Properties

Label 3362.2.a.bd.1.13
Level $3362$
Weight $2$
Character 3362.1
Self dual yes
Analytic conductor $26.846$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3362,2,Mod(1,3362)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3362, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3362.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3362 = 2 \cdot 41^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3362.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-16,0,16,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.8457051596\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 32x^{14} + 414x^{12} - 2768x^{10} + 10091x^{8} - 19280x^{6} + 16790x^{4} - 5200x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 82)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(2.25481\) of defining polynomial
Character \(\chi\) \(=\) 3362.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.25481 q^{3} +1.00000 q^{4} +1.32349 q^{5} -2.25481 q^{6} +2.61440 q^{7} -1.00000 q^{8} +2.08415 q^{9} -1.32349 q^{10} -1.04263 q^{11} +2.25481 q^{12} +5.77131 q^{13} -2.61440 q^{14} +2.98422 q^{15} +1.00000 q^{16} -1.87038 q^{17} -2.08415 q^{18} +5.95574 q^{19} +1.32349 q^{20} +5.89496 q^{21} +1.04263 q^{22} +7.11545 q^{23} -2.25481 q^{24} -3.24837 q^{25} -5.77131 q^{26} -2.06506 q^{27} +2.61440 q^{28} +8.11168 q^{29} -2.98422 q^{30} -5.59227 q^{31} -1.00000 q^{32} -2.35093 q^{33} +1.87038 q^{34} +3.46013 q^{35} +2.08415 q^{36} -4.56589 q^{37} -5.95574 q^{38} +13.0132 q^{39} -1.32349 q^{40} -5.89496 q^{42} +1.31029 q^{43} -1.04263 q^{44} +2.75836 q^{45} -7.11545 q^{46} -9.94576 q^{47} +2.25481 q^{48} -0.164930 q^{49} +3.24837 q^{50} -4.21735 q^{51} +5.77131 q^{52} -4.20980 q^{53} +2.06506 q^{54} -1.37992 q^{55} -2.61440 q^{56} +13.4290 q^{57} -8.11168 q^{58} -0.321282 q^{59} +2.98422 q^{60} -7.68988 q^{61} +5.59227 q^{62} +5.44879 q^{63} +1.00000 q^{64} +7.63829 q^{65} +2.35093 q^{66} +10.6318 q^{67} -1.87038 q^{68} +16.0440 q^{69} -3.46013 q^{70} -14.9240 q^{71} -2.08415 q^{72} +15.9512 q^{73} +4.56589 q^{74} -7.32444 q^{75} +5.95574 q^{76} -2.72585 q^{77} -13.0132 q^{78} +5.27618 q^{79} +1.32349 q^{80} -10.9088 q^{81} -7.50785 q^{83} +5.89496 q^{84} -2.47544 q^{85} -1.31029 q^{86} +18.2903 q^{87} +1.04263 q^{88} +2.34721 q^{89} -2.75836 q^{90} +15.0885 q^{91} +7.11545 q^{92} -12.6095 q^{93} +9.94576 q^{94} +7.88238 q^{95} -2.25481 q^{96} -4.97951 q^{97} +0.164930 q^{98} -2.17300 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{2} + 16 q^{4} - 16 q^{8} + 16 q^{9} + 16 q^{16} - 16 q^{18} - 16 q^{21} + 4 q^{23} + 4 q^{25} + 60 q^{31} - 16 q^{32} - 16 q^{33} + 16 q^{36} + 44 q^{37} - 12 q^{39} + 16 q^{42} + 40 q^{43}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.25481 1.30181 0.650906 0.759158i \(-0.274389\pi\)
0.650906 + 0.759158i \(0.274389\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.32349 0.591884 0.295942 0.955206i \(-0.404366\pi\)
0.295942 + 0.955206i \(0.404366\pi\)
\(6\) −2.25481 −0.920521
\(7\) 2.61440 0.988149 0.494075 0.869420i \(-0.335507\pi\)
0.494075 + 0.869420i \(0.335507\pi\)
\(8\) −1.00000 −0.353553
\(9\) 2.08415 0.694717
\(10\) −1.32349 −0.418525
\(11\) −1.04263 −0.314365 −0.157183 0.987570i \(-0.550241\pi\)
−0.157183 + 0.987570i \(0.550241\pi\)
\(12\) 2.25481 0.650906
\(13\) 5.77131 1.60067 0.800337 0.599550i \(-0.204654\pi\)
0.800337 + 0.599550i \(0.204654\pi\)
\(14\) −2.61440 −0.698727
\(15\) 2.98422 0.770522
\(16\) 1.00000 0.250000
\(17\) −1.87038 −0.453635 −0.226817 0.973937i \(-0.572832\pi\)
−0.226817 + 0.973937i \(0.572832\pi\)
\(18\) −2.08415 −0.491239
\(19\) 5.95574 1.36634 0.683170 0.730259i \(-0.260601\pi\)
0.683170 + 0.730259i \(0.260601\pi\)
\(20\) 1.32349 0.295942
\(21\) 5.89496 1.28639
\(22\) 1.04263 0.222290
\(23\) 7.11545 1.48367 0.741837 0.670580i \(-0.233955\pi\)
0.741837 + 0.670580i \(0.233955\pi\)
\(24\) −2.25481 −0.460260
\(25\) −3.24837 −0.649673
\(26\) −5.77131 −1.13185
\(27\) −2.06506 −0.397422
\(28\) 2.61440 0.494075
\(29\) 8.11168 1.50630 0.753151 0.657848i \(-0.228533\pi\)
0.753151 + 0.657848i \(0.228533\pi\)
\(30\) −2.98422 −0.544841
\(31\) −5.59227 −1.00440 −0.502201 0.864751i \(-0.667476\pi\)
−0.502201 + 0.864751i \(0.667476\pi\)
\(32\) −1.00000 −0.176777
\(33\) −2.35093 −0.409245
\(34\) 1.87038 0.320768
\(35\) 3.46013 0.584870
\(36\) 2.08415 0.347358
\(37\) −4.56589 −0.750628 −0.375314 0.926898i \(-0.622465\pi\)
−0.375314 + 0.926898i \(0.622465\pi\)
\(38\) −5.95574 −0.966149
\(39\) 13.0132 2.08378
\(40\) −1.32349 −0.209263
\(41\) 0 0
\(42\) −5.89496 −0.909612
\(43\) 1.31029 0.199817 0.0999084 0.994997i \(-0.468145\pi\)
0.0999084 + 0.994997i \(0.468145\pi\)
\(44\) −1.04263 −0.157183
\(45\) 2.75836 0.411192
\(46\) −7.11545 −1.04912
\(47\) −9.94576 −1.45074 −0.725369 0.688360i \(-0.758331\pi\)
−0.725369 + 0.688360i \(0.758331\pi\)
\(48\) 2.25481 0.325453
\(49\) −0.164930 −0.0235615
\(50\) 3.24837 0.459388
\(51\) −4.21735 −0.590547
\(52\) 5.77131 0.800337
\(53\) −4.20980 −0.578260 −0.289130 0.957290i \(-0.593366\pi\)
−0.289130 + 0.957290i \(0.593366\pi\)
\(54\) 2.06506 0.281020
\(55\) −1.37992 −0.186068
\(56\) −2.61440 −0.349363
\(57\) 13.4290 1.77872
\(58\) −8.11168 −1.06512
