Properties

Label 3360.2.w.a.559.31
Level $3360$
Weight $2$
Character 3360.559
Analytic conductor $26.830$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3360,2,Mod(559,3360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3360.559"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.w (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.8297350792\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 559.31
Character \(\chi\) \(=\) 3360.559
Dual form 3360.2.w.a.559.32

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +(0.840958 - 2.07190i) q^{5} +(-2.31981 - 1.27219i) q^{7} +1.00000 q^{9} +1.15873 q^{11} +0.698885i q^{13} +(-0.840958 + 2.07190i) q^{15} -6.87158 q^{17} +4.94979i q^{19} +(2.31981 + 1.27219i) q^{21} +5.30311 q^{23} +(-3.58558 - 3.48477i) q^{25} -1.00000 q^{27} +10.0699i q^{29} +0.109215 q^{31} -1.15873 q^{33} +(-4.58672 + 3.73658i) q^{35} +4.30570 q^{37} -0.698885i q^{39} -2.58861i q^{41} +7.55358i q^{43} +(0.840958 - 2.07190i) q^{45} +3.53225i q^{47} +(3.76308 + 5.90248i) q^{49} +6.87158 q^{51} -1.70909 q^{53} +(0.974447 - 2.40079i) q^{55} -4.94979i q^{57} -12.3942i q^{59} +4.88851 q^{61} +(-2.31981 - 1.27219i) q^{63} +(1.44802 + 0.587733i) q^{65} +8.12528i q^{67} -5.30311 q^{69} -5.80082i q^{71} -3.86018 q^{73} +(3.58558 + 3.48477i) q^{75} +(-2.68805 - 1.47413i) q^{77} +6.30589i q^{79} +1.00000 q^{81} +12.7204 q^{83} +(-5.77872 + 14.2373i) q^{85} -10.0699i q^{87} -0.841441i q^{89} +(0.889113 - 1.62128i) q^{91} -0.109215 q^{93} +(10.2555 + 4.16257i) q^{95} -0.0488298 q^{97} +1.15873 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{3} + 48 q^{9} - 48 q^{27} - 8 q^{35} + 48 q^{81} + 16 q^{91} - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times\).

\(n\) \(421\) \(1121\) \(1471\) \(1921\) \(2017\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0.840958 2.07190i 0.376088 0.926584i
\(6\) 0 0
\(7\) −2.31981 1.27219i −0.876807 0.480842i
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.15873 0.349372 0.174686 0.984624i \(-0.444109\pi\)
0.174686 + 0.984624i \(0.444109\pi\)
\(12\) 0 0
\(13\) 0.698885i 0.193836i 0.995292 + 0.0969180i \(0.0308984\pi\)
−0.995292 + 0.0969180i \(0.969102\pi\)
\(14\) 0 0
\(15\) −0.840958 + 2.07190i −0.217135 + 0.534963i
\(16\) 0 0
\(17\) −6.87158 −1.66660 −0.833302 0.552818i \(-0.813552\pi\)
−0.833302 + 0.552818i \(0.813552\pi\)
\(18\) 0 0
\(19\) 4.94979i 1.13556i 0.823180 + 0.567780i \(0.192198\pi\)
−0.823180 + 0.567780i \(0.807802\pi\)
\(20\) 0 0
\(21\) 2.31981 + 1.27219i 0.506225 + 0.277614i
\(22\) 0 0
\(23\) 5.30311 1.10577 0.552887 0.833256i \(-0.313526\pi\)
0.552887 + 0.833256i \(0.313526\pi\)
\(24\) 0 0
\(25\) −3.58558 3.48477i −0.717116 0.696954i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 10.0699i 1.86993i 0.354742 + 0.934964i \(0.384569\pi\)
−0.354742 + 0.934964i \(0.615431\pi\)
\(30\) 0 0
\(31\) 0.109215 0.0196157 0.00980783 0.999952i \(-0.496878\pi\)
0.00980783 + 0.999952i \(0.496878\pi\)
\(32\) 0 0
\(33\) −1.15873 −0.201710
\(34\) 0 0
\(35\) −4.58672 + 3.73658i −0.775297 + 0.631597i
\(36\) 0 0
\(37\) 4.30570 0.707853 0.353926 0.935273i \(-0.384846\pi\)
0.353926 + 0.935273i \(0.384846\pi\)
\(38\) 0 0
\(39\) 0.698885i 0.111911i
\(40\) 0 0
\(41\) 2.58861i 0.404273i −0.979357 0.202137i \(-0.935212\pi\)
0.979357 0.202137i \(-0.0647885\pi\)
\(42\) 0 0
\(43\) 7.55358i 1.15191i 0.817481 + 0.575955i \(0.195370\pi\)
−0.817481 + 0.575955i \(0.804630\pi\)
\(44\) 0 0
\(45\) 0.840958 2.07190i 0.125363 0.308861i
\(46\) 0 0
\(47\) 3.53225i 0.515231i 0.966247 + 0.257616i \(0.0829368\pi\)
−0.966247 + 0.257616i \(0.917063\pi\)
\(48\) 0 0
\(49\) 3.76308 + 5.90248i 0.537583 + 0.843211i
\(50\) 0 0
\(51\) 6.87158 0.962214
\(52\) 0 0
\(53\) −1.70909 −0.234762 −0.117381 0.993087i \(-0.537450\pi\)
−0.117381 + 0.993087i \(0.537450\pi\)
\(54\) 0 0
\(55\) 0.974447 2.40079i 0.131394 0.323722i
\(56\) 0 0
\(57\) 4.94979i 0.655616i
\(58\) 0 0
\(59\) 12.3942i 1.61359i −0.590834 0.806793i \(-0.701201\pi\)
0.590834 0.806793i \(-0.298799\pi\)
\(60\) 0 0
\(61\) 4.88851 0.625909 0.312955 0.949768i \(-0.398681\pi\)
0.312955 + 0.949768i \(0.398681\pi\)
\(62\) 0 0
\(63\) −2.31981 1.27219i −0.292269 0.160281i
\(64\) 0 0
\(65\) 1.44802 + 0.587733i 0.179605 + 0.0728994i
\(66\) 0 0
\(67\) 8.12528i 0.992661i 0.868134 + 0.496330i \(0.165320\pi\)
−0.868134 + 0.496330i \(0.834680\pi\)
\(68\) 0 0
\(69\) −5.30311 −0.638419
\(70\) 0 0
\(71\) 5.80082i 0.688431i −0.938891 0.344215i \(-0.888145\pi\)
0.938891 0.344215i \(-0.111855\pi\)
\(72\) 0 0
\(73\) −3.86018 −0.451799 −0.225900 0.974151i \(-0.572532\pi\)
−0.225900 + 0.974151i \(0.572532\pi\)
\(74\) 0 0
\(75\) 3.58558 + 3.48477i 0.414027 + 0.402387i
\(76\) 0 0
\(77\) −2.68805 1.47413i −0.306332 0.167992i
\(78\) 0 0
