)
\(114\) 1.40512 0.131602
\(115\) 21.8102 2.03382
\(116\) −3.00000 −0.278543
\(117\) 10.8102 0.999408
\(118\) −12.4051 −1.14198
\(119\) 6.40512 0.587157
\(120\) −3.40512 −0.310844
\(121\) 0.594875 0.0540796
\(122\) 3.59488 0.325465
\(123\) 0 0
\(124\) −0.594875 −0.0534214
\(125\) −5.43075 −0.485741
\(126\) 2.00000 0.178174
\(127\) −13.8102 −1.22546 −0.612731 0.790292i \(-0.709929\pi\)
−0.612731 + 0.790292i \(0.709929\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −11.8102 −1.03983
\(130\) −18.4051 −1.61424
\(131\) 13.2154 1.15463 0.577316 0.816521i \(-0.304100\pi\)
0.577316 + 0.816521i \(0.304100\pi\)
\(132\) −3.40512 −0.296378
\(133\) 1.40512 0.121840
\(134\) 11.4051 0.985253
\(135\) −17.0256 −1.46533
\(136\) −6.40512 −0.549235
\(137\) −22.2154 −1.89799 −0.948994 0.315295i \(-0.897897\pi\)
−0.948994 + 0.315295i \(0.897897\pi\)
\(138\) −6.40512 −0.545240
\(139\) 6.21537 0.527181 0.263591 0.964635i \(-0.415093\pi\)
0.263591 + 0.964635i \(0.415093\pi\)
\(140\) −3.40512 −0.287786
\(141\) −6.40512 −0.539409
\(142\) −9.81025 −0.823258
\(143\) −18.4051 −1.53911
\(144\) −2.00000 −0.166667
\(145\) 10.2154 0.848341
\(146\) 10.8102 0.894663
\(147\) 6.00000 0.494872
\(148\) 2.00000 0.164399
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 6.59488 0.538469
\(151\) 3.59488 0.292547 0.146273 0.989244i \(-0.453272\pi\)
0.146273 + 0.989244i \(0.453272\pi\)
\(152\) −1.40512 −0.113971
\(153\) −12.8102 −1.03565
\(154\) −3.40512 −0.274393
\(155\) 2.02562 0.162702
\(156\) 5.40512 0.432756
\(157\) −1.18975 −0.0949524 −0.0474762 0.998872i \(-0.515118\pi\)
−0.0474762 + 0.998872i \(0.515118\pi\)
\(158\) −4.81025 −0.382683
\(159\) −3.81025 −0.302172
\(160\) 3.40512 0.269199
\(161\) −6.40512 −0.504795
\(162\) −1.00000 −0.0785674
\(163\) −20.6205 −1.61512 −0.807561 0.589784i \(-0.799213\pi\)
−0.807561 + 0.589784i \(0.799213\pi\)
\(164\) 0 0
\(165\) 11.5949 0.902660
\(166\) −6.00000 −0.465690
\(167\) −8.18975 −0.633742 −0.316871 0.948469i \(-0.602632\pi\)
−0.316871 + 0.948469i \(0.602632\pi\)
\(168\) 1.00000 0.0771517
\(169\) 16.2154 1.24734
\(170\) 21.8102 1.67277
\(171\) −2.81025 −0.214905
\(172\) 11.8102 0.900523
\(173\) −3.00000 −0.228086 −0.114043 0.993476i \(-0.536380\pi\)
−0.114043 + 0.993476i \(0.536380\pi\)
\(174\) −3.00000 −0.227429
\(175\) 6.59488 0.498526
\(176\) 3.40512 0.256671
\(177\) −12.4051 −0.932426
\(178\) −3.40512 −0.255225
\(179\) 9.00000 0.672692 0.336346 0.941739i \(-0.390809\pi\)
0.336346 + 0.941739i \(0.390809\pi\)
\(180\) 6.81025 0.507606
\(181\) −11.0000 −0.817624 −0.408812 0.912619i \(-0.634057\pi\)
−0.408812 + 0.912619i \(0.634057\pi\)
\(182\) 5.40512 0.400655
\(183\) 3.59488 0.265741
\(184\) 6.40512 0.472192
\(185\) −6.81025 −0.500700
\(186\) −0.594875 −0.0436184
\(187\) 21.8102 1.59492
\(188\) 6.40512 0.467142
\(189\) 5.00000 0.363696
\(190\) 4.78463 0.347113
\(191\) −1.78463 −0.129131 −0.0645655 0.997913i \(-0.520566\pi\)
−0.0645655 + 0.997913i \(0.520566\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −13.0256 −0.937605 −0.468802 0.883303i \(-0.655314\pi\)
−0.468802 + 0.883303i \(0.655314\pi\)
\(194\) 5.81025 0.417152
\(195\) −18.4051 −1.31802
\(196\) −6.00000 −0.428571
\(197\) 18.4051 1.31131 0.655655 0.755060i \(-0.272392\pi\)
0.655655 + 0.755060i \(0.272392\pi\)
\(198\) 6.81025 0.483983
\(199\) −11.0000 −0.779769 −0.389885 0.920864i \(-0.627485\pi\)
−0.389885 + 0.920864i \(0.627485\pi\)
\(200\) −6.59488 −0.466328
\(201\) 11.4051 0.804455
\(202\) 19.2154 1.35199
\(203\) −3.00000 −0.210559
\(204\) −6.40512 −0.448448
\(205\) 0 0
\(206\) −2.81025 −0.195799
\(207\) 12.8102 0.890374
\(208\) −5.40512 −0.374778
\(209\) 4.78463 0.330959
\(210\) −3.40512 −0.234976
\(211\) 13.0000 0.894957 0.447478 0.894295i \(-0.352322\pi\)
0.447478 + 0.894295i \(0.352322\pi\)
\(212\) 3.81025 0.261689
\(213\) −9.81025 −0.672187
\(214\) −18.4051 −1.25815
\(215\) −40.2154 −2.74267
\(216\) −5.00000 −0.340207
\(217\) −0.594875 −0.0403828
\(218\) 5.81025 0.393520
\(219\) 10.8102 0.730489
\(220\) −11.5949 −0.781726
\(221\) −34.6205 −2.32883
\(222\) 2.00000 0.134231
\(223\) −17.6205 −1.17996 −0.589978 0.807419i \(-0.700864\pi\)