\(59\) −0.321282 −0.0418274 −0.0209137 0.999781i \(-0.506658\pi\)
−0.0209137 + 0.999781i \(0.506658\pi\)
\(60\) 2.98422 0.385261
\(61\) −7.68988 −0.984588 −0.492294 0.870429i \(-0.663841\pi\)
−0.492294 + 0.870429i \(0.663841\pi\)
\(62\) 5.59227 0.710219
\(63\) 5.44879 0.686483
\(64\) 1.00000 0.125000
\(65\) 7.63829 0.947413
\(66\) 2.35093 0.289380
\(67\) 10.6318 1.29888 0.649440 0.760413i \(-0.275003\pi\)
0.649440 + 0.760413i \(0.275003\pi\)
\(68\) −1.87038 −0.226817
\(69\) 16.0440 1.93147
\(70\) −3.46013 −0.413565
\(71\) −14.9240 −1.77115 −0.885577 0.464493i \(-0.846237\pi\)
−0.885577 + 0.464493i \(0.846237\pi\)
\(72\) −2.08415 −0.245619
\(73\) 15.9512 1.86695 0.933473 0.358648i \(-0.116762\pi\)
0.933473 + 0.358648i \(0.116762\pi\)
\(74\) 4.56589 0.530774
\(75\) −7.32444 −0.845753
\(76\) 5.95574 0.683170
\(77\) −2.72585 −0.310640
\(78\) −13.0132 −1.47345
\(79\) 5.27618 0.593617 0.296808 0.954937i \(-0.404078\pi\)
0.296808 + 0.954937i \(0.404078\pi\)
\(80\) 1.32349 0.147971
\(81\) −10.9088 −1.21209
\(82\) 0 0
\(83\) −7.50785 −0.824094 −0.412047 0.911163i \(-0.635186\pi\)
−0.412047 + 0.911163i \(0.635186\pi\)
\(84\) 5.89496 0.643193
\(85\) −2.47544 −0.268499
\(86\) −1.31029 −0.141292
\(87\) 18.2903 1.96092
\(88\) 1.04263 0.111145
\(89\) 2.34721 0.248804 0.124402 0.992232i \(-0.460299\pi\)
0.124402 + 0.992232i \(0.460299\pi\)
\(90\) −2.75836 −0.290756
\(91\) 15.0885 1.58170
\(92\) 7.11545 0.741837
\(93\) −12.6095 −1.30754
\(94\) 9.94576 1.02583
\(95\) 7.88238 0.808715
\(96\) −2.25481 −0.230130
\(97\) −4.97951 −0.505593 −0.252797 0.967519i \(-0.581350\pi\)
−0.252797 + 0.967519i \(0.581350\pi\)
\(98\) 0.164930 0.0166605
\(99\) −2.17300 −0.218395
\(100\) −3.24837 −0.324837
\(101\) 2.72439 0.271087 0.135543 0.990771i \(-0.456722\pi\)
0.135543 + 0.990771i \(0.456722\pi\)
\(102\) 4.21735 0.417580
\(103\) −4.28424 −0.422138 −0.211069 0.977471i \(-0.567695\pi\)
−0.211069 + 0.977471i \(0.567695\pi\)
\(104\) −5.77131 −0.565924
\(105\) 7.80193 0.761391
\(106\) 4.20980 0.408892
\(107\) 0.419287 0.0405340 0.0202670 0.999795i \(-0.493548\pi\)
0.0202670 + 0.999795i \(0.493548\pi\)
\(108\) −2.06506 −0.198711
\(109\) 9.63246 0.922622 0.461311 0.887238i \(-0.347379\pi\)
0.461311 + 0.887238i \(0.347379\pi\)
\(110\) 1.37992 0.131570
\(111\) −10.2952 −0.977176
\(112\) 2.61440 0.247037
\(113\) −3.61822 −0.340374 −0.170187 0.985412i \(-0.554437\pi\)
−0.170187 + 0.985412i \(0.554437\pi\)
\(114\) −13.4290 −1.25775
\(115\) 9.41725 0.878163
\(116\) 8.11168 0.753151
\(117\) 12.0283 1.11201
\(118\) 0.321282 0.0295764
\(119\) −4.88992 −0.448259
\(120\) −2.98422 −0.272421
\(121\) −9.91292 −0.901174
\(122\) 7.68988 0.696209
\(123\) 0 0
\(124\) −5.59227 −0.502201
\(125\) −10.9167 −0.976415
\(126\) −5.44879 −0.485417
\(127\) 1.94379 0.172483 0.0862416 0.996274i \(-0.472514\pi\)
0.0862416 + 0.996274i \(0.472514\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 2.95444 0.260124
\(130\) −7.63829 −0.669922
\(131\) 7.46070 0.651844 0.325922 0.945397i \(-0.394325\pi\)
0.325922 + 0.945397i \(0.394325\pi\)
\(132\) −2.35093 −0.204622
\(133\) 15.5707 1.35015
\(134\) −10.6318 −0.918447
\(135\) −2.73310 −0.235228
\(136\) 1.87038 0.160384
\(137\) 11.6687 0.996922 0.498461 0.866912i \(-0.333899\pi\)
0.498461 + 0.866912i \(0.333899\pi\)
\(138\) −16.0440 −1.36575
\(139\) 4.41416 0.374404 0.187202 0.982321i \(-0.440058\pi\)
0.187202 + 0.982321i \(0.440058\pi\)
\(140\) 3.46013 0.292435
\(141\) −22.4257 −1.88859
\(142\) 14.9240 1.25239
\(143\) −6.01735 −0.503196
\(144\) 2.08415 0.173679
\(145\) 10.7358 0.891556
\(146\) −15.9512 −1.32013
\(147\) −0.371886 −0.0306726
\(148\) −4.56589 −0.375314
\(149\) −7.65260 −0.626926 −0.313463 0.949600i \(-0.601489\pi\)
−0.313463 + 0.949600i \(0.601489\pi\)
\(150\) 7.32444 0.598038
\(151\) 14.8640 1.20961 0.604806 0.796373i \(-0.293251\pi\)
0.604806 + 0.796373i \(0.293251\pi\)
\(152\) −5.95574 −0.483074
\(153\) −3.89816 −0.315147
\(154\) 2.72585 0.219655
\(155\) −7.40133 −0.594489
\(156\) 13.0132 1.04189
\(157\) 14.2965 1.14099 0.570494 0.821302i \(-0.306752\pi\)
0.570494 + 0.821302i \(0.306752\pi\)
\(158\) −5.27618 −0.419750
\(159\) −9.49228 −0.752787
\(160\) −1.32349 −0.104631
\(161\) 18.6026 1.46609
\(162\) 10.9088 0.857074
\(163\) 12.5915 0.986243 0.493121 0.869961i \(-0.335856\pi\)
0.493121 + 0.869961i \(0.335856\pi\)
\(164\) 0 0
\(165\) −3.11144 −0.242225
\(166\) 7.50785 0.582722
\(167\) −14.4030 −1.11454 −0.557268 0.830333i \(-0.688151\pi\)
−0.557268 + 0.830333i \(0.688151\pi\)
\(168\) −5.89496 −0.454806
\(169\) 20.3080 1.56216
\(170\) 2.47544 0.189857
\(171\) 12.4127 0.949220
\(172\) 1.31029 0.0999084
\(173\) 7.22825 0.549554 0.274777 0.961508i \(-0.411396\pi\)
0.274777 + 0.961508i \(0.411396\pi\)
\(174\) −18.2903 −1.38658
\(175\) −8.49252 −0.641974
\(176\) −1.04263 −0.0785913
\(177\) −0.724429 −0.0544514
\(178\) −2.34721 −0.175931
\(179\) 1.33467 0.0997577 0.0498789 0.998755i \(-0.484116\pi\)
0.0498789 + 0.998755i \(0.484116\pi\)
\(180\) 2.75836 0.205596
\(181\) −18.9481 −1.40840 −0.704200 0.710002i \(-0.748694\pi\)
−0.704200 + 0.710002i \(0.748694\pi\)
\(182\) −15.0885 −1.11843
\(183\) −17.3392 −1.28175
\(184\) −7.11545 −0.524558
\(185\) −6.04292 −0.444284
\(186\) 12.6095 0.924572