\(79\) 6.30589i 0.709468i 0.934967 + 0.354734i \(0.115428\pi\)
−0.934967 + 0.354734i \(0.884572\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 12.7204 1.39624 0.698121 0.715980i \(-0.254020\pi\)
0.698121 + 0.715980i \(0.254020\pi\)
\(84\) 0 0
\(85\) −5.77872 + 14.2373i −0.626790 + 1.54425i
\(86\) 0 0
\(87\) 10.0699i 1.07960i
\(88\) 0 0
\(89\) 0.841441i 0.0891926i −0.999005 0.0445963i \(-0.985800\pi\)
0.999005 0.0445963i \(-0.0142002\pi\)
\(90\) 0 0
\(91\) 0.889113 1.62128i 0.0932044 0.169957i
\(92\) 0 0
\(93\) −0.109215 −0.0113251
\(94\) 0 0
\(95\) 10.2555 + 4.16257i 1.05219 + 0.427071i
\(96\) 0 0
\(97\) −0.0488298 −0.00495792 −0.00247896 0.999997i \(-0.500789\pi\)
−0.00247896 + 0.999997i \(0.500789\pi\)
\(98\) 0 0
\(99\) 1.15873 0.116457
\(100\) 0 0
\(101\) 15.0202 1.49456 0.747281 0.664508i \(-0.231359\pi\)
0.747281 + 0.664508i \(0.231359\pi\)
\(102\) 0 0
\(103\) 16.0240i 1.57890i −0.613817 0.789448i \(-0.710367\pi\)
0.613817 0.789448i \(-0.289633\pi\)
\(104\) 0 0
\(105\) 4.58672 3.73658i 0.447618 0.364653i
\(106\) 0 0
\(107\) 9.62303i 0.930293i 0.885234 + 0.465146i \(0.153998\pi\)
−0.885234 + 0.465146i \(0.846002\pi\)
\(108\) 0 0
\(109\) 4.74400i 0.454393i 0.973849 + 0.227196i \(0.0729559\pi\)
−0.973849 + 0.227196i \(0.927044\pi\)
\(110\) 0 0
\(111\) −4.30570 −0.408679
\(112\) 0 0
\(113\) 11.3962i 1.07206i −0.844198 0.536031i \(-0.819923\pi\)
0.844198 0.536031i \(-0.180077\pi\)
\(114\) 0 0
\(115\) 4.45969 10.9875i 0.415869 1.02459i
\(116\) 0 0
\(117\) 0.698885i 0.0646120i
\(118\) 0 0
\(119\) 15.9408 + 8.74194i 1.46129 + 0.801373i
\(120\) 0 0
\(121\) −9.65733 −0.877940
\(122\) 0 0
\(123\) 2.58861i 0.233407i
\(124\) 0 0
\(125\) −10.2354 + 4.49843i −0.915485 + 0.402352i
\(126\) 0 0
\(127\) 11.4203 1.01339 0.506693 0.862126i \(-0.330868\pi\)
0.506693 + 0.862126i \(0.330868\pi\)
\(128\) 0 0
\(129\) 7.55358i 0.665055i
\(130\) 0 0
\(131\) 1.20053i 0.104891i −0.998624 0.0524453i \(-0.983298\pi\)
0.998624 0.0524453i \(-0.0167015\pi\)
\(132\) 0 0
\(133\) 6.29706 11.4826i 0.546025 0.995668i
\(134\) 0 0
\(135\) −0.840958 + 2.07190i −0.0723782 + 0.178321i
\(136\) 0 0
\(137\) 4.29412i 0.366872i −0.983032 0.183436i \(-0.941278\pi\)
0.983032 0.183436i \(-0.0587219\pi\)
\(138\) 0 0
\(139\) 12.0100i 1.01867i −0.860568 0.509336i \(-0.829891\pi\)
0.860568 0.509336i \(-0.170109\pi\)
\(140\) 0 0
\(141\) 3.53225i 0.297469i
\(142\) 0 0
\(143\) 0.809822i 0.0677207i
\(144\) 0 0
\(145\) 20.8638 + 8.46834i 1.73265 + 0.703258i
\(146\) 0 0
\(147\) −3.76308 5.90248i −0.310373 0.486828i
\(148\) 0 0
\(149\) 2.09953i 0.172000i 0.996295 + 0.0860001i \(0.0274085\pi\)
−0.996295 + 0.0860001i \(0.972591\pi\)
\(150\) 0 0
\(151\) 21.0358i 1.71187i 0.517083 + 0.855935i \(0.327018\pi\)
−0.517083 + 0.855935i \(0.672982\pi\)
\(152\) 0 0
\(153\) −6.87158 −0.555535
\(154\) 0 0
\(155\) 0.0918456 0.226284i 0.00737721 0.0181756i
\(156\) 0 0
\(157\) 5.76627i 0.460198i −0.973167 0.230099i \(-0.926095\pi\)
0.973167 0.230099i \(-0.0739051\pi\)
\(158\) 0 0
\(159\) 1.70909 0.135540
\(160\) 0 0
\(161\) −12.3022 6.74655i −0.969552 0.531703i
\(162\) 0 0
\(163\) 11.4647i 0.897984i −0.893536 0.448992i \(-0.851783\pi\)
0.893536 0.448992i \(-0.148217\pi\)
\(164\) 0 0
\(165\) −0.974447 + 2.40079i −0.0758606 + 0.186901i
\(166\) 0 0
\(167\) 19.8534i 1.53630i 0.640271 + 0.768149i \(0.278822\pi\)
−0.640271 + 0.768149i \(0.721178\pi\)
\(168\) 0 0
\(169\) 12.5116 0.962428
\(170\) 0 0
\(171\) 4.94979i 0.378520i
\(172\) 0 0
\(173\) 16.3132i 1.24027i 0.784495 + 0.620135i \(0.212922\pi\)
−0.784495 + 0.620135i \(0.787078\pi\)
\(174\) 0 0
\(175\) 3.88459 + 12.6456i 0.293648 + 0.955914i
\(176\) 0 0
\(177\) 12.3942i 0.931605i
\(178\) 0 0
\(179\) 20.4707 1.53005 0.765025 0.644001i \(-0.222727\pi\)
0.765025 + 0.644001i \(0.222727\pi\)
\(180\) 0 0
\(181\) 14.5030 1.07800 0.538999 0.842306i \(-0.318803\pi\)
0.538999 + 0.842306i \(0.318803\pi\)
\(182\) 0 0
\(183\) −4.88851 −0.361369
\(184\) 0 0
\(185\) 3.62091 8.92100i 0.266215 0.655885i
\(186\) 0 0
\(187\) −7.96234 −0.582264
\(188\) 0 0
\(189\) 2.31981 + 1.27219i 0.168742 + 0.0925380i
\(190\) 0 0
\(191\) 19.8316i 1.43496i 0.696578 + 0.717481i \(0.254705\pi\)
−0.696578 + 0.717481i \(0.745295\pi\)
\(192\) 0 0
\(193\) 0.938946i 0.0675868i −0.999429 0.0337934i \(-0.989241\pi\)
0.999429 0.0337934i \(-0.0107588\pi\)
\(194\) 0 0
\(195\) −1.44802 0.587733i −0.103695 0.0420885i
\(196\) 0 0
\(197\) 22.2269 1.58360 0.791800 0.610780i \(-0.209144\pi\)
0.791800 + 0.610780i \(0.209144\pi\)
\(198\) 0 0
\(199\) 7.57854 0.537228 0.268614 0.963248i \(-0.413434\pi\)
0.268614 + 0.963248i \(0.413434\pi\)
\(200\) 0 0
\(201\) 8.12528i 0.573113i
\(202\) 0 0
\(203\) 12.8108 23.3602i 0.899139 1.63957i
\(204\) 0 0
\(205\) −5.36335 2.17691i −0.374593 0.152042i