−0.589978 + 0.807419i \(0.700864\pi\)
\(224\) −1.00000 −0.0668153
\(225\) −13.1898 −0.879317
\(226\) 12.8102 0.852125
\(227\) −7.21537 −0.478901 −0.239451 0.970909i \(-0.576967\pi\)
−0.239451 + 0.970909i \(0.576967\pi\)
\(228\) −1.40512 −0.0930567
\(229\) 0.594875 0.0393105 0.0196552 0.999807i \(-0.493743\pi\)
0.0196552 + 0.999807i \(0.493743\pi\)
\(230\) −21.8102 −1.43813
\(231\) −3.40512 −0.224041
\(232\) 3.00000 0.196960
\(233\) −6.81025 −0.446154 −0.223077 0.974801i \(-0.571610\pi\)
−0.223077 + 0.974801i \(0.571610\pi\)
\(234\) −10.8102 −0.706688
\(235\) −21.8102 −1.42274
\(236\) 12.4051 0.807505
\(237\) −4.81025 −0.312459
\(238\) −6.40512 −0.415183
\(239\) −20.4307 −1.32156 −0.660778 0.750582i \(-0.729773\pi\)
−0.660778 + 0.750582i \(0.729773\pi\)
\(240\) 3.40512 0.219800
\(241\) −3.59488 −0.231566 −0.115783 0.993275i \(-0.536938\pi\)
−0.115783 + 0.993275i \(0.536938\pi\)
\(242\) −0.594875 −0.0382400
\(243\) −16.0000 −1.02640
\(244\) −3.59488 −0.230138
\(245\) 20.4307 1.30527
\(246\) 0 0
\(247\) −7.59488 −0.483250
\(248\) 0.594875 0.0377746
\(249\) −6.00000 −0.380235
\(250\) 5.43075 0.343471
\(251\) −15.0000 −0.946792 −0.473396 0.880850i \(-0.656972\pi\)
−0.473396 + 0.880850i \(0.656972\pi\)
\(252\) −2.00000 −0.125988
\(253\) −21.8102 −1.37120
\(254\) 13.8102 0.866532
\(255\) 21.8102 1.36581
\(256\) 1.00000 0.0625000
\(257\) 2.59488 0.161864 0.0809319 0.996720i \(-0.474210\pi\)
0.0809319 + 0.996720i \(0.474210\pi\)
\(258\) 11.8102 0.735274
\(259\) 2.00000 0.124274
\(260\) 18.4051 1.14144
\(261\) 6.00000 0.371391
\(262\) −13.2154 −0.816449
\(263\) −5.18975 −0.320014 −0.160007 0.987116i \(-0.551152\pi\)
−0.160007 + 0.987116i \(0.551152\pi\)
\(264\) 3.40512 0.209571
\(265\) −12.9744 −0.797010
\(266\) −1.40512 −0.0861537
\(267\) −3.40512 −0.208390
\(268\) −11.4051 −0.696679
\(269\) −15.0000 −0.914566 −0.457283 0.889321i \(-0.651177\pi\)
−0.457283 + 0.889321i \(0.651177\pi\)
\(270\) 17.0256 1.03615
\(271\) 21.2154 1.28874 0.644371 0.764713i \(-0.277119\pi\)
0.644371 + 0.764713i \(0.277119\pi\)
\(272\) 6.40512 0.388368
\(273\) 5.40512 0.327133
\(274\) 22.2154 1.34208
\(275\) 22.4564 1.35417
\(276\) 6.40512 0.385543
\(277\) 2.81025 0.168852 0.0844258 0.996430i \(-0.473094\pi\)
0.0844258 + 0.996430i \(0.473094\pi\)
\(278\) −6.21537 −0.372773
\(279\) 1.18975 0.0712285
\(280\) 3.40512 0.203495
\(281\) −0.810250 −0.0483354 −0.0241677 0.999708i \(-0.507694\pi\)
−0.0241677 + 0.999708i \(0.507694\pi\)
\(282\) 6.40512 0.381420
\(283\) −27.4307 −1.63059 −0.815294 0.579047i \(-0.803425\pi\)
−0.815294 + 0.579047i \(0.803425\pi\)
\(284\) 9.81025 0.582131
\(285\) 4.78463 0.283417
\(286\) 18.4051 1.08832
\(287\) 0 0
\(288\) 2.00000 0.117851
\(289\) 24.0256 1.41327
\(290\) −10.2154 −0.599867
\(291\) 5.81025 0.340603
\(292\) −10.8102 −0.632622
\(293\) −21.4051 −1.25050 −0.625250 0.780424i \(-0.715003\pi\)
−0.625250 + 0.780424i \(0.715003\pi\)
\(294\) −6.00000 −0.349927
\(295\) −42.2410 −2.45937
\(296\) −2.00000 −0.116248
\(297\) 17.0256 0.987927
\(298\) 0 0
\(299\) 34.6205 2.00216
\(300\) −6.59488 −0.380755
\(301\) 11.8102 0.680731
\(302\) −3.59488 −0.206862
\(303\) 19.2154 1.10389
\(304\) 1.40512 0.0805894
\(305\) 12.2410 0.700918
\(306\) 12.8102 0.732313
\(307\) −15.0256 −0.857558 −0.428779 0.903409i \(-0.641056\pi\)
−0.428779 + 0.903409i \(0.641056\pi\)
\(308\) 3.40512 0.194025
\(309\) −2.81025 −0.159870
\(310\) −2.02562 −0.115048
\(311\) −28.6205 −1.62292 −0.811460 0.584408i \(-0.801327\pi\)
−0.811460 + 0.584408i \(0.801327\pi\)
\(312\) −5.40512 −0.306005
\(313\) 30.4307 1.72005 0.860024 0.510254i \(-0.170449\pi\)
0.860024 + 0.510254i \(0.170449\pi\)
\(314\) 1.18975 0.0671415
\(315\) 6.81025 0.383714
\(316\) 4.81025 0.270598
\(317\) 3.40512 0.191251 0.0956254 0.995417i \(-0.469515\pi\)
0.0956254 + 0.995417i \(0.469515\pi\)
\(318\) 3.81025 0.213668
\(319\) −10.2154 −0.571951
\(320\) −3.40512 −0.190352
\(321\) −18.4051 −1.02727
\(322\) 6.40512 0.356944
\(323\) 9.00000 0.500773
\(324\) 1.00000 0.0555556
\(325\) −35.6461 −1.97729
\(326\) 20.6205 1.14206
\(327\) 5.81025 0.321308
\(328\) 0 0
\(329\) 6.40512 0.353126
\(330\) −11.5949 −0.638277