\(187\) 1.95012 0.142607
\(188\) −9.94576 −0.725369
\(189\) −5.39890 −0.392712
\(190\) −7.88238 −0.571848
\(191\) −22.9998 −1.66421 −0.832104 0.554620i \(-0.812864\pi\)
−0.832104 + 0.554620i \(0.812864\pi\)
\(192\) 2.25481 0.162727
\(193\) −24.2497 −1.74553 −0.872764 0.488142i \(-0.837675\pi\)
−0.872764 + 0.488142i \(0.837675\pi\)
\(194\) 4.97951 0.357508
\(195\) 17.2229 1.23335
\(196\) −0.164930 −0.0117807
\(197\) −1.56898 −0.111785 −0.0558925 0.998437i \(-0.517800\pi\)
−0.0558925 + 0.998437i \(0.517800\pi\)
\(198\) 2.17300 0.154428
\(199\) −11.0614 −0.784120 −0.392060 0.919940i \(-0.628237\pi\)
−0.392060 + 0.919940i \(0.628237\pi\)
\(200\) 3.24837 0.229694
\(201\) 23.9726 1.69090
\(202\) −2.72439 −0.191687
\(203\) 21.2072 1.48845
\(204\) −4.21735 −0.295274
\(205\) 0 0
\(206\) 4.28424 0.298497
\(207\) 14.8297 1.03073
\(208\) 5.77131 0.400169
\(209\) −6.20964 −0.429530
\(210\) −7.80193 −0.538384
\(211\) 0.341606 0.0235171 0.0117586 0.999931i \(-0.496257\pi\)
0.0117586 + 0.999931i \(0.496257\pi\)
\(212\) −4.20980 −0.289130
\(213\) −33.6507 −2.30571
\(214\) −0.419287 −0.0286619
\(215\) 1.73415 0.118268
\(216\) 2.06506 0.140510
\(217\) −14.6204 −0.992499
\(218\) −9.63246 −0.652393
\(219\) 35.9668 2.43041
\(220\) −1.37992 −0.0930339
\(221\) −10.7946 −0.726121
\(222\) 10.2952 0.690968
\(223\) 13.5821 0.909525 0.454762 0.890613i \(-0.349724\pi\)
0.454762 + 0.890613i \(0.349724\pi\)
\(224\) −2.61440 −0.174682
\(225\) −6.77008 −0.451339
\(226\) 3.61822 0.240681
\(227\) −21.4958 −1.42673 −0.713365 0.700793i \(-0.752830\pi\)
−0.713365 + 0.700793i \(0.752830\pi\)
\(228\) 13.4290 0.889360
\(229\) 17.8482 1.17944 0.589720 0.807608i \(-0.299238\pi\)
0.589720 + 0.807608i \(0.299238\pi\)
\(230\) −9.41725 −0.620955
\(231\) −6.14627 −0.404395
\(232\) −8.11168 −0.532558
\(233\) 2.00703 0.131485 0.0657426 0.997837i \(-0.479058\pi\)
0.0657426 + 0.997837i \(0.479058\pi\)
\(234\) −12.0283 −0.786313
\(235\) −13.1631 −0.858668
\(236\) −0.321282 −0.0209137
\(237\) 11.8968 0.772778
\(238\) 4.88992 0.316967
\(239\) 10.7741 0.696919 0.348460 0.937324i \(-0.386705\pi\)
0.348460 + 0.937324i \(0.386705\pi\)
\(240\) 2.98422 0.192631
\(241\) 13.7854 0.887997 0.443998 0.896028i \(-0.353560\pi\)
0.443998 + 0.896028i \(0.353560\pi\)
\(242\) 9.91292 0.637227
\(243\) −18.4020 −1.18049
\(244\) −7.68988 −0.492294
\(245\) −0.218284 −0.0139457
\(246\) 0 0
\(247\) 34.3724 2.18707
\(248\) 5.59227 0.355110
\(249\) −16.9287 −1.07282
\(250\) 10.9167 0.690430
\(251\) 23.8814 1.50738 0.753692 0.657228i \(-0.228271\pi\)
0.753692 + 0.657228i \(0.228271\pi\)
\(252\) 5.44879 0.343242
\(253\) −7.41879 −0.466415
\(254\) −1.94379 −0.121964
\(255\) −5.58163 −0.349535
\(256\) 1.00000 0.0625000
\(257\) −5.94710 −0.370970 −0.185485 0.982647i \(-0.559386\pi\)
−0.185485 + 0.982647i \(0.559386\pi\)
\(258\) −2.95444 −0.183935
\(259\) −11.9370 −0.741732
\(260\) 7.63829 0.473707
\(261\) 16.9060 1.04645
\(262\) −7.46070 −0.460923
\(263\) −16.6758 −1.02827 −0.514137 0.857708i \(-0.671888\pi\)
−0.514137 + 0.857708i \(0.671888\pi\)
\(264\) 2.35093 0.144690
\(265\) −5.57164 −0.342263
\(266\) −15.5707 −0.954699
\(267\) 5.29250 0.323896
\(268\) 10.6318 0.649440
\(269\) 1.30452 0.0795382 0.0397691 0.999209i \(-0.487338\pi\)
0.0397691 + 0.999209i \(0.487338\pi\)
\(270\) 2.73310 0.166331
\(271\) 11.1831 0.679323 0.339662 0.940548i \(-0.389687\pi\)
0.339662 + 0.940548i \(0.389687\pi\)
\(272\) −1.87038 −0.113409
\(273\) 34.0216 2.05908
\(274\) −11.6687 −0.704930
\(275\) 3.38685 0.204235
\(276\) 16.0440 0.965733
\(277\) 3.56676 0.214306 0.107153 0.994243i \(-0.465827\pi\)
0.107153 + 0.994243i \(0.465827\pi\)
\(278\) −4.41416 −0.264744
\(279\) −11.6551 −0.697774
\(280\) −3.46013 −0.206783
\(281\) −16.9431 −1.01074 −0.505372 0.862902i \(-0.668645\pi\)
−0.505372 + 0.862902i \(0.668645\pi\)
\(282\) 22.4257 1.33543
\(283\) 12.3166 0.732146 0.366073 0.930586i \(-0.380702\pi\)
0.366073 + 0.930586i \(0.380702\pi\)
\(284\) −14.9240 −0.885577
\(285\) 17.7732 1.05280
\(286\) 6.01735 0.355814
\(287\) 0 0
\(288\) −2.08415 −0.122810
\(289\) −13.5017 −0.794216
\(290\) −10.7358 −0.630425
\(291\) −11.2278 −0.658188
\(292\) 15.9512 0.933473
\(293\) 13.1018 0.765416 0.382708 0.923869i \(-0.374992\pi\)
0.382708 + 0.923869i \(0.374992\pi\)
\(294\) 0.371886 0.0216888
\(295\) −0.425215 −0.0247570
\(296\) 4.56589 0.265387
\(297\) 2.15310 0.124936
\(298\) 7.65260 0.443303
\(299\) 41.0655 2.37488
\(300\) −7.32444 −0.422877
\(301\) 3.42561 0.197449
\(302\) −14.8640 −0.855325
\(303\) 6.14296 0.352904
\(304\) 5.95574 0.341585
\(305\) −10.1775 −0.582762
\(306\) 3.89816 0.222843
\(307\) −20.3617 −1.16210 −0.581052 0.813867i \(-0.697359\pi\)
−0.581052 + 0.813867i \(0.697359\pi\)
\(308\) −2.72585 −0.155320
\(309\) −9.66012 −0.549545
\(310\) 7.40133 0.420367
\(311\) −12.1514 −0.689040 −0.344520 0.938779i \(-0.611958\pi\)
−0.344520 + 0.938779i \(0.611958\pi\)
\(312\) −13.0132 −0.736727
\(313\) −2.48863 −0.140666 −0.0703329 0.997524i \(-0.522406\pi\)
−0.0703329 + 0.997524i \(0.522406\pi\)
\(314\) −14.2965 −0.806801
\(315\) 7.21144 0.406319
\(316\) 5.27618 0.296808
\(317\) −14.8586 −0.834543 −0.417271 0.908782i \(-0.637013\pi\)
−0.417271 + 0.908782i \(0.637013\pi\)