\(206\) 0 0
\(207\) 5.30311 0.368592
\(208\) 0 0
\(209\) 5.73549i 0.396732i
\(210\) 0 0
\(211\) −20.4549 −1.40817 −0.704086 0.710115i \(-0.748643\pi\)
−0.704086 + 0.710115i \(0.748643\pi\)
\(212\) 0 0
\(213\) 5.80082i 0.397466i
\(214\) 0 0
\(215\) 15.6503 + 6.35224i 1.06734 + 0.433219i
\(216\) 0 0
\(217\) −0.253359 0.138942i −0.0171992 0.00943203i
\(218\) 0 0
\(219\) 3.86018 0.260846
\(220\) 0 0
\(221\) 4.80245i 0.323048i
\(222\) 0 0
\(223\) 4.53719i 0.303833i 0.988393 + 0.151916i \(0.0485445\pi\)
−0.988393 + 0.151916i \(0.951456\pi\)
\(224\) 0 0
\(225\) −3.58558 3.48477i −0.239039 0.232318i
\(226\) 0 0
\(227\) −12.4331 −0.825215 −0.412607 0.910909i \(-0.635382\pi\)
−0.412607 + 0.910909i \(0.635382\pi\)
\(228\) 0 0
\(229\) 3.24679 0.214554 0.107277 0.994229i \(-0.465787\pi\)
0.107277 + 0.994229i \(0.465787\pi\)
\(230\) 0 0
\(231\) 2.68805 + 1.47413i 0.176861 + 0.0969905i
\(232\) 0 0
\(233\) 26.6500i 1.74590i 0.487812 + 0.872949i \(0.337795\pi\)
−0.487812 + 0.872949i \(0.662205\pi\)
\(234\) 0 0
\(235\) 7.31848 + 2.97047i 0.477405 + 0.193772i
\(236\) 0 0
\(237\) 6.30589i 0.409611i
\(238\) 0 0
\(239\) 10.8623i 0.702622i −0.936259 0.351311i \(-0.885736\pi\)
0.936259 0.351311i \(-0.114264\pi\)
\(240\) 0 0
\(241\) 16.1547i 1.04061i 0.853979 + 0.520307i \(0.174182\pi\)
−0.853979 + 0.520307i \(0.825818\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 15.3940 2.83300i 0.983484 0.180994i
\(246\) 0 0
\(247\) −3.45934 −0.220112
\(248\) 0 0
\(249\) −12.7204 −0.806121
\(250\) 0 0
\(251\) 22.5756i 1.42496i 0.701694 + 0.712478i \(0.252427\pi\)
−0.701694 + 0.712478i \(0.747573\pi\)
\(252\) 0 0
\(253\) 6.14490 0.386326
\(254\) 0 0
\(255\) 5.77872 14.2373i 0.361877 0.891572i
\(256\) 0 0
\(257\) −12.0533 −0.751863 −0.375931 0.926648i \(-0.622677\pi\)
−0.375931 + 0.926648i \(0.622677\pi\)
\(258\) 0 0
\(259\) −9.98842 5.47766i −0.620650 0.340365i
\(260\) 0 0
\(261\) 10.0699i 0.623309i
\(262\) 0 0
\(263\) 19.6608 1.21234 0.606169 0.795336i \(-0.292705\pi\)
0.606169 + 0.795336i \(0.292705\pi\)
\(264\) 0 0
\(265\) −1.43727 + 3.54107i −0.0882910 + 0.217526i
\(266\) 0 0
\(267\) 0.841441i 0.0514954i
\(268\) 0 0
\(269\) 1.22906 0.0749372 0.0374686 0.999298i \(-0.488071\pi\)
0.0374686 + 0.999298i \(0.488071\pi\)
\(270\) 0 0
\(271\) −12.1597 −0.738648 −0.369324 0.929301i \(-0.620411\pi\)
−0.369324 + 0.929301i \(0.620411\pi\)
\(272\) 0 0
\(273\) −0.889113 + 1.62128i −0.0538116 + 0.0981246i
\(274\) 0 0
\(275\) −4.15473 4.03792i −0.250540 0.243496i
\(276\) 0 0
\(277\) −24.1319 −1.44995 −0.724973 0.688778i \(-0.758148\pi\)
−0.724973 + 0.688778i \(0.758148\pi\)
\(278\) 0 0
\(279\) 0.109215 0.00653855
\(280\) 0 0
\(281\) 2.45095 0.146211 0.0731056 0.997324i \(-0.476709\pi\)
0.0731056 + 0.997324i \(0.476709\pi\)
\(282\) 0 0
\(283\) 0.770452 0.0457986 0.0228993 0.999738i \(-0.492710\pi\)
0.0228993 + 0.999738i \(0.492710\pi\)
\(284\) 0 0
\(285\) −10.2555 4.16257i −0.607483 0.246569i
\(286\) 0 0
\(287\) −3.29320 + 6.00510i −0.194391 + 0.354470i
\(288\) 0 0
\(289\) 30.2187 1.77757
\(290\) 0 0
\(291\) 0.0488298 0.00286246
\(292\) 0 0
\(293\) 14.0583i 0.821295i 0.911794 + 0.410648i \(0.134697\pi\)
−0.911794 + 0.410648i \(0.865303\pi\)
\(294\) 0 0
\(295\) −25.6796 10.4230i −1.49512 0.606851i
\(296\) 0 0
\(297\) −1.15873 −0.0672366
\(298\) 0 0
\(299\) 3.70627i 0.214339i
\(300\) 0 0
\(301\) 9.60957 17.5229i 0.553886 1.01000i
\(302\) 0 0
\(303\) −15.0202 −0.862886
\(304\) 0 0
\(305\) 4.11103 10.1285i 0.235397 0.579957i
\(306\) 0 0
\(307\) −33.8488 −1.93185 −0.965926 0.258819i \(-0.916667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(308\) 0 0
\(309\) 16.0240i 0.911576i
\(310\) 0 0
\(311\) 14.3608 0.814324 0.407162 0.913356i \(-0.366518\pi\)
0.407162 + 0.913356i \(0.366518\pi\)
\(312\) 0 0
\(313\) −16.3655 −0.925033 −0.462516 0.886611i \(-0.653053\pi\)
−0.462516 + 0.886611i \(0.653053\pi\)
\(314\) 0 0
\(315\) −4.58672 + 3.73658i −0.258432 + 0.210532i
\(316\) 0 0
\(317\) 25.5784 1.43662 0.718312 0.695721i \(-0.244915\pi\)
0.718312 + 0.695721i \(0.244915\pi\)
\(318\) 0 0
\(319\) 11.6683i 0.653300i
\(320\) 0 0
\(321\) 9.62303i 0.537105i
\(322\) 0 0
\(323\) 34.0129i 1.89253i
\(324\) 0 0
\(325\) 2.43546 2.50591i 0.135095 0.139003i
\(326\) 0 0
\(327\) 4.74400i 0.262344i
\(328\) 0 0
\(329\) 4.49368 8.19416i 0.247745 0.451759i
\(330\) 0 0
\(331\) 4.64867 0.255514 0.127757 0.991806i \(-0.459222\pi\)
0.127757 + 0.991806i \(0.459222\pi\)
\(332\) 0 0
\(333\) 4.30570 0.235951
\(334\) 0 0
\(335\) 16.8348 + 6.83302i 0.919784 + 0.373328i
\(336\) 0 0
\(337\) 1.71956i 0.0936701i 0.998903 + 0.0468351i \(0.0149135\pi\)
−0.998903 + 0.0468351i \(0.985086\pi\)
\(338\) 0 0
\(339\) 11.3962i 0.618955i
\(340\) 0 0
\(341\) 0.126552 0.00685315
\(342\) 0 0