\(331\) 23.6205 1.29830 0.649150 0.760660i \(-0.275125\pi\)
0.649150 + 0.760660i \(0.275125\pi\)
\(332\) 6.00000 0.329293
\(333\) −4.00000 −0.219199
\(334\) 8.18975 0.448123
\(335\) 38.8359 2.12183
\(336\) −1.00000 −0.0545545
\(337\) 11.8102 0.643345 0.321673 0.946851i \(-0.395755\pi\)
0.321673 + 0.946851i \(0.395755\pi\)
\(338\) −16.2154 −0.882000
\(339\) 12.8102 0.695757
\(340\) −21.8102 −1.18283
\(341\) −2.02562 −0.109694
\(342\) 2.81025 0.151961
\(343\) −13.0000 −0.701934
\(344\) −11.8102 −0.636766
\(345\) −21.8102 −1.17422
\(346\) 3.00000 0.161281
\(347\) 6.81025 0.365593 0.182797 0.983151i \(-0.441485\pi\)
0.182797 + 0.983151i \(0.441485\pi\)
\(348\) 3.00000 0.160817
\(349\) −11.2154 −0.600345 −0.300173 0.953885i \(-0.597044\pi\)
−0.300173 + 0.953885i \(0.597044\pi\)
\(350\) −6.59488 −0.352511
\(351\) −27.0256 −1.44252
\(352\) −3.40512 −0.181494
\(353\) −21.8102 −1.16084 −0.580421 0.814316i \(-0.697112\pi\)
−0.580421 + 0.814316i \(0.697112\pi\)
\(354\) 12.4051 0.659325
\(355\) −33.4051 −1.77296
\(356\) 3.40512 0.180471
\(357\) −6.40512 −0.338995
\(358\) −9.00000 −0.475665
\(359\) 25.2154 1.33082 0.665408 0.746480i \(-0.268257\pi\)
0.665408 + 0.746480i \(0.268257\pi\)
\(360\) −6.81025 −0.358932
\(361\) −17.0256 −0.896085
\(362\) 11.0000 0.578147
\(363\) −0.594875 −0.0312228
\(364\) −5.40512 −0.283306
\(365\) 36.8102 1.92674
\(366\) −3.59488 −0.187907
\(367\) 3.21537 0.167841 0.0839206 0.996472i \(-0.473256\pi\)
0.0839206 + 0.996472i \(0.473256\pi\)
\(368\) −6.40512 −0.333890
\(369\) 0 0
\(370\) 6.81025 0.354048
\(371\) 3.81025 0.197818
\(372\) 0.594875 0.0308428
\(373\) −13.0000 −0.673114 −0.336557 0.941663i \(-0.609263\pi\)
−0.336557 + 0.941663i \(0.609263\pi\)
\(374\) −21.8102 −1.12778
\(375\) 5.43075 0.280443
\(376\) −6.40512 −0.330319
\(377\) 16.2154 0.835134
\(378\) −5.00000 −0.257172
\(379\) 18.6205 0.956471 0.478235 0.878232i \(-0.341277\pi\)
0.478235 + 0.878232i \(0.341277\pi\)
\(380\) −4.78463 −0.245446
\(381\) 13.8102 0.707521
\(382\) 1.78463 0.0913094
\(383\) −12.4051 −0.633872 −0.316936 0.948447i \(-0.602654\pi\)
−0.316936 + 0.948447i \(0.602654\pi\)
\(384\) 1.00000 0.0510310
\(385\) −11.5949 −0.590930
\(386\) 13.0256 0.662987
\(387\) −23.6205 −1.20070
\(388\) −5.81025 −0.294971
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 18.4051 0.931980
\(391\) −41.0256 −2.07475
\(392\) 6.00000 0.303046
\(393\) −13.2154 −0.666627
\(394\) −18.4051 −0.927237
\(395\) −16.3795 −0.824142
\(396\) −6.81025 −0.342228
\(397\) −26.0000 −1.30490 −0.652451 0.757831i \(-0.726259\pi\)
−0.652451 + 0.757831i \(0.726259\pi\)
\(398\) 11.0000 0.551380
\(399\) −1.40512 −0.0703442
\(400\) 6.59488 0.329744
\(401\) −5.59488 −0.279395 −0.139697 0.990194i \(-0.544613\pi\)
−0.139697 + 0.990194i \(0.544613\pi\)
\(402\) −11.4051 −0.568836
\(403\) 3.21537 0.160169
\(404\) −19.2154 −0.956001
\(405\) −3.40512 −0.169202
\(406\) 3.00000 0.148888
\(407\) 6.81025 0.337572
\(408\) 6.40512 0.317101
\(409\) −15.5949 −0.771117 −0.385558 0.922683i \(-0.625991\pi\)
−0.385558 + 0.922683i \(0.625991\pi\)
\(410\) 0 0
\(411\) 22.2154 1.09580
\(412\) 2.81025 0.138451
\(413\) 12.4051 0.610416
\(414\) −12.8102 −0.629589
\(415\) −20.4307 −1.00291
\(416\) 5.40512 0.265008
\(417\) −6.21537 −0.304368
\(418\) −4.78463 −0.234024
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 3.40512 0.166153
\(421\) 5.62050 0.273926 0.136963 0.990576i \(-0.456266\pi\)
0.136963 + 0.990576i \(0.456266\pi\)
\(422\) −13.0000 −0.632830
\(423\) −12.8102 −0.622856
\(424\) −3.81025 −0.185042
\(425\) 42.2410 2.04899
\(426\) 9.81025 0.475308
\(427\) −3.59488 −0.173968
\(428\) 18.4051 0.889645
\(429\) 18.4051 0.888608
\(430\) 40.2154 1.93936
\(431\) 15.0000 0.722525 0.361262 0.932464i \(-0.382346\pi\)
0.361262 + 0.932464i \(0.382346\pi\)
\(432\) 5.00000 0.240563
\(433\) −10.0000 −0.480569 −0.240285 0.970702i \(-0.577241\pi\)
−0.240285 + 0.970702i \(0.577241\pi\)
\(434\) 0.594875 0.0285549
\(435\) −10.2154 −0.489790
\(436\) −5.81025 −0.278260
\(437\) −9.00000 −0.430528
\(438\) −10.8102 −0.516534
\(439\) −25.4307 −1.21374 −0.606872 0.794800i \(-0.707576\pi\)
−0.606872 + 0.794800i \(0.707576\pi\)
\(440\) 11.5949 0.552764