\(318\) 9.49228 0.532301
\(319\) −8.45750 −0.473529
\(320\) 1.32349 0.0739855
\(321\) 0.945411 0.0527677
\(322\) −18.6026 −1.03668
\(323\) −11.1395 −0.619819
\(324\) −10.9088 −0.606043
\(325\) −18.7473 −1.03992
\(326\) −12.5915 −0.697379
\(327\) 21.7193 1.20108
\(328\) 0 0
\(329\) −26.0021 −1.43354
\(330\) 3.11144 0.171279
\(331\) 26.5369 1.45860 0.729300 0.684195i \(-0.239846\pi\)
0.729300 + 0.684195i \(0.239846\pi\)
\(332\) −7.50785 −0.412047
\(333\) −9.51600 −0.521473
\(334\) 14.4030 0.788096
\(335\) 14.0711 0.768787
\(336\) 5.89496 0.321596
\(337\) −32.9779 −1.79642 −0.898211 0.439564i \(-0.855133\pi\)
−0.898211 + 0.439564i \(0.855133\pi\)
\(338\) −20.3080 −1.10461
\(339\) −8.15839 −0.443103
\(340\) −2.47544 −0.134250
\(341\) 5.83068 0.315749
\(342\) −12.4127 −0.671200
\(343\) −18.7320 −1.01143
\(344\) −1.31029 −0.0706459
\(345\) 21.2341 1.14320
\(346\) −7.22825 −0.388593
\(347\) −4.62777 −0.248432 −0.124216 0.992255i \(-0.539642\pi\)
−0.124216 + 0.992255i \(0.539642\pi\)
\(348\) 18.2903 0.980462
\(349\) 33.1782 1.77599 0.887994 0.459855i \(-0.152099\pi\)
0.887994 + 0.459855i \(0.152099\pi\)
\(350\) 8.49252 0.453944
\(351\) −11.9181 −0.636143
\(352\) 1.04263 0.0555724
\(353\) 6.84489 0.364317 0.182158 0.983269i \(-0.441692\pi\)
0.182158 + 0.983269i \(0.441692\pi\)
\(354\) 0.724429 0.0385030
\(355\) −19.7518 −1.04832
\(356\) 2.34721 0.124402
\(357\) −11.0258 −0.583549
\(358\) −1.33467 −0.0705393
\(359\) 1.56372 0.0825300 0.0412650 0.999148i \(-0.486861\pi\)
0.0412650 + 0.999148i \(0.486861\pi\)
\(360\) −2.75836 −0.145378
\(361\) 16.4709 0.866887
\(362\) 18.9481 0.995889
\(363\) −22.3517 −1.17316
\(364\) 15.0885 0.790852
\(365\) 21.1113 1.10502
\(366\) 17.3392 0.906333
\(367\) −13.2834 −0.693385 −0.346693 0.937979i \(-0.612695\pi\)
−0.346693 + 0.937979i \(0.612695\pi\)
\(368\) 7.11545 0.370918
\(369\) 0 0
\(370\) 6.04292 0.314156
\(371\) −11.0061 −0.571408
\(372\) −12.6095 −0.653771
\(373\) 5.42217 0.280749 0.140375 0.990098i \(-0.455169\pi\)
0.140375 + 0.990098i \(0.455169\pi\)
\(374\) −1.95012 −0.100838
\(375\) −24.6149 −1.27111
\(376\) 9.94576 0.512913
\(377\) 46.8151 2.41110
\(378\) 5.39890 0.277689
\(379\) 20.3906 1.04739 0.523697 0.851904i \(-0.324552\pi\)
0.523697 + 0.851904i \(0.324552\pi\)
\(380\) 7.88238 0.404358
\(381\) 4.38286 0.224541
\(382\) 22.9998 1.17677
\(383\) −17.0495 −0.871189 −0.435595 0.900143i \(-0.643462\pi\)
−0.435595 + 0.900143i \(0.643462\pi\)
\(384\) −2.25481 −0.115065
\(385\) −3.60765 −0.183863
\(386\) 24.2497 1.23427
\(387\) 2.73083 0.138816
\(388\) −4.97951 −0.252797
\(389\) 25.4416 1.28994 0.644970 0.764208i \(-0.276870\pi\)
0.644970 + 0.764208i \(0.276870\pi\)
\(390\) −17.2229 −0.872113
\(391\) −13.3086 −0.673046
\(392\) 0.164930 0.00833024
\(393\) 16.8224 0.848579
\(394\) 1.56898 0.0790439
\(395\) 6.98299 0.351352
\(396\) −2.17300 −0.109197
\(397\) −31.0990 −1.56081 −0.780407 0.625272i \(-0.784988\pi\)
−0.780407 + 0.625272i \(0.784988\pi\)
\(398\) 11.0614 0.554457
\(399\) 35.1088 1.75764
\(400\) −3.24837 −0.162418
\(401\) 0.789586 0.0394301 0.0197150 0.999806i \(-0.493724\pi\)
0.0197150 + 0.999806i \(0.493724\pi\)
\(402\) −23.9726 −1.19565
\(403\) −32.2747 −1.60772
\(404\) 2.72439 0.135543
\(405\) −14.4377 −0.717414
\(406\) −21.2072 −1.05249
\(407\) 4.76054 0.235971
\(408\) 4.21735 0.208790
\(409\) −17.8143 −0.880860 −0.440430 0.897787i \(-0.645174\pi\)
−0.440430 + 0.897787i \(0.645174\pi\)
\(410\) 0 0
\(411\) 26.3106 1.29781
\(412\) −4.28424 −0.211069
\(413\) −0.839959 −0.0413317
\(414\) −14.8297 −0.728838
\(415\) −9.93659 −0.487768
\(416\) −5.77131 −0.282962
\(417\) 9.95308 0.487404
\(418\) 6.20964 0.303724
\(419\) 2.74105 0.133909 0.0669545 0.997756i \(-0.478672\pi\)
0.0669545 + 0.997756i \(0.478672\pi\)
\(420\) 7.80193 0.380695
\(421\) 20.8336 1.01537 0.507683 0.861544i \(-0.330502\pi\)
0.507683 + 0.861544i \(0.330502\pi\)
\(422\) −0.341606 −0.0166291
\(423\) −20.7284 −1.00785
\(424\) 4.20980 0.204446
\(425\) 6.07569 0.294714
\(426\) 33.6507 1.63038
\(427\) −20.1044 −0.972919
\(428\) 0.419287 0.0202670
\(429\) −13.5680 −0.655067
\(430\) −1.73415 −0.0836283
\(431\) −29.0034 −1.39705 −0.698523 0.715588i \(-0.746159\pi\)
−0.698523 + 0.715588i \(0.746159\pi\)
\(432\) −2.06506 −0.0993555
\(433\) 36.6852 1.76298 0.881488 0.472206i \(-0.156542\pi\)
0.881488 + 0.472206i \(0.156542\pi\)
\(434\) 14.6204 0.701802
\(435\) 24.2070 1.16064
\(436\) 9.63246 0.461311
\(437\) 42.3778 2.02720
\(438\) −35.9668 −1.71856
\(439\) −8.20145 −0.391434 −0.195717 0.980660i \(-0.562703\pi\)
−0.195717 + 0.980660i \(0.562703\pi\)
\(440\) 1.37992 0.0657849
\(441\) −0.343740 −0.0163686
\(442\) 10.7946 0.513445
\(443\) 16.9777 0.806634 0.403317 0.915060i \(-0.367857\pi\)
0.403317 + 0.915060i \(0.367857\pi\)
\(444\) −10.2952 −0.488588
\(445\) 3.10651 0.147263
\(446\) −13.5821 −0.643131
\(447\) −17.2551 −0.816140
\(448\) 2.61440 0.123519
\(449\) −24.3424 −1.14879 −0.574394 0.818579i \(-0.694762\pi\)
−0.574394 + 0.818579i \(0.694762\pi\)
\(450\) 6.77008 0.319145
\(451\) 0 0
\(452\) −3.61822 −0.170187
\(453\) 33.5153 1.57469
\(454\) 21.4958 1.00885
\(455\) 19.9695 0.936185
\(456\) −13.4290 −0.628873
\(457\) −2.84453 −0.133062 −0.0665308 0.997784i \(-0.521193\pi\)