\(343\) −1.22058 18.4800i −0.0659053 0.997826i
\(344\) 0 0
\(345\) −4.45969 + 10.9875i −0.240102 + 0.591549i
\(346\) 0 0
\(347\) 18.7988i 1.00917i 0.863361 + 0.504587i \(0.168355\pi\)
−0.863361 + 0.504587i \(0.831645\pi\)
\(348\) 0 0
\(349\) −27.6131 −1.47809 −0.739047 0.673654i \(-0.764724\pi\)
−0.739047 + 0.673654i \(0.764724\pi\)
\(350\) 0 0
\(351\) 0.698885i 0.0373037i
\(352\) 0 0
\(353\) 20.2417 1.07736 0.538678 0.842512i \(-0.318924\pi\)
0.538678 + 0.842512i \(0.318924\pi\)
\(354\) 0 0
\(355\) −12.0187 4.87825i −0.637889 0.258911i
\(356\) 0 0
\(357\) −15.9408 8.74194i −0.843677 0.462673i
\(358\) 0 0
\(359\) 23.0400i 1.21601i −0.793935 0.608003i \(-0.791971\pi\)
0.793935 0.608003i \(-0.208029\pi\)
\(360\) 0 0
\(361\) −5.50045 −0.289497
\(362\) 0 0
\(363\) 9.65733 0.506879
\(364\) 0 0
\(365\) −3.24625 + 7.99792i −0.169916 + 0.418630i
\(366\) 0 0
\(367\) 10.9328i 0.570689i 0.958425 + 0.285345i \(0.0921080\pi\)
−0.958425 + 0.285345i \(0.907892\pi\)
\(368\) 0 0
\(369\) 2.58861i 0.134758i
\(370\) 0 0
\(371\) 3.96477 + 2.17428i 0.205841 + 0.112883i
\(372\) 0 0
\(373\) 23.4976 1.21666 0.608330 0.793684i \(-0.291840\pi\)
0.608330 + 0.793684i \(0.291840\pi\)
\(374\) 0 0
\(375\) 10.2354 4.49843i 0.528556 0.232298i
\(376\) 0 0
\(377\) −7.03769 −0.362459
\(378\) 0 0
\(379\) 2.54308 0.130629 0.0653147 0.997865i \(-0.479195\pi\)
0.0653147 + 0.997865i \(0.479195\pi\)
\(380\) 0 0
\(381\) −11.4203 −0.585079
\(382\) 0 0
\(383\) 18.1612i 0.927992i 0.885837 + 0.463996i \(0.153585\pi\)
−0.885837 + 0.463996i \(0.846415\pi\)
\(384\) 0 0
\(385\) −5.31479 + 4.32970i −0.270867 + 0.220662i
\(386\) 0 0
\(387\) 7.55358i 0.383970i
\(388\) 0 0
\(389\) 16.7007i 0.846760i −0.905952 0.423380i \(-0.860844\pi\)
0.905952 0.423380i \(-0.139156\pi\)
\(390\) 0 0
\(391\) −36.4408 −1.84289
\(392\) 0 0
\(393\) 1.20053i 0.0605586i
\(394\) 0 0
\(395\) 13.0652 + 5.30299i 0.657381 + 0.266822i
\(396\) 0 0
\(397\) 11.8222i 0.593339i 0.954980 + 0.296669i \(0.0958759\pi\)
−0.954980 + 0.296669i \(0.904124\pi\)
\(398\) 0 0
\(399\) −6.29706 + 11.4826i −0.315248 + 0.574849i
\(400\) 0 0
\(401\) 31.5542 1.57574 0.787871 0.615841i \(-0.211184\pi\)
0.787871 + 0.615841i \(0.211184\pi\)
\(402\) 0 0
\(403\) 0.0763290i 0.00380222i
\(404\) 0 0
\(405\) 0.840958 2.07190i 0.0417876 0.102954i
\(406\) 0 0
\(407\) 4.98916 0.247304
\(408\) 0 0
\(409\) 20.0561i 0.991709i −0.868406 0.495855i \(-0.834855\pi\)
0.868406 0.495855i \(-0.165145\pi\)
\(410\) 0 0
\(411\) 4.29412i 0.211813i
\(412\) 0 0
\(413\) −15.7677 + 28.7522i −0.775880 + 1.41480i
\(414\) 0 0
\(415\) 10.6973 26.3554i 0.525110 1.29374i
\(416\) 0 0
\(417\) 12.0100i 0.588131i
\(418\) 0 0
\(419\) 6.04413i 0.295275i 0.989042 + 0.147638i \(0.0471669\pi\)
−0.989042 + 0.147638i \(0.952833\pi\)
\(420\) 0 0
\(421\) 20.6123i 1.00458i 0.864699 + 0.502290i \(0.167509\pi\)
−0.864699 + 0.502290i \(0.832491\pi\)
\(422\) 0 0
\(423\) 3.53225i 0.171744i
\(424\) 0 0
\(425\) 24.6386 + 23.9459i 1.19515 + 1.16155i
\(426\) 0 0
\(427\) −11.3404 6.21910i −0.548802 0.300963i
\(428\) 0 0
\(429\) 0.809822i 0.0390986i
\(430\) 0 0
\(431\) 4.31002i 0.207606i −0.994598 0.103803i \(-0.966899\pi\)
0.994598 0.103803i \(-0.0331012\pi\)
\(432\) 0 0
\(433\) 24.8247 1.19300 0.596500 0.802613i \(-0.296558\pi\)
0.596500 + 0.802613i \(0.296558\pi\)
\(434\) 0 0
\(435\) −20.8638 8.46834i −1.00034 0.406026i
\(436\) 0 0
\(437\) 26.2493i 1.25567i
\(438\) 0 0
\(439\) 1.81801 0.0867687 0.0433843 0.999058i \(-0.486186\pi\)
0.0433843 + 0.999058i \(0.486186\pi\)
\(440\) 0 0
\(441\) 3.76308 + 5.90248i 0.179194 + 0.281070i
\(442\) 0 0
\(443\) 37.3237i 1.77330i 0.462439 + 0.886651i \(0.346975\pi\)
−0.462439 + 0.886651i \(0.653025\pi\)
\(444\) 0 0
\(445\) −1.74339 0.707617i −0.0826444 0.0335443i
\(446\) 0 0
\(447\) 2.09953i 0.0993043i
\(448\) 0 0
\(449\) −22.9898 −1.08496 −0.542478 0.840070i \(-0.682514\pi\)
−0.542478 + 0.840070i \(0.682514\pi\)
\(450\) 0 0
\(451\) 2.99951i 0.141242i
\(452\) 0 0
\(453\) 21.0358i 0.988349i
\(454\) 0 0
\(455\) −2.61144 3.20559i −0.122426 0.150280i
\(456\) 0 0
\(457\) 37.1559i 1.73808i 0.494741 + 0.869040i \(0.335263\pi\)
−0.494741 + 0.869040i \(0.664737\pi\)
\(458\) 0 0
\(459\) 6.87158 0.320738
\(460\) 0 0
\(461\) 33.7273 1.57083 0.785417 0.618966i \(-0.212448\pi\)
0.785417 + 0.618966i \(0.212448\pi\)
\(462\) 0 0
\(463\) −17.3016 −0.804072 −0.402036 0.915624i \(-0.631697\pi\)
−0.402036 + 0.915624i \(0.631697\pi\)
\(464\) 0 0
\(465\) −0.0918456 + 0.226284i −0.00425924 + 0.0104937i
\(466\) 0 0
\(467\) 6.46441 0.299137 0.149569 0.988751i \(-0.452211\pi\)
0.149569 + 0.988751i \(0.452211\pi\)
\(468\) 0 0
\(469\) 10.3369 18.8491i 0.477313 0.870373i
\(470\) 0 0
\(471\) 5.76627i 0.265696i
\(472\) 0 0
\(473\) 8.75259i 0.402444i
\(474\) 0 0
\(475\) 17.2489 17.7479i 0.791434 0.814328i