\(441\) 12.0000 0.571429
\(442\) 34.6205 1.64673
\(443\) 17.4307 0.828160 0.414080 0.910241i \(-0.364103\pi\)
0.414080 + 0.910241i \(0.364103\pi\)
\(444\) −2.00000 −0.0949158
\(445\) −11.5949 −0.549650
\(446\) 17.6205 0.834355
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) 24.0000 1.13263 0.566315 0.824189i \(-0.308369\pi\)
0.566315 + 0.824189i \(0.308369\pi\)
\(450\) 13.1898 0.621771
\(451\) 0 0
\(452\) −12.8102 −0.602543
\(453\) −3.59488 −0.168902
\(454\) 7.21537 0.338634
\(455\) 18.4051 0.862846
\(456\) 1.40512 0.0658010
\(457\) −5.00000 −0.233890 −0.116945 0.993138i \(-0.537310\pi\)
−0.116945 + 0.993138i \(0.537310\pi\)
\(458\) −0.594875 −0.0277967
\(459\) 32.0256 1.49483
\(460\) 21.8102 1.01691
\(461\) 12.4051 0.577764 0.288882 0.957365i \(-0.406716\pi\)
0.288882 + 0.957365i \(0.406716\pi\)
\(462\) 3.40512 0.158421
\(463\) −12.6205 −0.586524 −0.293262 0.956032i \(-0.594741\pi\)
−0.293262 + 0.956032i \(0.594741\pi\)
\(464\) −3.00000 −0.139272
\(465\) −2.02562 −0.0939361
\(466\) 6.81025 0.315479
\(467\) 11.1898 0.517800 0.258900 0.965904i \(-0.416640\pi\)
0.258900 + 0.965904i \(0.416640\pi\)
\(468\) 10.8102 0.499704
\(469\) −11.4051 −0.526640
\(470\) 21.8102 1.00603
\(471\) 1.18975 0.0548208
\(472\) −12.4051 −0.570992
\(473\) 40.2154 1.84910
\(474\) 4.81025 0.220942
\(475\) 9.26662 0.425182
\(476\) 6.40512 0.293578
\(477\) −7.62050 −0.348919
\(478\) 20.4307 0.934481
\(479\) 9.00000 0.411220 0.205610 0.978634i \(-0.434082\pi\)
0.205610 + 0.978634i \(0.434082\pi\)
\(480\) −3.40512 −0.155422
\(481\) −10.8102 −0.492905
\(482\) 3.59488 0.163742
\(483\) 6.40512 0.291443
\(484\) 0.594875 0.0270398
\(485\) 19.7846 0.898374
\(486\) 16.0000 0.725775
\(487\) −7.00000 −0.317200 −0.158600 0.987343i \(-0.550698\pi\)
−0.158600 + 0.987343i \(0.550698\pi\)
\(488\) 3.59488 0.162732
\(489\) 20.6205 0.932491
\(490\) −20.4307 −0.922967
\(491\) 1.37950 0.0622560 0.0311280 0.999515i \(-0.490090\pi\)
0.0311280 + 0.999515i \(0.490090\pi\)
\(492\) 0 0
\(493\) −19.2154 −0.865417
\(494\) 7.59488 0.341710
\(495\) 23.1898 1.04230
\(496\) −0.594875 −0.0267107
\(497\) 9.81025 0.440050
\(498\) 6.00000 0.268866
\(499\) −3.21537 −0.143940 −0.0719700 0.997407i \(-0.522929\pi\)
−0.0719700 + 0.997407i \(0.522929\pi\)
\(500\) −5.43075 −0.242870
\(501\) 8.18975 0.365891
\(502\) 15.0000 0.669483
\(503\) −32.4307 −1.44602 −0.723008 0.690840i \(-0.757241\pi\)
−0.723008 + 0.690840i \(0.757241\pi\)
\(504\) 2.00000 0.0890871
\(505\) 65.4307 2.91163
\(506\) 21.8102 0.969584
\(507\) −16.2154 −0.720150
\(508\) −13.8102 −0.612731
\(509\) 42.8102 1.89753 0.948765 0.315981i \(-0.102334\pi\)
0.948765 + 0.315981i \(0.102334\pi\)
\(510\) −21.8102 −0.965774
\(511\) −10.8102 −0.478217
\(512\) −1.00000 −0.0441942
\(513\) 7.02562 0.310189
\(514\) −2.59488 −0.114455
\(515\) −9.56925 −0.421672
\(516\) −11.8102 −0.519917
\(517\) 21.8102 0.959214
\(518\) −2.00000 −0.0878750
\(519\) 3.00000 0.131685
\(520\) −18.4051 −0.807118
\(521\) −7.62050 −0.333860 −0.166930 0.985969i \(-0.553385\pi\)
−0.166930 + 0.985969i \(0.553385\pi\)
\(522\) −6.00000 −0.262613
\(523\) −35.2154 −1.53986 −0.769930 0.638128i \(-0.779709\pi\)
−0.769930 + 0.638128i \(0.779709\pi\)
\(524\) 13.2154 0.577316
\(525\) −6.59488 −0.287824
\(526\) 5.18975 0.226284
\(527\) −3.81025 −0.165977
\(528\) −3.40512 −0.148189
\(529\) 18.0256 0.783723
\(530\) 12.9744 0.563571
\(531\) −24.8102 −1.07667
\(532\) 1.40512 0.0609199
\(533\) 0 0
\(534\) 3.40512 0.147354
\(535\) −62.6717 −2.70954
\(536\) 11.4051 0.492626
\(537\) −9.00000 −0.388379
\(538\) 15.0000 0.646696
\(539\) −20.4307 −0.880015
\(540\) −17.0256 −0.732666
\(541\) −25.0000 −1.07483 −0.537417 0.843317i \(-0.680600\pi\)
−0.537417 + 0.843317i \(0.680600\pi\)
\(542\) −21.2154 −0.911278
\(543\) 11.0000 0.472055
\(544\) −6.40512 −0.274617
\(545\) 19.7846 0.847480
\(546\) −5.40512 −0.231318
\(547\) 14.6205 0.625127 0.312564 0.949897i \(-0.398812\pi\)
0.312564 + 0.949897i \(0.398812\pi\)
\(548\) −22.2154 −0.948994
\(549\) 7.18975 0.306851
\(550\) −22.4564 −0.957543
\(551\) −4.21537 −0.179581
\(552\) −6.40512 −0.272620
\(553\) 4.81025 0.204553
\(554\) −2.81025 −0.119396