−0.0665308 + 0.997784i \(0.521193\pi\)
\(458\) −17.8482 −0.833990
\(459\) 3.86246 0.180284
\(460\) 9.41725 0.439081
\(461\) 28.7349 1.33832 0.669158 0.743120i \(-0.266655\pi\)
0.669158 + 0.743120i \(0.266655\pi\)
\(462\) 6.14627 0.285950
\(463\) −12.5975 −0.585457 −0.292729 0.956196i \(-0.594563\pi\)
−0.292729 + 0.956196i \(0.594563\pi\)
\(464\) 8.11168 0.376575
\(465\) −16.6886 −0.773914
\(466\) −2.00703 −0.0929741
\(467\) 7.17150 0.331858 0.165929 0.986138i \(-0.446938\pi\)
0.165929 + 0.986138i \(0.446938\pi\)
\(468\) 12.0283 0.556007
\(469\) 27.7957 1.28349
\(470\) 13.1631 0.607170
\(471\) 32.2359 1.48535
\(472\) 0.321282 0.0147882
\(473\) −1.36615 −0.0628154
\(474\) −11.8968 −0.546436
\(475\) −19.3464 −0.887675
\(476\) −4.88992 −0.224129
\(477\) −8.77385 −0.401727
\(478\) −10.7741 −0.492796
\(479\) 21.3585 0.975893 0.487946 0.872874i \(-0.337746\pi\)
0.487946 + 0.872874i \(0.337746\pi\)
\(480\) −2.98422 −0.136210
\(481\) −26.3512 −1.20151
\(482\) −13.7854 −0.627908
\(483\) 41.9453 1.90858
\(484\) −9.91292 −0.450587
\(485\) −6.59035 −0.299252
\(486\) 18.4020 0.834730
\(487\) −6.19153 −0.280565 −0.140282 0.990112i \(-0.544801\pi\)
−0.140282 + 0.990112i \(0.544801\pi\)
\(488\) 7.68988 0.348104
\(489\) 28.3914 1.28390
\(490\) 0.218284 0.00986107
\(491\) −13.8868 −0.626705 −0.313352 0.949637i \(-0.601452\pi\)
−0.313352 + 0.949637i \(0.601452\pi\)
\(492\) 0 0
\(493\) −15.1720 −0.683311
\(494\) −34.3724 −1.54649
\(495\) −2.87595 −0.129264
\(496\) −5.59227 −0.251100
\(497\) −39.0173 −1.75016
\(498\) 16.9287 0.758595
\(499\) 19.4064 0.868748 0.434374 0.900733i \(-0.356970\pi\)
0.434374 + 0.900733i \(0.356970\pi\)
\(500\) −10.9167 −0.488208
\(501\) −32.4759 −1.45092
\(502\) −23.8814 −1.06588
\(503\) −18.0178 −0.803376 −0.401688 0.915777i \(-0.631576\pi\)
−0.401688 + 0.915777i \(0.631576\pi\)
\(504\) −5.44879 −0.242709
\(505\) 3.60571 0.160452
\(506\) 7.41879 0.329806
\(507\) 45.7907 2.03364
\(508\) 1.94379 0.0862416
\(509\) −5.96342 −0.264324 −0.132162 0.991228i \(-0.542192\pi\)
−0.132162 + 0.991228i \(0.542192\pi\)
\(510\) 5.58163 0.247159
\(511\) 41.7027 1.84482
\(512\) −1.00000 −0.0441942
\(513\) −12.2990 −0.543014
\(514\) 5.94710 0.262315
\(515\) −5.67016 −0.249857
\(516\) 2.95444 0.130062
\(517\) 10.3698 0.456061
\(518\) 11.9370 0.524484
\(519\) 16.2983 0.715416
\(520\) −7.63829 −0.334961
\(521\) 43.8157 1.91960 0.959801 0.280681i \(-0.0905602\pi\)
0.959801 + 0.280681i \(0.0905602\pi\)
\(522\) −16.9060 −0.739954
\(523\) −6.57592 −0.287545 −0.143772 0.989611i \(-0.545923\pi\)
−0.143772 + 0.989611i \(0.545923\pi\)
\(524\) 7.46070 0.325922
\(525\) −19.1490 −0.835730
\(526\) 16.6758 0.727100
\(527\) 10.4597 0.455631
\(528\) −2.35093 −0.102311
\(529\) 27.6296 1.20129
\(530\) 5.57164 0.242017
\(531\) −0.669600 −0.0290582
\(532\) 15.5707 0.675074
\(533\) 0 0
\(534\) −5.29250 −0.229029
\(535\) 0.554923 0.0239914
\(536\) −10.6318 −0.459224
\(537\) 3.00942 0.129866
\(538\) −1.30452 −0.0562420
\(539\) 0.171962 0.00740691
\(540\) −2.73310 −0.117614
\(541\) −0.231158 −0.00993827 −0.00496913 0.999988i \(-0.501582\pi\)
−0.00496913 + 0.999988i \(0.501582\pi\)
\(542\) −11.1831 −0.480354
\(543\) −42.7243 −1.83347
\(544\) 1.87038 0.0801920
\(545\) 12.7485 0.546085
\(546\) −34.0216 −1.45599
\(547\) −20.2020 −0.863775 −0.431887 0.901928i \(-0.642152\pi\)
−0.431887 + 0.901928i \(0.642152\pi\)
\(548\) 11.6687 0.498461
\(549\) −16.0269 −0.684009
\(550\) −3.38685 −0.144416
\(551\) 48.3111 2.05812
\(552\) −16.0440 −0.682876
\(553\) 13.7940 0.586582
\(554\) −3.56676 −0.151537
\(555\) −13.6256 −0.578375
\(556\) 4.41416 0.187202
\(557\) 25.3586 1.07448 0.537239 0.843430i \(-0.319467\pi\)
0.537239 + 0.843430i \(0.319467\pi\)
\(558\) 11.6551 0.493401
\(559\) 7.56207 0.319842
\(560\) 3.46013 0.146217
\(561\) 4.39714 0.185648
\(562\) 16.9431 0.714704
\(563\) 44.5781 1.87874 0.939371 0.342901i \(-0.111410\pi\)
0.939371 + 0.342901i \(0.111410\pi\)
\(564\) −22.4257 −0.944294
\(565\) −4.78869 −0.201462
\(566\) −12.3166 −0.517705
\(567\) −28.5198 −1.19772
\(568\) 14.9240 0.626197
\(569\) −4.12870 −0.173084 −0.0865422 0.996248i \(-0.527582\pi\)
−0.0865422 + 0.996248i \(0.527582\pi\)
\(570\) −17.7732 −0.744439
\(571\) 4.62908 0.193721 0.0968605 0.995298i \(-0.469120\pi\)
0.0968605 + 0.995298i \(0.469120\pi\)
\(572\) −6.01735 −0.251598
\(573\) −51.8601 −2.16649
\(574\) 0 0
\(575\) −23.1136 −0.963903
\(576\) 2.08415 0.0868396
\(577\) 26.1354 1.08803 0.544015 0.839075i \(-0.316903\pi\)
0.544015 + 0.839075i \(0.316903\pi\)
\(578\) 13.5017 0.561595
\(579\) −54.6783 −2.27235
\(580\) 10.7358 0.445778
\(581\) −19.6285 −0.814327
\(582\) 11.2278 0.465409
\(583\) 4.38927 0.181785
\(584\) −15.9512 −0.660065
\(585\) 15.9193 0.658184
\(586\) −13.1018 −0.541231
\(587\) −22.5143 −0.929266 −0.464633 0.885503i \(-0.653814\pi\)
−0.464633 + 0.885503i \(0.653814\pi\)
\(588\) −0.371886 −0.0153363
\(589\) −33.3061 −1.37236
\(590\) 0.425215 0.0175058
\(591\) −3.53774 −0.145523
\(592\) −4.56589 −0.187657
\(593\) −22.0956 −0.907359 −0.453680 0.891165i \(-0.649889\pi\)
−0.453680 + 0.891165i \(0.649889\pi\)
\(594\) −2.15310 −0.0883428
\(595\) −6.47178 −0.265317
\(596\) −7.65260 −0.313463
\(597\) −24.9413 −1.02078