\(476\) 0 0
\(477\) −1.70909 −0.0782539
\(478\) 0 0
\(479\) −29.1194 −1.33050 −0.665250 0.746621i \(-0.731675\pi\)
−0.665250 + 0.746621i \(0.731675\pi\)
\(480\) 0 0
\(481\) 3.00919i 0.137207i
\(482\) 0 0
\(483\) 12.3022 + 6.74655i 0.559771 + 0.306979i
\(484\) 0 0
\(485\) −0.0410639 + 0.101171i −0.00186461 + 0.00459393i
\(486\) 0 0
\(487\) −9.61283 −0.435599 −0.217799 0.975994i \(-0.569888\pi\)
−0.217799 + 0.975994i \(0.569888\pi\)
\(488\) 0 0
\(489\) 11.4647i 0.518452i
\(490\) 0 0
\(491\) 3.85331 0.173897 0.0869487 0.996213i \(-0.472288\pi\)
0.0869487 + 0.996213i \(0.472288\pi\)
\(492\) 0 0
\(493\) 69.1960i 3.11643i
\(494\) 0 0
\(495\) 0.974447 2.40079i 0.0437981 0.107907i
\(496\) 0 0
\(497\) −7.37973 + 13.4568i −0.331026 + 0.603621i
\(498\) 0 0
\(499\) −11.4197 −0.511218 −0.255609 0.966780i \(-0.582276\pi\)
−0.255609 + 0.966780i \(0.582276\pi\)
\(500\) 0 0
\(501\) 19.8534i 0.886982i
\(502\) 0 0
\(503\) 9.67677i 0.431466i −0.976452 0.215733i \(-0.930786\pi\)
0.976452 0.215733i \(-0.0692141\pi\)
\(504\) 0 0
\(505\) 12.6313 31.1203i 0.562087 1.38484i
\(506\) 0 0
\(507\) −12.5116 −0.555658
\(508\) 0 0
\(509\) 29.4349 1.30468 0.652340 0.757927i \(-0.273788\pi\)
0.652340 + 0.757927i \(0.273788\pi\)
\(510\) 0 0
\(511\) 8.95489 + 4.91087i 0.396141 + 0.217244i
\(512\) 0 0
\(513\) 4.94979i 0.218539i
\(514\) 0 0
\(515\) −33.2003 13.4756i −1.46298 0.593804i
\(516\) 0 0
\(517\) 4.09294i 0.180007i
\(518\) 0 0
\(519\) 16.3132i 0.716070i
\(520\) 0 0
\(521\) 37.2925i 1.63381i −0.576771 0.816906i \(-0.695687\pi\)
0.576771 0.816906i \(-0.304313\pi\)
\(522\) 0 0
\(523\) 28.2787 1.23654 0.618271 0.785965i \(-0.287834\pi\)
0.618271 + 0.785965i \(0.287834\pi\)
\(524\) 0 0
\(525\) −3.88459 12.6456i −0.169538 0.551897i
\(526\) 0 0
\(527\) −0.750483 −0.0326915
\(528\) 0 0
\(529\) 5.12297 0.222738
\(530\) 0 0
\(531\) 12.3942i 0.537862i
\(532\) 0 0
\(533\) 1.80914 0.0783626
\(534\) 0 0
\(535\) 19.9380 + 8.09256i 0.861995 + 0.349872i
\(536\) 0 0
\(537\) −20.4707 −0.883375
\(538\) 0 0
\(539\) 4.36041 + 6.83940i 0.187816 + 0.294594i
\(540\) 0 0
\(541\) 11.0367i 0.474505i 0.971448 + 0.237252i \(0.0762468\pi\)
−0.971448 + 0.237252i \(0.923753\pi\)
\(542\) 0 0
\(543\) −14.5030 −0.622382
\(544\) 0 0
\(545\) 9.82911 + 3.98951i 0.421033 + 0.170892i
\(546\) 0 0
\(547\) 28.0990i 1.20143i −0.799464 0.600714i \(-0.794883\pi\)
0.799464 0.600714i \(-0.205117\pi\)
\(548\) 0 0
\(549\) 4.88851 0.208636
\(550\) 0 0
\(551\) −49.8438 −2.12342
\(552\) 0 0
\(553\) 8.02227 14.6285i 0.341142 0.622066i
\(554\) 0 0
\(555\) −3.62091 + 8.92100i −0.153699 + 0.378675i
\(556\) 0 0
\(557\) 7.34006 0.311008 0.155504 0.987835i \(-0.450300\pi\)
0.155504 + 0.987835i \(0.450300\pi\)
\(558\) 0 0
\(559\) −5.27908 −0.223281
\(560\) 0 0
\(561\) 7.96234 0.336170
\(562\) 0 0
\(563\) −36.4524 −1.53628 −0.768142 0.640279i \(-0.778819\pi\)
−0.768142 + 0.640279i \(0.778819\pi\)
\(564\) 0 0
\(565\) −23.6118 9.58371i −0.993355 0.403190i
\(566\) 0 0
\(567\) −2.31981 1.27219i −0.0974230 0.0534269i
\(568\) 0 0
\(569\) 1.02524 0.0429803 0.0214902 0.999769i \(-0.493159\pi\)
0.0214902 + 0.999769i \(0.493159\pi\)
\(570\) 0 0
\(571\) 10.7464 0.449722 0.224861 0.974391i \(-0.427807\pi\)
0.224861 + 0.974391i \(0.427807\pi\)
\(572\) 0 0
\(573\) 19.8316i 0.828476i
\(574\) 0 0
\(575\) −19.0147 18.4801i −0.792968 0.770674i
\(576\) 0 0
\(577\) −45.2022 −1.88179 −0.940897 0.338693i \(-0.890015\pi\)
−0.940897 + 0.338693i \(0.890015\pi\)
\(578\) 0 0
\(579\) 0.938946i 0.0390213i
\(580\) 0 0
\(581\) −29.5089 16.1827i −1.22424 0.671372i
\(582\) 0 0
\(583\) −1.98038 −0.0820190
\(584\) 0 0
\(585\) 1.44802 + 0.587733i 0.0598684 + 0.0242998i
\(586\) 0 0
\(587\) −9.41098 −0.388433 −0.194216 0.980959i \(-0.562216\pi\)
−0.194216 + 0.980959i \(0.562216\pi\)
\(588\) 0 0
\(589\) 0.540593i 0.0222748i
\(590\) 0 0
\(591\) −22.2269 −0.914292
\(592\) 0 0
\(593\) 28.1625 1.15650 0.578248 0.815861i \(-0.303736\pi\)
0.578248 + 0.815861i \(0.303736\pi\)
\(594\) 0 0
\(595\) 31.5180 25.6762i 1.29211 1.05262i
\(596\) 0 0
\(597\) −7.57854 −0.310169
\(598\) 0 0
\(599\) 11.5112i 0.470336i −0.971955 0.235168i \(-0.924436\pi\)
0.971955 0.235168i \(-0.0755640\pi\)
\(600\) 0 0
\(601\) 14.8292i 0.604894i −0.953166 0.302447i \(-0.902196\pi\)
0.953166 0.302447i \(-0.0978035\pi\)
\(602\) 0 0
\(603\) 8.12528i 0.330887i
\(604\) 0 0
\(605\) −8.12142 + 20.0091i −0.330183 + 0.813485i
\(606\) 0 0
\(607\) 19.9890i 0.811327i −0.914023 0.405663i \(-0.867041\pi\)
0.914023 0.405663i \(-0.132959\pi\)
\(608\) 0 0
\(609\) −12.8108 + 23.3602i −0.519118 + 0.946604i
\(610\) 0 0
\(611\) −2.46864 −0.0998703
\(612\) 0 0
\(613\) −38.5925 −1.55874 −0.779368 0.626566i \(-0.784460\pi\)
−0.779368 + 0.626566i \(0.784460\pi\)
\(614\) 0 0