\(555\) 6.81025 0.289079
\(556\) 6.21537 0.263591
\(557\) 1.78463 0.0756170 0.0378085 0.999285i \(-0.487962\pi\)
0.0378085 + 0.999285i \(0.487962\pi\)
\(558\) −1.18975 −0.0503661
\(559\) −63.8359 −2.69997
\(560\) −3.40512 −0.143893
\(561\) −21.8102 −0.920829
\(562\) 0.810250 0.0341783
\(563\) −5.18975 −0.218722 −0.109361 0.994002i \(-0.534880\pi\)
−0.109361 + 0.994002i \(0.534880\pi\)
\(564\) −6.40512 −0.269704
\(565\) 43.6205 1.83513
\(566\) 27.4307 1.15300
\(567\) 1.00000 0.0419961
\(568\) −9.81025 −0.411629
\(569\) 3.00000 0.125767 0.0628833 0.998021i \(-0.479970\pi\)
0.0628833 + 0.998021i \(0.479970\pi\)
\(570\) −4.78463 −0.200406
\(571\) 8.62050 0.360757 0.180378 0.983597i \(-0.442268\pi\)
0.180378 + 0.983597i \(0.442268\pi\)
\(572\) −18.4051 −0.769557
\(573\) 1.78463 0.0745538
\(574\) 0 0
\(575\) −42.2410 −1.76157
\(576\) −2.00000 −0.0833333
\(577\) −9.62050 −0.400507 −0.200253 0.979744i \(-0.564177\pi\)
−0.200253 + 0.979744i \(0.564177\pi\)
\(578\) −24.0256 −0.999334
\(579\) 13.0256 0.541326
\(580\) 10.2154 0.424170
\(581\) 6.00000 0.248922
\(582\) −5.81025 −0.240843
\(583\) 12.9744 0.537344
\(584\) 10.8102 0.447331
\(585\) −36.8102 −1.52192
\(586\) 21.4051 0.884238
\(587\) 9.81025 0.404912 0.202456 0.979291i \(-0.435108\pi\)
0.202456 + 0.979291i \(0.435108\pi\)
\(588\) 6.00000 0.247436
\(589\) −0.835874 −0.0344416
\(590\) 42.2410 1.73903
\(591\) −18.4051 −0.757086
\(592\) 2.00000 0.0821995
\(593\) −2.43075 −0.0998189 −0.0499094 0.998754i \(-0.515893\pi\)
−0.0499094 + 0.998754i \(0.515893\pi\)
\(594\) −17.0256 −0.698570
\(595\) −21.8102 −0.894133
\(596\) 0 0
\(597\) 11.0000 0.450200
\(598\) −34.6205 −1.41574
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 6.59488 0.269235
\(601\) −29.4051 −1.19946 −0.599730 0.800202i \(-0.704725\pi\)
−0.599730 + 0.800202i \(0.704725\pi\)
\(602\) −11.8102 −0.481350
\(603\) 22.8102 0.928905
\(604\) 3.59488 0.146273
\(605\) −2.02562 −0.0823533
\(606\) −19.2154 −0.780571
\(607\) −25.8102 −1.04761 −0.523803 0.851840i \(-0.675487\pi\)
−0.523803 + 0.851840i \(0.675487\pi\)
\(608\) −1.40512 −0.0569853
\(609\) 3.00000 0.121566
\(610\) −12.2410 −0.495624
\(611\) −34.6205 −1.40060
\(612\) −12.8102 −0.517824
\(613\) 8.40512 0.339480 0.169740 0.985489i \(-0.445707\pi\)
0.169740 + 0.985489i \(0.445707\pi\)
\(614\) 15.0256 0.606385
\(615\) 0 0
\(616\) −3.40512 −0.137196
\(617\) −26.1898 −1.05436 −0.527180 0.849754i \(-0.676751\pi\)
−0.527180 + 0.849754i \(0.676751\pi\)
\(618\) 2.81025 0.113045
\(619\) 31.5949 1.26991 0.634953 0.772551i \(-0.281020\pi\)
0.634953 + 0.772551i \(0.281020\pi\)
\(620\) 2.02562 0.0813510
\(621\) −32.0256 −1.28514
\(622\) 28.6205 1.14758
\(623\) 3.40512 0.136423
\(624\) 5.40512 0.216378
\(625\) −14.4820 −0.579280
\(626\) −30.4307 −1.21626
\(627\) −4.78463 −0.191080
\(628\) −1.18975 −0.0474762
\(629\) 12.8102 0.510778
\(630\) −6.81025 −0.271327
\(631\) −0.594875 −0.0236816 −0.0118408 0.999930i \(-0.503769\pi\)
−0.0118408 + 0.999930i \(0.503769\pi\)
\(632\) −4.81025 −0.191341
\(633\) −13.0000 −0.516704
\(634\) −3.40512 −0.135235
\(635\) 47.0256 1.86615
\(636\) −3.81025 −0.151086
\(637\) 32.4307 1.28495
\(638\) 10.2154 0.404431
\(639\) −19.6205 −0.776175
\(640\) 3.40512 0.134599
\(641\) 4.78463 0.188981 0.0944907 0.995526i \(-0.469878\pi\)
0.0944907 + 0.995526i \(0.469878\pi\)
\(642\) 18.4051 0.726392
\(643\) −16.1898 −0.638461 −0.319231 0.947677i \(-0.603424\pi\)
−0.319231 + 0.947677i \(0.603424\pi\)
\(644\) −6.40512 −0.252397
\(645\) 40.2154 1.58348
\(646\) −9.00000 −0.354100
\(647\) −10.6205 −0.417535 −0.208767 0.977965i \(-0.566945\pi\)
−0.208767 + 0.977965i \(0.566945\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 42.2410 1.65810
\(650\) 35.6461 1.39816
\(651\) 0.594875 0.0233150
\(652\) −20.6205 −0.807561
\(653\) 33.6461 1.31667 0.658337 0.752723i \(-0.271260\pi\)
0.658337 + 0.752723i \(0.271260\pi\)
\(654\) −5.81025 −0.227199
\(655\) −45.0000 −1.75830
\(656\) 0 0
\(657\) 21.6205 0.843496
\(658\) −6.40512 −0.249698
\(659\) −23.4307 −0.912732 −0.456366 0.889792i \(-0.650849\pi\)
−0.456366 + 0.889792i \(0.650849\pi\)
\(660\) 11.5949 0.451330