\(598\) −41.0655 −1.67929
\(599\) 15.6707 0.640287 0.320143 0.947369i \(-0.396269\pi\)
0.320143 + 0.947369i \(0.396269\pi\)
\(600\) 7.32444 0.299019
\(601\) −25.0870 −1.02332 −0.511661 0.859188i \(-0.670969\pi\)
−0.511661 + 0.859188i \(0.670969\pi\)
\(602\) −3.42561 −0.139617
\(603\) 22.1583 0.902354
\(604\) 14.8640 0.604806
\(605\) −13.1197 −0.533391
\(606\) −6.14296 −0.249541
\(607\) −10.6948 −0.434089 −0.217045 0.976162i \(-0.569642\pi\)
−0.217045 + 0.976162i \(0.569642\pi\)
\(608\) −5.95574 −0.241537
\(609\) 47.8180 1.93768
\(610\) 10.1775 0.412075
\(611\) −57.4001 −2.32216
\(612\) −3.89816 −0.157574
\(613\) −6.97398 −0.281676 −0.140838 0.990033i \(-0.544980\pi\)
−0.140838 + 0.990033i \(0.544980\pi\)
\(614\) 20.3617 0.821731
\(615\) 0 0
\(616\) 2.72585 0.109828
\(617\) −43.9215 −1.76821 −0.884107 0.467284i \(-0.845233\pi\)
−0.884107 + 0.467284i \(0.845233\pi\)
\(618\) 9.66012 0.388587
\(619\) 42.0760 1.69118 0.845589 0.533834i \(-0.179249\pi\)
0.845589 + 0.533834i \(0.179249\pi\)
\(620\) −7.40133 −0.297245
\(621\) −14.6939 −0.589645
\(622\) 12.1514 0.487225
\(623\) 6.13654 0.245855
\(624\) 13.0132 0.520944
\(625\) 1.79372 0.0717490
\(626\) 2.48863 0.0994657
\(627\) −14.0015 −0.559168
\(628\) 14.2965 0.570494
\(629\) 8.53996 0.340511
\(630\) −7.21144 −0.287311
\(631\) −16.8291 −0.669956 −0.334978 0.942226i \(-0.608729\pi\)
−0.334978 + 0.942226i \(0.608729\pi\)
\(632\) −5.27618 −0.209875
\(633\) 0.770256 0.0306149
\(634\) 14.8586 0.590111
\(635\) 2.57259 0.102090
\(636\) −9.49228 −0.376393
\(637\) −0.951865 −0.0377143
\(638\) 8.45750 0.334836
\(639\) −31.1039 −1.23045
\(640\) −1.32349 −0.0523156
\(641\) −27.0061 −1.06668 −0.533339 0.845902i \(-0.679063\pi\)
−0.533339 + 0.845902i \(0.679063\pi\)
\(642\) −0.945411 −0.0373124
\(643\) −24.1050 −0.950608 −0.475304 0.879822i \(-0.657662\pi\)
−0.475304 + 0.879822i \(0.657662\pi\)
\(644\) 18.6026 0.733045
\(645\) 3.91018 0.153963
\(646\) 11.1395 0.438279
\(647\) −12.8206 −0.504028 −0.252014 0.967724i \(-0.581093\pi\)
−0.252014 + 0.967724i \(0.581093\pi\)
\(648\) 10.9088 0.428537
\(649\) 0.334979 0.0131491
\(650\) 18.7473 0.735331
\(651\) −32.9662 −1.29205
\(652\) 12.5915 0.493121
\(653\) −7.28736 −0.285176 −0.142588 0.989782i \(-0.545542\pi\)
−0.142588 + 0.989782i \(0.545542\pi\)
\(654\) −21.7193 −0.849293
\(655\) 9.87418 0.385816
\(656\) 0 0
\(657\) 33.2447 1.29700
\(658\) 26.0021 1.01367
\(659\) −0.244872 −0.00953886 −0.00476943 0.999989i \(-0.501518\pi\)
−0.00476943 + 0.999989i \(0.501518\pi\)
\(660\) −3.11144 −0.121113
\(661\) −17.6654 −0.687104 −0.343552 0.939134i \(-0.611630\pi\)
−0.343552 + 0.939134i \(0.611630\pi\)
\(662\) −26.5369 −1.03139
\(663\) −24.3397 −0.945274
\(664\) 7.50785 0.291361
\(665\) 20.6077 0.799131
\(666\) 9.51600 0.368737
\(667\) 57.7183 2.23486
\(668\) −14.4030 −0.557268
\(669\) 30.6250 1.18403
\(670\) −14.0711 −0.543614
\(671\) 8.01771 0.309520
\(672\) −5.89496 −0.227403
\(673\) 30.0025 1.15651 0.578256 0.815856i \(-0.303734\pi\)
0.578256 + 0.815856i \(0.303734\pi\)
\(674\) 32.9779 1.27026
\(675\) 6.70809 0.258194
\(676\) 20.3080 0.781079
\(677\) 31.5711 1.21338 0.606689 0.794940i \(-0.292497\pi\)
0.606689 + 0.794940i \(0.292497\pi\)
\(678\) 8.15839 0.313321
\(679\) −13.0184 −0.499601
\(680\) 2.47544 0.0949287
\(681\) −48.4690 −1.85733
\(682\) −5.83068 −0.223268
\(683\) 10.9891 0.420487 0.210243 0.977649i \(-0.432574\pi\)
0.210243 + 0.977649i \(0.432574\pi\)
\(684\) 12.4127 0.474610
\(685\) 15.4434 0.590062
\(686\) 18.7320 0.715190
\(687\) 40.2442 1.53541
\(688\) 1.31029 0.0499542
\(689\) −24.2961 −0.925607
\(690\) −21.2341 −0.808367
\(691\) −22.2567 −0.846686 −0.423343 0.905969i \(-0.639143\pi\)
−0.423343 + 0.905969i \(0.639143\pi\)
\(692\) 7.22825 0.274777
\(693\) −5.68108 −0.215807
\(694\) 4.62777 0.175668
\(695\) 5.84211 0.221604
\(696\) −18.2903 −0.693291
\(697\) 0 0
\(698\) −33.1782 −1.25581
\(699\) 4.52547 0.171169
\(700\) −8.49252 −0.320987
\(701\) −26.5566 −1.00303 −0.501515 0.865149i \(-0.667224\pi\)
−0.501515 + 0.865149i \(0.667224\pi\)
\(702\) 11.9181 0.449821
\(703\) −27.1933 −1.02561
\(704\) −1.04263 −0.0392957
\(705\) −29.6803 −1.11783
\(706\) −6.84489 −0.257611
\(707\) 7.12263 0.267874
\(708\) −0.724429 −0.0272257
\(709\) −19.4703 −0.731221 −0.365611 0.930768i \(-0.619140\pi\)
−0.365611 + 0.930768i \(0.619140\pi\)
\(710\) 19.7518 0.741272
\(711\) 10.9964 0.412395
\(712\) −2.34721 −0.0879654
\(713\) −39.7915 −1.49020
\(714\) 11.0258 0.412631
\(715\) −7.96392 −0.297834
\(716\) 1.33467 0.0498789
\(717\) 24.2935 0.907258
\(718\) −1.56372 −0.0583575
\(719\) −13.9734 −0.521120 −0.260560 0.965458i \(-0.583907\pi\)
−0.260560 + 0.965458i \(0.583907\pi\)
\(720\) 2.75836 0.102798
\(721\) −11.2007 −0.417136
\(722\) −16.4709 −0.612982
\(723\) 31.0834 1.15601
\(724\) −18.9481 −0.704200
\(725\) −26.3497 −0.978604
\(726\) 22.3517 0.829550
\(727\) 15.6555 0.580632 0.290316 0.956931i \(-0.406240\pi\)
0.290316 + 0.956931i \(0.406240\pi\)
\(728\) −15.0885 −0.559217
\(729\) −8.76654 −0.324687
\(730\) −21.1113 −0.781364
\(731\) −2.45074 −0.0906438
\(732\) −17.3392 −0.640874
\(733\) −43.6573 −1.61252 −0.806260 0.591561i \(-0.798512\pi\)
−0.806260 + 0.591561i \(0.798512\pi\)
\(734\) 13.2834 0.490297