\(615\) 5.36335 + 2.17691i 0.216271 + 0.0877816i
\(616\) 0 0
\(617\) 16.2711i 0.655048i −0.944843 0.327524i \(-0.893786\pi\)
0.944843 0.327524i \(-0.106214\pi\)
\(618\) 0 0
\(619\) 5.64262i 0.226796i 0.993550 + 0.113398i \(0.0361735\pi\)
−0.993550 + 0.113398i \(0.963826\pi\)
\(620\) 0 0
\(621\) −5.30311 −0.212806
\(622\) 0 0
\(623\) −1.07047 + 1.95199i −0.0428875 + 0.0782047i
\(624\) 0 0
\(625\) 0.712738 + 24.9898i 0.0285095 + 0.999594i
\(626\) 0 0
\(627\) 5.73549i 0.229054i
\(628\) 0 0
\(629\) −29.5870 −1.17971
\(630\) 0 0
\(631\) 4.18154i 0.166465i −0.996530 0.0832323i \(-0.973476\pi\)
0.996530 0.0832323i \(-0.0265244\pi\)
\(632\) 0 0
\(633\) 20.4549 0.813009
\(634\) 0 0
\(635\) 9.60398 23.6617i 0.381123 0.938988i
\(636\) 0 0
\(637\) −4.12515 + 2.62996i −0.163445 + 0.104203i
\(638\) 0 0
\(639\) 5.80082i 0.229477i
\(640\) 0 0
\(641\) −23.6502 −0.934127 −0.467064 0.884224i \(-0.654688\pi\)
−0.467064 + 0.884224i \(0.654688\pi\)
\(642\) 0 0
\(643\) −12.6788 −0.500002 −0.250001 0.968246i \(-0.580431\pi\)
−0.250001 + 0.968246i \(0.580431\pi\)
\(644\) 0 0
\(645\) −15.6503 6.35224i −0.616230 0.250119i
\(646\) 0 0
\(647\) 4.87226i 0.191548i 0.995403 + 0.0957741i \(0.0305326\pi\)
−0.995403 + 0.0957741i \(0.969467\pi\)
\(648\) 0 0
\(649\) 14.3616i 0.563741i
\(650\) 0 0
\(651\) 0.253359 + 0.138942i 0.00992994 + 0.00544558i
\(652\) 0 0
\(653\) −18.1794 −0.711414 −0.355707 0.934597i \(-0.615760\pi\)
−0.355707 + 0.934597i \(0.615760\pi\)
\(654\) 0 0
\(655\) −2.48738 1.00959i −0.0971899 0.0394481i
\(656\) 0 0
\(657\) −3.86018 −0.150600
\(658\) 0 0
\(659\) −38.8661 −1.51401 −0.757005 0.653409i \(-0.773338\pi\)
−0.757005 + 0.653409i \(0.773338\pi\)
\(660\) 0 0
\(661\) −32.1806 −1.25168 −0.625841 0.779951i \(-0.715244\pi\)
−0.625841 + 0.779951i \(0.715244\pi\)
\(662\) 0 0
\(663\) 4.80245i 0.186512i
\(664\) 0 0
\(665\) −18.4953 22.7033i −0.717216 0.880397i
\(666\) 0 0
\(667\) 53.4016i 2.06772i
\(668\) 0 0
\(669\) 4.53719i 0.175418i
\(670\) 0 0
\(671\) 5.66448 0.218675
\(672\) 0 0
\(673\) 40.4479i 1.55915i −0.626308 0.779576i \(-0.715435\pi\)
0.626308 0.779576i \(-0.284565\pi\)
\(674\) 0 0
\(675\) 3.58558 + 3.48477i 0.138009 + 0.134129i
\(676\) 0 0
\(677\) 0.721800i 0.0277410i −0.999904 0.0138705i \(-0.995585\pi\)
0.999904 0.0138705i \(-0.00441527\pi\)
\(678\) 0 0
\(679\) 0.113276 + 0.0621207i 0.00434714 + 0.00238397i
\(680\) 0 0
\(681\) 12.4331 0.476438
\(682\) 0 0
\(683\) 19.6600i 0.752270i 0.926565 + 0.376135i \(0.122747\pi\)
−0.926565 + 0.376135i \(0.877253\pi\)
\(684\) 0 0
\(685\) −8.89701 3.61118i −0.339937 0.137976i
\(686\) 0 0
\(687\) −3.24679 −0.123873
\(688\) 0 0
\(689\) 1.19446i 0.0455052i
\(690\) 0 0
\(691\) 39.4005i 1.49886i 0.662081 + 0.749432i \(0.269673\pi\)
−0.662081 + 0.749432i \(0.730327\pi\)
\(692\) 0 0
\(693\) −2.68805 1.47413i −0.102111 0.0559975i
\(694\) 0 0
\(695\) −24.8835 10.0999i −0.943885 0.383110i
\(696\) 0 0
\(697\) 17.7879i 0.673763i
\(698\) 0 0
\(699\) 26.6500i 1.00799i
\(700\) 0 0
\(701\) 5.00623i 0.189083i −0.995521 0.0945413i \(-0.969862\pi\)
0.995521 0.0945413i \(-0.0301384\pi\)
\(702\) 0 0
\(703\) 21.3123i 0.803809i
\(704\) 0 0
\(705\) −7.31848 2.97047i −0.275630 0.111875i
\(706\) 0 0
\(707\) −34.8440 19.1085i −1.31044 0.718648i
\(708\) 0 0
\(709\) 33.3192i 1.25133i −0.780093 0.625664i \(-0.784828\pi\)
0.780093 0.625664i \(-0.215172\pi\)
\(710\) 0 0
\(711\) 6.30589i 0.236489i
\(712\) 0 0
\(713\) 0.579181 0.0216905
\(714\) 0 0
\(715\) 1.67787 + 0.681027i 0.0627490 + 0.0254690i
\(716\) 0 0
\(717\) 10.8623i 0.405659i
\(718\) 0 0
\(719\) 31.7733 1.18495 0.592473 0.805590i \(-0.298152\pi\)
0.592473 + 0.805590i \(0.298152\pi\)
\(720\) 0 0
\(721\) −20.3856 + 37.1728i −0.759199 + 1.38439i
\(722\) 0 0
\(723\) 16.1547i 0.600798i
\(724\) 0 0
\(725\) 35.0912 36.1063i 1.30325 1.34095i
\(726\) 0 0
\(727\) 19.6746i 0.729689i −0.931068 0.364844i \(-0.881122\pi\)
0.931068 0.364844i \(-0.118878\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 51.9050i 1.91978i
\(732\) 0 0
\(733\) 29.8147i 1.10123i 0.834758 + 0.550616i \(0.185607\pi\)
−0.834758 + 0.550616i \(0.814393\pi\)
\(734\) 0 0
\(735\) −15.3940 + 2.83300i −0.567815 + 0.104497i
\(736\) 0 0
\(737\) 9.41504i 0.346807i
\(738\) 0 0
\(739\) 8.15114 0.299845 0.149922 0.988698i \(-0.452098\pi\)
0.149922 + 0.988698i \(0.452098\pi\)
\(740\) 0 0
\(741\) 3.45934 0.127082
\(742\) 0 0
\(743\) 22.4631 0.824092 0.412046 0.911163i \(-0.364814\pi\)
0.412046 + 0.911163i \(0.364814\pi\)
\(744\) 0 0
\(745\) 4.35002 + 1.76562i 0.159373 + 0.0646872i
\(746\) 0 0
\(747\) 12.7204 0.465414
\(748\) 0 0
\(749\) 12.2423 22.3236i 0.447324 0.815688i
\(750\) 0 0
\(751\) 36.0935i 1.31707i −0.752551 0.658534i \(-0.771177\pi\)
0.752551 0.658534i \(-0.228823\pi\)
\(752\) 0 0
\(753\) 22.5756i 0.822699i