\(661\) 45.2154 1.75867 0.879337 0.476200i \(-0.157986\pi\)
0.879337 + 0.476200i \(0.157986\pi\)
\(662\) −23.6205 −0.918037
\(663\) 34.6205 1.34455
\(664\) −6.00000 −0.232845
\(665\) −4.78463 −0.185540
\(666\) 4.00000 0.154997
\(667\) 19.2154 0.744022
\(668\) −8.18975 −0.316871
\(669\) 17.6205 0.681248
\(670\) −38.8359 −1.50036
\(671\) −12.2410 −0.472559
\(672\) 1.00000 0.0385758
\(673\) 30.5949 1.17935 0.589673 0.807642i \(-0.299257\pi\)
0.589673 + 0.807642i \(0.299257\pi\)
\(674\) −11.8102 −0.454914
\(675\) 32.9744 1.26918
\(676\) 16.2154 0.623668
\(677\) 29.4307 1.13112 0.565558 0.824709i \(-0.308661\pi\)
0.565558 + 0.824709i \(0.308661\pi\)
\(678\) −12.8102 −0.491975
\(679\) −5.81025 −0.222977
\(680\) 21.8102 0.836385
\(681\) 7.21537 0.276494
\(682\) 2.02562 0.0775652
\(683\) −11.0256 −0.421884 −0.210942 0.977499i \(-0.567653\pi\)
−0.210942 + 0.977499i \(0.567653\pi\)
\(684\) −2.81025 −0.107453
\(685\) 75.6461 2.89029
\(686\) 13.0000 0.496342
\(687\) −0.594875 −0.0226959
\(688\) 11.8102 0.450262
\(689\) −20.5949 −0.784602
\(690\) 21.8102 0.830302
\(691\) 0.0256242 0.000974790 0 0.000487395 1.00000i \(-0.499845\pi\)
0.000487395 1.00000i \(0.499845\pi\)
\(692\) −3.00000 −0.114043
\(693\) −6.81025 −0.258700
\(694\) −6.81025 −0.258514
\(695\) −21.1641 −0.802801
\(696\) −3.00000 −0.113715
\(697\) 0 0
\(698\) 11.2154 0.424508
\(699\) 6.81025 0.257587
\(700\) 6.59488 0.249263
\(701\) 15.4051 0.581844 0.290922 0.956747i \(-0.406038\pi\)
0.290922 + 0.956747i \(0.406038\pi\)
\(702\) 27.0256 1.02002
\(703\) 2.81025 0.105991
\(704\) 3.40512 0.128335
\(705\) 21.8102 0.821422
\(706\) 21.8102 0.820840
\(707\) −19.2154 −0.722669
\(708\) −12.4051 −0.466213
\(709\) −24.6205 −0.924642 −0.462321 0.886713i \(-0.652983\pi\)
−0.462321 + 0.886713i \(0.652983\pi\)
\(710\) 33.4051 1.25367
\(711\) −9.62050 −0.360797
\(712\) −3.40512 −0.127612
\(713\) 3.81025 0.142695
\(714\) 6.40512 0.239706
\(715\) 62.6717 2.34379
\(716\) 9.00000 0.336346
\(717\) 20.4307 0.763000
\(718\) −25.2154 −0.941029
\(719\) 27.2410 1.01592 0.507959 0.861381i \(-0.330400\pi\)
0.507959 + 0.861381i \(0.330400\pi\)
\(720\) 6.81025 0.253803
\(721\) 2.81025 0.104659
\(722\) 17.0256 0.633628
\(723\) 3.59488 0.133695
\(724\) −11.0000 −0.408812
\(725\) −19.7846 −0.734783
\(726\) 0.594875 0.0220779
\(727\) 15.0256 0.557270 0.278635 0.960397i \(-0.410118\pi\)
0.278635 + 0.960397i \(0.410118\pi\)
\(728\) 5.40512 0.200327
\(729\) 13.0000 0.481481
\(730\) −36.8102 −1.36241
\(731\) 75.6461 2.79787
\(732\) 3.59488 0.132870
\(733\) 31.4307 1.16092 0.580461 0.814288i \(-0.302873\pi\)
0.580461 + 0.814288i \(0.302873\pi\)
\(734\) −3.21537 −0.118682
\(735\) −20.4307 −0.753600
\(736\) 6.40512 0.236096
\(737\) −38.8359 −1.43054
\(738\) 0 0
\(739\) −11.3795 −0.418602 −0.209301 0.977851i \(-0.567119\pi\)
−0.209301 + 0.977851i \(0.567119\pi\)
\(740\) −6.81025 −0.250350
\(741\) 7.59488 0.279005
\(742\) −3.81025 −0.139879
\(743\) −9.40512 −0.345041 −0.172520 0.985006i \(-0.555191\pi\)
−0.172520 + 0.985006i \(0.555191\pi\)
\(744\) −0.594875 −0.0218092
\(745\) 0 0
\(746\) 13.0000 0.475964
\(747\) −12.0000 −0.439057
\(748\) 21.8102 0.797462
\(749\) 18.4051 0.672509
\(750\) −5.43075 −0.198303
\(751\) 36.0256 1.31459 0.657297 0.753632i \(-0.271700\pi\)
0.657297 + 0.753632i \(0.271700\pi\)
\(752\) 6.40512 0.233571
\(753\) 15.0000 0.546630
\(754\) −16.2154 −0.590529
\(755\) −12.2410 −0.445496
\(756\) 5.00000 0.181848
\(757\) −53.8102 −1.95577 −0.977883 0.209151i \(-0.932930\pi\)
−0.977883 + 0.209151i \(0.932930\pi\)
\(758\) −18.6205 −0.676327
\(759\) 21.8102 0.791662
\(760\) 4.78463 0.173557
\(761\) 5.18975 0.188128 0.0940642 0.995566i \(-0.470014\pi\)
0.0940642 + 0.995566i \(0.470014\pi\)
\(762\) −13.8102 −0.500293
\(763\) −5.81025 −0.210345
\(764\) −1.78463 −0.0645655
\(765\) 43.6205 1.57710
\(766\) 12.4051 0.448215
\(767\) −67.0512 −2.42108
\(768\) −1.00000 −0.0360844
\(769\) 39.6205 1.42875 0.714376 0.699762i \(-0.246711\pi\)
0.714376 + 0.699762i \(0.246711\pi\)
\(770\) 11.5949 0.417850
\(771\) −2.59488 −0.0934521
\(772\) −13.0256 −0.468802
\(773\) 33.0000 1.18693 0.593464 0.804861i \(-0.297760\pi\)
0.593464 + 0.804861i \(0.297760\pi\)