\(735\) −0.492188 −0.0181546
\(736\) −7.11545 −0.262279
\(737\) −11.0850 −0.408323
\(738\) 0 0
\(739\) −21.2137 −0.780359 −0.390179 0.920739i \(-0.627587\pi\)
−0.390179 + 0.920739i \(0.627587\pi\)
\(740\) −6.04292 −0.222142
\(741\) 77.5032 2.84715
\(742\) 11.0061 0.404046
\(743\) 41.9673 1.53963 0.769815 0.638268i \(-0.220349\pi\)
0.769815 + 0.638268i \(0.220349\pi\)
\(744\) 12.6095 0.462286
\(745\) −10.1282 −0.371067
\(746\) −5.42217 −0.198520
\(747\) −15.6475 −0.572512
\(748\) 1.95012 0.0713035
\(749\) 1.09618 0.0400536
\(750\) 24.6149 0.898810
\(751\) 35.9896 1.31328 0.656639 0.754205i \(-0.271978\pi\)
0.656639 + 0.754205i \(0.271978\pi\)
\(752\) −9.94576 −0.362684
\(753\) 53.8480 1.96233
\(754\) −46.8151 −1.70490
\(755\) 19.6723 0.715950
\(756\) −5.39890 −0.196356
\(757\) −10.5859 −0.384753 −0.192376 0.981321i \(-0.561619\pi\)
−0.192376 + 0.981321i \(0.561619\pi\)
\(758\) −20.3906 −0.740620
\(759\) −16.7279 −0.607186
\(760\) −7.88238 −0.285924
\(761\) −30.9205 −1.12087 −0.560434 0.828199i \(-0.689366\pi\)
−0.560434 + 0.828199i \(0.689366\pi\)
\(762\) −4.38286 −0.158774
\(763\) 25.1831 0.911688
\(764\) −22.9998 −0.832104
\(765\) −5.15918 −0.186531
\(766\) 17.0495 0.616024
\(767\) −1.85422 −0.0669520
\(768\) 2.25481 0.0813633
\(769\) −15.6032 −0.562667 −0.281334 0.959610i \(-0.590777\pi\)
−0.281334 + 0.959610i \(0.590777\pi\)
\(770\) 3.60765 0.130011
\(771\) −13.4095 −0.482933
\(772\) −24.2497 −0.872764
\(773\) −11.2557 −0.404839 −0.202420 0.979299i \(-0.564880\pi\)
−0.202420 + 0.979299i \(0.564880\pi\)
\(774\) −2.73083 −0.0981577
\(775\) 18.1658 0.652533
\(776\) 4.97951 0.178754
\(777\) −26.9157 −0.965596
\(778\) −25.4416 −0.912126
\(779\) 0 0
\(780\) 17.2229 0.616677
\(781\) 15.5602 0.556789
\(782\) 13.3086 0.475915
\(783\) −16.7512 −0.598637
\(784\) −0.164930 −0.00589037
\(785\) 18.9214 0.675333
\(786\) −16.8224 −0.600036
\(787\) −13.7773 −0.491108 −0.245554 0.969383i \(-0.578970\pi\)
−0.245554 + 0.969383i \(0.578970\pi\)
\(788\) −1.56898 −0.0558925
\(789\) −37.6007 −1.33862
\(790\) −6.98299 −0.248444
\(791\) −9.45947 −0.336340
\(792\) 2.17300 0.0772142
\(793\) −44.3807 −1.57600
\(794\) 31.0990 1.10366
\(795\) −12.5630 −0.445562
\(796\) −11.0614 −0.392060
\(797\) −6.22248 −0.220412 −0.110206 0.993909i \(-0.535151\pi\)
−0.110206 + 0.993909i \(0.535151\pi\)
\(798\) −35.1088 −1.24284
\(799\) 18.6024 0.658105
\(800\) 3.24837 0.114847
\(801\) 4.89194 0.172848
\(802\) −0.789586 −0.0278813
\(803\) −16.6312 −0.586903
\(804\) 23.9726 0.845450
\(805\) 24.6204 0.867756
\(806\) 32.2747 1.13683
\(807\) 2.94145 0.103544
\(808\) −2.72439 −0.0958436
\(809\) −34.6072 −1.21673 −0.608363 0.793659i \(-0.708173\pi\)
−0.608363 + 0.793659i \(0.708173\pi\)
\(810\) 14.4377 0.507288
\(811\) −7.63635 −0.268148 −0.134074 0.990971i \(-0.542806\pi\)
−0.134074 + 0.990971i \(0.542806\pi\)
\(812\) 21.2072 0.744225
\(813\) 25.2156 0.884351
\(814\) −4.76054 −0.166857
\(815\) 16.6648 0.583741
\(816\) −4.21735 −0.147637
\(817\) 7.80373 0.273018
\(818\) 17.8143 0.622862
\(819\) 31.4467 1.09884
\(820\) 0 0
\(821\) 32.1343 1.12149 0.560747 0.827987i \(-0.310514\pi\)
0.560747 + 0.827987i \(0.310514\pi\)
\(822\) −26.3106 −0.917687
\(823\) 12.1086 0.422079 0.211040 0.977478i \(-0.432315\pi\)
0.211040 + 0.977478i \(0.432315\pi\)
\(824\) 4.28424 0.149248
\(825\) 7.63669 0.265875
\(826\) 0.839959 0.0292259
\(827\) −37.7363 −1.31222 −0.656110 0.754665i \(-0.727799\pi\)
−0.656110 + 0.754665i \(0.727799\pi\)
\(828\) 14.8297 0.515366
\(829\) −10.1597 −0.352862 −0.176431 0.984313i \(-0.556455\pi\)
−0.176431 + 0.984313i \(0.556455\pi\)
\(830\) 9.93659 0.344904
\(831\) 8.04236 0.278986
\(832\) 5.77131 0.200084
\(833\) 0.308483 0.0106883
\(834\) −9.95308 −0.344647
\(835\) −19.0622 −0.659676
\(836\) −6.20964 −0.214765
\(837\) 11.5484 0.399171
\(838\) −2.74105 −0.0946879
\(839\) −9.41493 −0.325039 −0.162520 0.986705i \(-0.551962\pi\)
−0.162520 + 0.986705i \(0.551962\pi\)
\(840\) −7.80193 −0.269192
\(841\) 36.7994 1.26895
\(842\) −20.8336 −0.717973
\(843\) −38.2035 −1.31580
\(844\) 0.341606 0.0117586
\(845\) 26.8776 0.924616
\(846\) 20.7284 0.712659
\(847\) −25.9163 −0.890495
\(848\) −4.20980 −0.144565
\(849\) 27.7715 0.953117
\(850\) −6.07569 −0.208395
\(851\) −32.4884 −1.11369
\(852\) −33.6507 −1.15286
\(853\) −16.4360 −0.562758 −0.281379 0.959597i \(-0.590792\pi\)
−0.281379 + 0.959597i \(0.590792\pi\)
\(854\) 20.1044 0.687958
\(855\) 16.4281 0.561828
\(856\) −0.419287 −0.0143309
\(857\) 8.21370 0.280575 0.140287 0.990111i \(-0.455197\pi\)
0.140287 + 0.990111i \(0.455197\pi\)
\(858\) 13.5680 0.463203
\(859\) −47.3003 −1.61386 −0.806932 0.590644i \(-0.798874\pi\)
−0.806932 + 0.590644i \(0.798874\pi\)
\(860\) 1.73415 0.0591342
\(861\) 0 0
\(862\) 29.0034 0.987860
\(863\) 11.5370 0.392724 0.196362 0.980532i \(-0.437087\pi\)
0.196362 + 0.980532i \(0.437087\pi\)
\(864\) 2.06506 0.0702549
\(865\) 9.56654 0.325272
\(866\) −36.6852 −1.24661
\(867\) −30.4436 −1.03392
\(868\) −14.6204 −0.496249
\(869\) −5.50111 −0.186612
\(870\) −24.2070 −0.820696
\(871\) 61.3594 2.07908
\(872\) −9.63246 −0.326196
\(873\) −10.3781 −0.351244
\(874\) −42.3778 −1.43345
\(875\) −28.5405 −0.964844
\(876\) 35.9668 1.21521