\(754\) 0 0
\(755\) 43.5842 + 17.6902i 1.58619 + 0.643814i
\(756\) 0 0
\(757\) −26.8241 −0.974937 −0.487469 0.873141i \(-0.662080\pi\)
−0.487469 + 0.873141i \(0.662080\pi\)
\(758\) 0 0
\(759\) −6.14490 −0.223046
\(760\) 0 0
\(761\) 49.5586i 1.79650i 0.439488 + 0.898248i \(0.355160\pi\)
−0.439488 + 0.898248i \(0.644840\pi\)
\(762\) 0 0
\(763\) 6.03526 11.0052i 0.218491 0.398415i
\(764\) 0 0
\(765\) −5.77872 + 14.2373i −0.208930 + 0.514749i
\(766\) 0 0
\(767\) 8.66212 0.312771
\(768\) 0 0
\(769\) 10.3517i 0.373292i −0.982427 0.186646i \(-0.940238\pi\)
0.982427 0.186646i \(-0.0597618\pi\)
\(770\) 0 0
\(771\) 12.0533 0.434088
\(772\) 0 0
\(773\) 43.7636i 1.57407i 0.616910 + 0.787033i \(0.288384\pi\)
−0.616910 + 0.787033i \(0.711616\pi\)
\(774\) 0 0
\(775\) −0.391600 0.380591i −0.0140667 0.0136712i
\(776\) 0 0
\(777\) 9.98842 + 5.47766i 0.358333 + 0.196510i
\(778\) 0 0
\(779\) 12.8131 0.459077
\(780\) 0 0
\(781\) 6.72161i 0.240518i
\(782\) 0 0
\(783\) 10.0699i 0.359868i
\(784\) 0 0
\(785\) −11.9472 4.84919i −0.426412 0.173075i
\(786\) 0 0
\(787\) 3.23802 0.115423 0.0577114 0.998333i \(-0.481620\pi\)
0.0577114 + 0.998333i \(0.481620\pi\)
\(788\) 0 0
\(789\) −19.6608 −0.699944
\(790\) 0 0
\(791\) −14.4981 + 26.4370i −0.515492 + 0.939992i
\(792\) 0 0
\(793\) 3.41651i 0.121324i
\(794\) 0 0
\(795\) 1.43727 3.54107i 0.0509749 0.125589i
\(796\) 0 0
\(797\) 24.9995i 0.885529i 0.896638 + 0.442764i \(0.146002\pi\)
−0.896638 + 0.442764i \(0.853998\pi\)
\(798\) 0 0
\(799\) 24.2721i 0.858687i
\(800\) 0 0
\(801\) 0.841441i 0.0297309i
\(802\) 0 0
\(803\) −4.47292 −0.157846
\(804\) 0 0
\(805\) −24.3239 + 19.8155i −0.857304 + 0.698404i
\(806\) 0 0
\(807\) −1.22906 −0.0432650
\(808\) 0 0
\(809\) −15.5950 −0.548290 −0.274145 0.961688i \(-0.588395\pi\)
−0.274145 + 0.961688i \(0.588395\pi\)
\(810\) 0 0
\(811\) 12.4994i 0.438913i 0.975622 + 0.219456i \(0.0704283\pi\)
−0.975622 + 0.219456i \(0.929572\pi\)
\(812\) 0 0
\(813\) 12.1597 0.426459
\(814\) 0 0
\(815\) −23.7538 9.64133i −0.832058 0.337721i
\(816\) 0 0
\(817\) −37.3886 −1.30806
\(818\) 0 0
\(819\) 0.889113 1.62128i 0.0310681 0.0566523i
\(820\) 0 0
\(821\) 31.9570i 1.11531i −0.830074 0.557653i \(-0.811702\pi\)
0.830074 0.557653i \(-0.188298\pi\)
\(822\) 0 0
\(823\) −16.0320 −0.558839 −0.279419 0.960169i \(-0.590142\pi\)
−0.279419 + 0.960169i \(0.590142\pi\)
\(824\) 0 0
\(825\) 4.15473 + 4.03792i 0.144649 + 0.140582i
\(826\) 0 0
\(827\) 21.7120i 0.755001i 0.926009 + 0.377501i \(0.123216\pi\)
−0.926009 + 0.377501i \(0.876784\pi\)
\(828\) 0 0
\(829\) −48.2421 −1.67552 −0.837759 0.546040i \(-0.816135\pi\)
−0.837759 + 0.546040i \(0.816135\pi\)
\(830\) 0 0
\(831\) 24.1319 0.837126
\(832\) 0 0
\(833\) −25.8583 40.5594i −0.895937 1.40530i
\(834\) 0 0
\(835\) 41.1343 + 16.6958i 1.42351 + 0.577783i
\(836\) 0 0
\(837\) −0.109215 −0.00377504
\(838\) 0 0
\(839\) 25.1122 0.866968 0.433484 0.901161i \(-0.357284\pi\)
0.433484 + 0.901161i \(0.357284\pi\)
\(840\) 0 0
\(841\) −72.4023 −2.49663
\(842\) 0 0
\(843\) −2.45095 −0.0844151
\(844\) 0 0
\(845\) 10.5217 25.9228i 0.361958 0.891770i
\(846\) 0 0
\(847\) 22.4032 + 12.2859i 0.769784 + 0.422150i
\(848\) 0 0
\(849\) −0.770452 −0.0264419
\(850\) 0 0
\(851\) 22.8336 0.782726
\(852\) 0 0
\(853\) 9.94325i 0.340450i −0.985405 0.170225i \(-0.945551\pi\)
0.985405 0.170225i \(-0.0544495\pi\)
\(854\) 0 0
\(855\) 10.2555 + 4.16257i 0.350731 + 0.142357i
\(856\) 0 0
\(857\) −22.3499 −0.763457 −0.381728 0.924275i \(-0.624671\pi\)
−0.381728 + 0.924275i \(0.624671\pi\)
\(858\) 0 0
\(859\) 11.5753i 0.394944i 0.980309 + 0.197472i \(0.0632731\pi\)
−0.980309 + 0.197472i \(0.936727\pi\)
\(860\) 0 0
\(861\) 3.29320 6.00510i 0.112232 0.204653i
\(862\) 0 0
\(863\) 42.1305 1.43414 0.717070 0.697001i \(-0.245483\pi\)
0.717070 + 0.697001i \(0.245483\pi\)
\(864\) 0 0
\(865\) 33.7994 + 13.7187i 1.14921 + 0.466451i
\(866\) 0 0
\(867\) −30.2187 −1.02628
\(868\) 0 0
\(869\) 7.30685i 0.247868i
\(870\) 0 0
\(871\) −5.67864 −0.192413
\(872\) 0 0
\(873\) −0.0488298 −0.00165264
\(874\) 0 0
\(875\) 29.4672 + 2.58588i 0.996172 + 0.0874185i
\(876\) 0 0
\(877\) 1.06166 0.0358496 0.0179248 0.999839i \(-0.494294\pi\)
0.0179248 + 0.999839i \(0.494294\pi\)
\(878\) 0 0
\(879\) 14.0583i 0.474175i
\(880\) 0 0
\(881\) 32.0206i 1.07880i −0.842049 0.539401i \(-0.818651\pi\)
0.842049 0.539401i \(-0.181349\pi\)
\(882\) 0 0
\(883\) 28.8735i 0.971670i −0.874050 0.485835i \(-0.838516\pi\)
0.874050 0.485835i \(-0.161484\pi\)
\(884\) 0 0
\(885\) 25.6796 + 10.4230i 0.863210 + 0.350365i
\(886\) 0 0
\(887\) 32.6544i 1.09643i 0.836339 + 0.548213i \(0.184692\pi\)
−0.836339 + 0.548213i \(0.815308\pi\)
\(888\) 0 0
\(889\) −26.4929 14.5287i −0.888545 0.487278i
\(890\) 0 0
\(891\) 1.15873 0.0388191
\(892\) 0 0