\(774\) 23.6205 0.849021
\(775\) −3.92313 −0.140923
\(776\) 5.81025 0.208576
\(777\) −2.00000 −0.0717496
\(778\) 0 0
\(779\) 0 0
\(780\) −18.4051 −0.659009
\(781\) 33.4051 1.19533
\(782\) 41.0256 1.46707
\(783\) −15.0000 −0.536056
\(784\) −6.00000 −0.214286
\(785\) 4.05125 0.144595
\(786\) 13.2154 0.471377
\(787\) 11.8102 0.420990 0.210495 0.977595i \(-0.432492\pi\)
0.210495 + 0.977595i \(0.432492\pi\)
\(788\) 18.4051 0.655655
\(789\) 5.18975 0.184760
\(790\) 16.3795 0.582756
\(791\) −12.8102 −0.455480
\(792\) 6.81025 0.241992
\(793\) 19.4307 0.690006
\(794\) 26.0000 0.922705
\(795\) 12.9744 0.460154
\(796\) −11.0000 −0.389885
\(797\) −45.2410 −1.60252 −0.801259 0.598317i \(-0.795836\pi\)
−0.801259 + 0.598317i \(0.795836\pi\)
\(798\) 1.40512 0.0497409
\(799\) 41.0256 1.45138
\(800\) −6.59488 −0.233164
\(801\) −6.81025 −0.240628
\(802\) 5.59488 0.197562
\(803\) −36.8102 −1.29901
\(804\) 11.4051 0.402228
\(805\) 21.8102 0.768710
\(806\) −3.21537 −0.113257
\(807\) 15.0000 0.528025
\(808\) 19.2154 0.675995
\(809\) 45.4051 1.59636 0.798180 0.602420i \(-0.205797\pi\)
0.798180 + 0.602420i \(0.205797\pi\)
\(810\) 3.40512 0.119644
\(811\) −5.62050 −0.197362 −0.0986812 0.995119i \(-0.531462\pi\)
−0.0986812 + 0.995119i \(0.531462\pi\)
\(812\) −3.00000 −0.105279
\(813\) −21.2154 −0.744056
\(814\) −6.81025 −0.238699
\(815\) 70.2154 2.45954
\(816\) −6.40512 −0.224224
\(817\) 16.5949 0.580581
\(818\) 15.5949 0.545262
\(819\) 10.8102 0.377741
\(820\) 0 0
\(821\) 5.43075 0.189534 0.0947672 0.995499i \(-0.469789\pi\)
0.0947672 + 0.995499i \(0.469789\pi\)
\(822\) −22.2154 −0.774850
\(823\) 31.0000 1.08059 0.540296 0.841475i \(-0.318312\pi\)
0.540296 + 0.841475i \(0.318312\pi\)
\(824\) −2.81025 −0.0978997
\(825\) −22.4564 −0.781831
\(826\) −12.4051 −0.431629
\(827\) −15.2410 −0.529981 −0.264991 0.964251i \(-0.585369\pi\)
−0.264991 + 0.964251i \(0.585369\pi\)
\(828\) 12.8102 0.445187
\(829\) 16.5949 0.576364 0.288182 0.957576i \(-0.406949\pi\)
0.288182 + 0.957576i \(0.406949\pi\)
\(830\) 20.4307 0.709162
\(831\) −2.81025 −0.0974865
\(832\) −5.40512 −0.187389
\(833\) −38.4307 −1.33155
\(834\) 6.21537 0.215221
\(835\) 27.8871 0.965074
\(836\) 4.78463 0.165480
\(837\) −2.97438 −0.102809
\(838\) 0 0
\(839\) 34.2154 1.18125 0.590623 0.806948i \(-0.298882\pi\)
0.590623 + 0.806948i \(0.298882\pi\)
\(840\) −3.40512 −0.117488
\(841\) −20.0000 −0.689655
\(842\) −5.62050 −0.193695
\(843\) 0.810250 0.0279065
\(844\) 13.0000 0.447478
\(845\) −55.2154 −1.89947
\(846\) 12.8102 0.440425
\(847\) 0.594875 0.0204402
\(848\) 3.81025 0.130845
\(849\) 27.4307 0.941421
\(850\) −42.2410 −1.44885
\(851\) −12.8102 −0.439130
\(852\) −9.81025 −0.336094
\(853\) −11.3795 −0.389627 −0.194813 0.980840i \(-0.562410\pi\)
−0.194813 + 0.980840i \(0.562410\pi\)
\(854\) 3.59488 0.123014
\(855\) 9.56925 0.327261
\(856\) −18.4051 −0.629074
\(857\) −23.4307 −0.800379 −0.400190 0.916432i \(-0.631056\pi\)
−0.400190 + 0.916432i \(0.631056\pi\)
\(858\) −18.4051 −0.628341
\(859\) −29.0512 −0.991216 −0.495608 0.868546i \(-0.665055\pi\)
−0.495608 + 0.868546i \(0.665055\pi\)
\(860\) −40.2154 −1.37133
\(861\) 0 0
\(862\) −15.0000 −0.510902
\(863\) 25.0512 0.852754 0.426377 0.904545i \(-0.359790\pi\)
0.426377 + 0.904545i \(0.359790\pi\)
\(864\) −5.00000 −0.170103
\(865\) 10.2154 0.347333
\(866\) 10.0000 0.339814
\(867\) −24.0256 −0.815953
\(868\) −0.594875 −0.0201914
\(869\) 16.3795 0.555637
\(870\) 10.2154 0.346334
\(871\) 61.6461 2.08880
\(872\) 5.81025 0.196760
\(873\) 11.6205 0.393294
\(874\) 9.00000 0.304430
\(875\) −5.43075 −0.183593
\(876\) 10.8102 0.365244
\(877\) 36.0512 1.21736 0.608682 0.793414i \(-0.291699\pi\)
0.608682 + 0.793414i \(0.291699\pi\)
\(878\) 25.4307 0.858246
\(879\) 21.4051 0.721977
\(880\) −11.5949 −0.390863
\(881\) −23.4307 −0.789402 −0.394701 0.918810i \(-0.629152\pi\)
−0.394701 + 0.918810i \(0.629152\pi\)
\(882\) −12.0000 −0.404061
\(883\) −39.2154 −1.31970 −0.659851 0.751396i \(-0.729381\pi\)
−0.659851 + 0.751396i \(0.729381\pi\)
\(884\) −34.6205 −1.16441
\(885\) 42.2410 1.41992
\(886\) −17.4307 −0.585597
\(887\) −23.5949 −0.792238 −0.396119 0.918199i \(-0.629643\pi\)