\(877\) −9.61096 −0.324539 −0.162270 0.986746i \(-0.551881\pi\)
−0.162270 + 0.986746i \(0.551881\pi\)
\(878\) 8.20145 0.276786
\(879\) 29.5420 0.996428
\(880\) −1.37992 −0.0465169
\(881\) −52.7508 −1.77722 −0.888610 0.458663i \(-0.848328\pi\)
−0.888610 + 0.458663i \(0.848328\pi\)
\(882\) 0.343740 0.0115743
\(883\) 41.9580 1.41200 0.705999 0.708213i \(-0.250498\pi\)
0.705999 + 0.708213i \(0.250498\pi\)
\(884\) −10.7946 −0.363061
\(885\) −0.958776 −0.0322289
\(886\) −16.9777 −0.570377
\(887\) 27.1633 0.912055 0.456027 0.889966i \(-0.349272\pi\)
0.456027 + 0.889966i \(0.349272\pi\)
\(888\) 10.2952 0.345484
\(889\) 5.08183 0.170439
\(890\) −3.10651 −0.104131
\(891\) 11.3738 0.381038
\(892\) 13.5821 0.454762
\(893\) −59.2344 −1.98220
\(894\) 17.2551 0.577098
\(895\) 1.76642 0.0590450
\(896\) −2.61440 −0.0873409
\(897\) 92.5947 3.09165
\(898\) 24.3424 0.812316
\(899\) −45.3627 −1.51293
\(900\) −6.77008 −0.225669
\(901\) 7.87394 0.262319
\(902\) 0 0
\(903\) 7.72408 0.257041
\(904\) 3.61822 0.120340
\(905\) −25.0777 −0.833609
\(906\) −33.5153 −1.11347
\(907\) −24.7408 −0.821504 −0.410752 0.911747i \(-0.634734\pi\)
−0.410752 + 0.911747i \(0.634734\pi\)
\(908\) −21.4958 −0.713365
\(909\) 5.67803 0.188328
\(910\) −19.9695 −0.661983
\(911\) −3.90997 −0.129543 −0.0647716 0.997900i \(-0.520632\pi\)
−0.0647716 + 0.997900i \(0.520632\pi\)
\(912\) 13.4290 0.444680
\(913\) 7.82792 0.259066
\(914\) 2.84453 0.0940888
\(915\) −22.9483 −0.758647
\(916\) 17.8482 0.589720
\(917\) 19.5052 0.644119
\(918\) −3.86246 −0.127480
\(919\) −8.48206 −0.279797 −0.139899 0.990166i \(-0.544678\pi\)
−0.139899 + 0.990166i \(0.544678\pi\)
\(920\) −9.41725 −0.310477
\(921\) −45.9117 −1.51284
\(922\) −28.7349 −0.946333
\(923\) −86.1311 −2.83504
\(924\) −6.14627 −0.202197
\(925\) 14.8317 0.487663
\(926\) 12.5975 0.413981
\(927\) −8.92899 −0.293267
\(928\) −8.11168 −0.266279
\(929\) −24.4828 −0.803255 −0.401627 0.915803i \(-0.631555\pi\)
−0.401627 + 0.915803i \(0.631555\pi\)
\(930\) 16.6886 0.547240
\(931\) −0.982283 −0.0321930
\(932\) 2.00703 0.0657426
\(933\) −27.3989 −0.897001
\(934\) −7.17150 −0.234659
\(935\) 2.58097 0.0844068
\(936\) −12.0283 −0.393157
\(937\) 5.39742 0.176326 0.0881630 0.996106i \(-0.471900\pi\)
0.0881630 + 0.996106i \(0.471900\pi\)
\(938\) −27.7957 −0.907563
\(939\) −5.61138 −0.183121
\(940\) −13.1631 −0.429334
\(941\) 21.2325 0.692161 0.346080 0.938205i \(-0.387512\pi\)
0.346080 + 0.938205i \(0.387512\pi\)
\(942\) −32.2359 −1.05030
\(943\) 0 0
\(944\) −0.321282 −0.0104568
\(945\) −7.14540 −0.232440
\(946\) 1.36615 0.0444172
\(947\) −26.5281 −0.862049 −0.431024 0.902340i \(-0.641848\pi\)
−0.431024 + 0.902340i \(0.641848\pi\)
\(948\) 11.8968 0.386389
\(949\) 92.0593 2.98837
\(950\) 19.3464 0.627681
\(951\) −33.5033 −1.08642
\(952\) 4.88992 0.158483
\(953\) −50.1602 −1.62485 −0.812424 0.583067i \(-0.801853\pi\)
−0.812424 + 0.583067i \(0.801853\pi\)
\(954\) 8.77385 0.284064
\(955\) −30.4401 −0.985018
\(956\) 10.7741 0.348460
\(957\) −19.0700 −0.616446
\(958\) −21.3585 −0.690060
\(959\) 30.5065 0.985107
\(960\) 2.98422 0.0963153
\(961\) 0.273506 0.00882277
\(962\) 26.3512 0.849596
\(963\) 0.873857 0.0281596
\(964\) 13.7854 0.443998
\(965\) −32.0942 −1.03315
\(966\) −41.9453 −1.34957
\(967\) −29.4017 −0.945495 −0.472747 0.881198i \(-0.656738\pi\)
−0.472747 + 0.881198i \(0.656738\pi\)
\(968\) 9.91292 0.318613
\(969\) −25.1175 −0.806889
\(970\) 6.59035 0.211603
\(971\) −30.0159 −0.963255 −0.481628 0.876376i \(-0.659954\pi\)
−0.481628 + 0.876376i \(0.659954\pi\)
\(972\) −18.4020 −0.590243
\(973\) 11.5404 0.369967
\(974\) 6.19153 0.198389
\(975\) −42.2716 −1.35378
\(976\) −7.68988 −0.246147
\(977\) −58.1476 −1.86031 −0.930154 0.367169i \(-0.880327\pi\)
−0.930154 + 0.367169i \(0.880327\pi\)
\(978\) −28.3914 −0.907857
\(979\) −2.44727 −0.0782152
\(980\) −0.218284 −0.00697283
\(981\) 20.0755 0.640961
\(982\) 13.8868 0.443147
\(983\) −8.93048 −0.284838 −0.142419 0.989806i \(-0.545488\pi\)
−0.142419 + 0.989806i \(0.545488\pi\)
\(984\) 0 0
\(985\) −2.07653 −0.0661637
\(986\) 15.1720 0.483174
\(987\) −58.6298 −1.86621
\(988\) 34.3724 1.09353
\(989\) 9.32328 0.296463
\(990\) 2.87595 0.0914037
\(991\) −8.48064 −0.269397 −0.134698 0.990887i \(-0.543007\pi\)
−0.134698 + 0.990887i \(0.543007\pi\)
\(992\) 5.59227 0.177555
\(993\) 59.8355 1.89882
\(994\) 39.0173 1.23755
\(995\) −14.6397 −0.464108
\(996\) −16.9287 −0.536408
\(997\) −31.2870 −0.990868 −0.495434 0.868646i \(-0.664991\pi\)
−0.495434 + 0.868646i \(0.664991\pi\)
\(998\) −19.4064 −0.614298
\(999\) 9.42886 0.298316
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3362.2.a.bd.1.13 16
41.34 odd 40 82.2.g.b.49.2 16
41.35 odd 40 82.2.g.b.77.2 yes 16
41.40 even 2 inner 3362.2.a.bd.1.4 16
123.35 even 40 738.2.u.b.487.2 16
123.116 even 40 738.2.u.b.541.2 16
164.35 even 40 656.2.bs.b.241.1 16
164.75 even 40 656.2.bs.b.49.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
82.2.g.b.49.2 16 41.34 odd 40
82.2.g.b.77.2 yes 16 41.35 odd 40
656.2.bs.b.49.1 16 164.75 even 40
656.2.bs.b.241.1 16 164.35 even 40
738.2.u.b.487.2 16 123.35 even 40
738.2.u.b.541.2 16 123.116 even 40
3362.2.a.bd.1.4 16 41.40 even 2 inner
3362.2.a.bd.1.13 16 1.1 even 1 trivial