\(893\) −17.4839 −0.585076
\(894\) 0 0
\(895\) 17.2150 42.4133i 0.575433 1.41772i
\(896\) 0 0
\(897\) 3.70627i 0.123749i
\(898\) 0 0
\(899\) 1.09978i 0.0366799i
\(900\) 0 0
\(901\) 11.7442 0.391255
\(902\) 0 0
\(903\) −9.60957 + 17.5229i −0.319786 + 0.583126i
\(904\) 0 0
\(905\) 12.1964 30.0488i 0.405422 0.998856i
\(906\) 0 0
\(907\) 36.6780i 1.21787i 0.793218 + 0.608937i \(0.208404\pi\)
−0.793218 + 0.608937i \(0.791596\pi\)
\(908\) 0 0
\(909\) 15.0202 0.498187
\(910\) 0 0
\(911\) 38.1450i 1.26380i −0.775049 0.631901i \(-0.782275\pi\)
0.775049 0.631901i \(-0.217725\pi\)
\(912\) 0 0
\(913\) 14.7395 0.487807
\(914\) 0 0
\(915\) −4.11103 + 10.1285i −0.135906 + 0.334839i
\(916\) 0 0
\(917\) −1.52730 + 2.78500i −0.0504358 + 0.0919688i
\(918\) 0 0
\(919\) 10.1269i 0.334056i −0.985952 0.167028i \(-0.946583\pi\)
0.985952 0.167028i \(-0.0534170\pi\)
\(920\) 0 0
\(921\) 33.8488 1.11536
\(922\) 0 0
\(923\) 4.05411 0.133443
\(924\) 0 0
\(925\) −15.4384 15.0044i −0.507612 0.493341i
\(926\) 0 0
\(927\) 16.0240i 0.526299i
\(928\) 0 0
\(929\) 28.8015i 0.944947i 0.881345 + 0.472474i \(0.156639\pi\)
−0.881345 + 0.472474i \(0.843361\pi\)
\(930\) 0 0
\(931\) −29.2160 + 18.6265i −0.957517 + 0.610457i
\(932\) 0 0
\(933\) −14.3608 −0.470150
\(934\) 0 0
\(935\) −6.69600 + 16.4972i −0.218983 + 0.539516i
\(936\) 0 0
\(937\) −31.8351 −1.04001 −0.520003 0.854164i \(-0.674069\pi\)
−0.520003 + 0.854164i \(0.674069\pi\)
\(938\) 0 0
\(939\) 16.3655 0.534068
\(940\) 0 0
\(941\) 15.0378 0.490217 0.245109 0.969496i \(-0.421176\pi\)
0.245109 + 0.969496i \(0.421176\pi\)
\(942\) 0 0
\(943\) 13.7277i 0.447035i
\(944\) 0 0
\(945\) 4.58672 3.73658i 0.149206 0.121551i
\(946\) 0 0
\(947\) 45.0438i 1.46373i 0.681451 + 0.731864i \(0.261349\pi\)
−0.681451 + 0.731864i \(0.738651\pi\)
\(948\) 0 0
\(949\) 2.69782i 0.0875749i
\(950\) 0 0
\(951\) −25.5784 −0.829436
\(952\) 0 0
\(953\) 28.4561i 0.921782i −0.887457 0.460891i \(-0.847530\pi\)
0.887457 0.460891i \(-0.152470\pi\)
\(954\) 0 0
\(955\) 41.0891 + 16.6775i 1.32961 + 0.539672i
\(956\) 0 0
\(957\) 11.6683i 0.377183i
\(958\) 0 0
\(959\) −5.46293 + 9.96157i −0.176407 + 0.321676i
\(960\) 0 0
\(961\) −30.9881 −0.999615
\(962\) 0 0
\(963\) 9.62303i 0.310098i
\(964\) 0 0
\(965\) −1.94541 0.789614i −0.0626248 0.0254186i
\(966\) 0 0
\(967\) −16.7411 −0.538357 −0.269178 0.963090i \(-0.586752\pi\)
−0.269178 + 0.963090i \(0.586752\pi\)
\(968\) 0 0
\(969\) 34.0129i 1.09265i
\(970\) 0 0
\(971\) 8.17899i 0.262476i −0.991351 0.131238i \(-0.958105\pi\)
0.991351 0.131238i \(-0.0418953\pi\)
\(972\) 0 0
\(973\) −15.2789 + 27.8609i −0.489820 + 0.893179i
\(974\) 0 0
\(975\) −2.43546 + 2.50591i −0.0779970 + 0.0802533i
\(976\) 0 0
\(977\) 44.9685i 1.43867i 0.694663 + 0.719335i \(0.255553\pi\)
−0.694663 + 0.719335i \(0.744447\pi\)
\(978\) 0 0
\(979\) 0.975007i 0.0311614i
\(980\) 0 0
\(981\) 4.74400i 0.151464i
\(982\) 0 0
\(983\) 29.0890i 0.927794i 0.885889 + 0.463897i \(0.153549\pi\)
−0.885889 + 0.463897i \(0.846451\pi\)
\(984\) 0 0
\(985\) 18.6919 46.0520i 0.595573 1.46734i
\(986\) 0 0
\(987\) −4.49368 + 8.19416i −0.143035 + 0.260823i
\(988\) 0 0
\(989\) 40.0575i 1.27375i
\(990\) 0 0
\(991\) 0.727753i 0.0231178i −0.999933 0.0115589i \(-0.996321\pi\)
0.999933 0.0115589i \(-0.00367940\pi\)
\(992\) 0 0
\(993\) −4.64867 −0.147521
\(994\) 0 0
\(995\) 6.37324 15.7020i 0.202045 0.497787i
\(996\) 0 0
\(997\) 15.1844i 0.480893i −0.970662 0.240447i \(-0.922706\pi\)
0.970662 0.240447i \(-0.0772939\pi\)
\(998\) 0 0
\(999\) −4.30570 −0.136226
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3360.2.w.a.559.31 48
4.3 odd 2 840.2.w.b.139.46 yes 48
5.4 even 2 3360.2.w.b.559.32 48
7.6 odd 2 3360.2.w.b.559.18 48
8.3 odd 2 inner 3360.2.w.a.559.18 48
8.5 even 2 840.2.w.b.139.4 yes 48
20.19 odd 2 840.2.w.a.139.3 48
28.27 even 2 840.2.w.a.139.46 yes 48
35.34 odd 2 inner 3360.2.w.a.559.17 48
40.19 odd 2 3360.2.w.b.559.17 48
40.29 even 2 840.2.w.a.139.45 yes 48
56.13 odd 2 840.2.w.a.139.4 yes 48
56.27 even 2 3360.2.w.b.559.31 48
140.139 even 2 840.2.w.b.139.3 yes 48
280.69 odd 2 840.2.w.b.139.45 yes 48
280.139 even 2 inner 3360.2.w.a.559.32 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.w.a.139.3 48 20.19 odd 2
840.2.w.a.139.4 yes 48 56.13 odd 2
840.2.w.a.139.45 yes 48 40.29 even 2
840.2.w.a.139.46 yes 48 28.27 even 2
840.2.w.b.139.3 yes 48 140.139 even 2
840.2.w.b.139.4 yes 48 8.5 even 2
840.2.w.b.139.45 yes 48 280.69 odd 2
840.2.w.b.139.46 yes 48 4.3 odd 2
3360.2.w.a.559.17 48 35.34 odd 2 inner
3360.2.w.a.559.18 48 8.3 odd 2 inner
3360.2.w.a.559.31 48 1.1 even 1 trivial
3360.2.w.a.559.32 48 280.139 even 2 inner
3360.2.w.b.559.17 48 40.19 odd 2
3360.2.w.b.559.18 48 7.6 odd 2
3360.2.w.b.559.31 48 56.27 even 2
3360.2.w.b.559.32 48 5.4 even 2