−0.396119 + 0.918199i \(0.629643\pi\)
\(888\) 2.00000 0.0671156
\(889\) −13.8102 −0.463181
\(890\) 11.5949 0.388661
\(891\) 3.40512 0.114076
\(892\) −17.6205 −0.589978
\(893\) 9.00000 0.301174
\(894\) 0 0
\(895\) −30.6461 −1.02439
\(896\) −1.00000 −0.0334077
\(897\) −34.6205 −1.15594
\(898\) −24.0000 −0.800890
\(899\) 1.78463 0.0595206
\(900\) −13.1898 −0.439658
\(901\) 24.4051 0.813053
\(902\) 0 0
\(903\) −11.8102 −0.393020
\(904\) 12.8102 0.426063
\(905\) 37.4564 1.24509
\(906\) 3.59488 0.119432
\(907\) 41.8102 1.38829 0.694143 0.719837i \(-0.255783\pi\)
0.694143 + 0.719837i \(0.255783\pi\)
\(908\) −7.21537 −0.239451
\(909\) 38.4307 1.27467
\(910\) −18.4051 −0.610124
\(911\) −22.6205 −0.749451 −0.374725 0.927136i \(-0.622263\pi\)
−0.374725 + 0.927136i \(0.622263\pi\)
\(912\) −1.40512 −0.0465283
\(913\) 20.4307 0.676159
\(914\) 5.00000 0.165385
\(915\) −12.2410 −0.404675
\(916\) 0.594875 0.0196552
\(917\) 13.2154 0.436410
\(918\) −32.0256 −1.05700
\(919\) 43.2410 1.42639 0.713194 0.700966i \(-0.247248\pi\)
0.713194 + 0.700966i \(0.247248\pi\)
\(920\) −21.8102 −0.719063
\(921\) 15.0256 0.495111
\(922\) −12.4051 −0.408541
\(923\) −53.0256 −1.74536
\(924\) −3.40512 −0.112020
\(925\) 13.1898 0.433676
\(926\) 12.6205 0.414735
\(927\) −5.62050 −0.184601
\(928\) 3.00000 0.0984798
\(929\) 24.8102 0.813998 0.406999 0.913429i \(-0.366575\pi\)
0.406999 + 0.913429i \(0.366575\pi\)
\(930\) 2.02562 0.0664228
\(931\) −8.43075 −0.276307
\(932\) −6.81025 −0.223077
\(933\) 28.6205 0.936993
\(934\) −11.1898 −0.366140
\(935\) −74.2666 −2.42878
\(936\) −10.8102 −0.353344
\(937\) −31.4307 −1.02680 −0.513399 0.858150i \(-0.671614\pi\)
−0.513399 + 0.858150i \(0.671614\pi\)
\(938\) 11.4051 0.372391
\(939\) −30.4307 −0.993070
\(940\) −21.8102 −0.711372
\(941\) −36.8102 −1.19998 −0.599990 0.800008i \(-0.704829\pi\)
−0.599990 + 0.800008i \(0.704829\pi\)
\(942\) −1.18975 −0.0387642
\(943\) 0 0
\(944\) 12.4051 0.403752
\(945\) −17.0256 −0.553844
\(946\) −40.2154 −1.30751
\(947\) 38.4307 1.24883 0.624416 0.781092i \(-0.285337\pi\)
0.624416 + 0.781092i \(0.285337\pi\)
\(948\) −4.81025 −0.156230
\(949\) 58.4307 1.89674
\(950\) −9.26662 −0.300649
\(951\) −3.40512 −0.110419
\(952\) −6.40512 −0.207591
\(953\) 58.0512 1.88046 0.940232 0.340534i \(-0.110608\pi\)
0.940232 + 0.340534i \(0.110608\pi\)
\(954\) 7.62050 0.246723
\(955\) 6.07687 0.196643
\(956\) −20.4307 −0.660778
\(957\) 10.2154 0.330216
\(958\) −9.00000 −0.290777
\(959\) −22.2154 −0.717372
\(960\) 3.40512 0.109900
\(961\) −30.6461 −0.988585
\(962\) 10.8102 0.348536
\(963\) −36.8102 −1.18619
\(964\) −3.59488 −0.115783
\(965\) 44.3539 1.42780
\(966\) −6.40512 −0.206082
\(967\) −25.4307 −0.817798 −0.408899 0.912580i \(-0.634087\pi\)
−0.408899 + 0.912580i \(0.634087\pi\)
\(968\) −0.594875 −0.0191200
\(969\) −9.00000 −0.289122
\(970\) −19.7846 −0.635246
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) −16.0000 −0.513200
\(973\) 6.21537 0.199256
\(974\) 7.00000 0.224294
\(975\) 35.6461 1.14159
\(976\) −3.59488 −0.115069
\(977\) −1.21537 −0.0388833 −0.0194416 0.999811i \(-0.506189\pi\)
−0.0194416 + 0.999811i \(0.506189\pi\)
\(978\) −20.6205 −0.659371
\(979\) 11.5949 0.370574
\(980\) 20.4307 0.652636
\(981\) 11.6205 0.371014
\(982\) −1.37950 −0.0440216
\(983\) 46.8615 1.49465 0.747325 0.664459i \(-0.231338\pi\)
0.747325 + 0.664459i \(0.231338\pi\)
\(984\) 0 0
\(985\) −62.6717 −1.99689
\(986\) 19.2154 0.611942
\(987\) −6.40512 −0.203877
\(988\) −7.59488 −0.241625
\(989\) −75.6461 −2.40541
\(990\) −23.1898 −0.737019
\(991\) −0.784625 −0.0249244 −0.0124622 0.999922i \(-0.503967\pi\)
−0.0124622 + 0.999922i \(0.503967\pi\)
\(992\) 0.594875 0.0188873
\(993\) −23.6205 −0.749574
\(994\) −9.81025 −0.311162
\(995\) 37.4564 1.18745
\(996\) −6.00000 −0.190117
\(997\) −4.83587 −0.153154 −0.0765768 0.997064i \(-0.524399\pi\)
−0.0765768 + 0.997064i \(0.524399\pi\)
\(998\) 3.21537 0.101781
\(999\) 10.0000 0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3362.2.a.d.1.1 2
41.40 even 2 3362.2.a.i.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3362.2.a.d.1.1 2 1.1 even 1 trivial
3362.2.a.i.1.1 yes 2 41.40 even 2