Properties

Label 3360.2.j.e.1009.13
Level $3360$
Weight $2$
Character 3360.1009
Analytic conductor $26.830$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3360,2,Mod(1009,3360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3360.1009"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,-32,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.8297350792\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1009.13
Character \(\chi\) \(=\) 3360.1009
Dual form 3360.2.j.e.1009.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +(-0.725275 - 2.11518i) q^{5} +1.00000i q^{7} +1.00000 q^{9} +1.98457i q^{11} +4.46045 q^{13} +(0.725275 + 2.11518i) q^{15} -6.83320i q^{17} +6.40466i q^{19} -1.00000i q^{21} -8.27003i q^{23} +(-3.94795 + 3.06817i) q^{25} -1.00000 q^{27} +2.08400i q^{29} -1.28335 q^{31} -1.98457i q^{33} +(2.11518 - 0.725275i) q^{35} +10.5278 q^{37} -4.46045 q^{39} -5.84384 q^{41} +0.807243 q^{43} +(-0.725275 - 2.11518i) q^{45} +9.01427i q^{47} -1.00000 q^{49} +6.83320i q^{51} +4.80213 q^{53} +(4.19773 - 1.43936i) q^{55} -6.40466i q^{57} +1.35143i q^{59} +11.1318i q^{61} +1.00000i q^{63} +(-3.23505 - 9.43463i) q^{65} -6.01414 q^{67} +8.27003i q^{69} +7.23080 q^{71} -0.829004i q^{73} +(3.94795 - 3.06817i) q^{75} -1.98457 q^{77} +11.0281 q^{79} +1.00000 q^{81} -2.69790 q^{83} +(-14.4534 + 4.95594i) q^{85} -2.08400i q^{87} +2.66995 q^{89} +4.46045i q^{91} +1.28335 q^{93} +(13.5470 - 4.64513i) q^{95} -0.641074i q^{97} +1.98457i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{3} + 32 q^{9} + 32 q^{13} - 16 q^{25} - 32 q^{27} - 32 q^{31} - 4 q^{35} - 8 q^{37} - 32 q^{39} + 24 q^{41} + 8 q^{43} - 32 q^{49} - 24 q^{53} - 24 q^{55} + 8 q^{65} - 24 q^{67} - 40 q^{71}+ \cdots + 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times\).

\(n\) \(421\) \(1121\) \(1471\) \(1921\) \(2017\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −0.725275 2.11518i −0.324353 0.945936i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.98457i 0.598372i 0.954195 + 0.299186i \(0.0967150\pi\)
−0.954195 + 0.299186i \(0.903285\pi\)
\(12\) 0 0
\(13\) 4.46045 1.23710 0.618552 0.785744i \(-0.287719\pi\)
0.618552 + 0.785744i \(0.287719\pi\)
\(14\) 0 0
\(15\) 0.725275 + 2.11518i 0.187265 + 0.546137i
\(16\) 0 0
\(17\) 6.83320i 1.65729i −0.559772 0.828647i \(-0.689111\pi\)
0.559772 0.828647i \(-0.310889\pi\)
\(18\) 0 0
\(19\) 6.40466i 1.46933i 0.678431 + 0.734664i \(0.262660\pi\)
−0.678431 + 0.734664i \(0.737340\pi\)
\(20\) 0 0
\(21\) 1.00000i 0.218218i
\(22\) 0 0
\(23\) 8.27003i 1.72442i −0.506551 0.862210i \(-0.669080\pi\)
0.506551 0.862210i \(-0.330920\pi\)
\(24\) 0 0
\(25\) −3.94795 + 3.06817i −0.789591 + 0.613634i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 2.08400i 0.386989i 0.981101 + 0.193494i \(0.0619821\pi\)
−0.981101 + 0.193494i \(0.938018\pi\)
\(30\) 0 0
\(31\) −1.28335 −0.230497 −0.115249 0.993337i \(-0.536766\pi\)
−0.115249 + 0.993337i \(0.536766\pi\)
\(32\) 0 0
\(33\) 1.98457i 0.345470i
\(34\) 0 0
\(35\) 2.11518 0.725275i 0.357530 0.122594i
\(36\) 0 0
\(37\) 10.5278 1.73077 0.865384 0.501110i \(-0.167075\pi\)
0.865384 + 0.501110i \(0.167075\pi\)
\(38\) 0 0
\(39\) −4.46045 −0.714243
\(40\) 0 0
\(41\) −5.84384 −0.912654 −0.456327 0.889812i \(-0.650835\pi\)
−0.456327 + 0.889812i \(0.650835\pi\)
\(42\) 0 0
\(43\) 0.807243 0.123103 0.0615517 0.998104i \(-0.480395\pi\)
0.0615517 + 0.998104i \(0.480395\pi\)
\(44\) 0 0
\(45\) −0.725275 2.11518i −0.108118 0.315312i
\(46\) 0 0
\(47\) 9.01427i 1.31487i 0.753513 + 0.657433i \(0.228358\pi\)
−0.753513 + 0.657433i \(0.771642\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 6.83320i 0.956839i
\(52\) 0 0
\(53\) 4.80213 0.659623 0.329811 0.944047i \(-0.393015\pi\)
0.329811 + 0.944047i \(0.393015\pi\)
\(54\) 0 0
\(55\) 4.19773 1.43936i 0.566021 0.194083i
\(56\) 0 0
\(57\) 6.40466i 0.848317i
\(58\) 0 0
\(59\) 1.35143i 0.175942i 0.996123 + 0.0879708i \(0.0280382\pi\)
−0.996123 + 0.0879708i \(0.971962\pi\)
\(60\) 0 0
\(61\) 11.1318i 1.42527i 0.701532 + 0.712637i \(0.252500\pi\)
−0.701532 + 0.712637i \(0.747500\pi\)
\(62\) 0 0
\(63\) 1.00000i 0.125988i
\(64\) 0 0
\(65\) −3.23505 9.43463i −0.401258 1.17022i
\(66\) 0 0
\(67\) −6.01414 −0.734744 −0.367372 0.930074i \(-0.619742\pi\)
−0.367372 + 0.930074i \(0.619742\pi\)
\(68\) 0 0
\(69\) 8.27003i 0.995594i
\(70\) 0 0
\(71\) 7.23080 0.858138 0.429069 0.903272i \(-0.358842\pi\)
0.429069 + 0.903272i \(0.358842\pi\)
\(72\) 0 0
\(73\) 0.829004i 0.0970276i −0.998823 0.0485138i \(-0.984552\pi\)
0.998823 0.0485138i \(-0.0154485\pi\)
\(74\) 0 0
\(75\) 3.94795 3.06817i 0.455870 0.354282i
\(76\) 0 0
\(77\) −1.98457 −0.226163
\(78\) 0 0
\(79\) 11.0281 1.24076 0.620382 0.784300i \(-0.286978\pi\)
0.620382 + 0.784300i \(0.286978\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −2.69790 −0.296133 −0.148066 0.988977i \(-0.547305\pi\)
−0.148066 + 0.988977i \(0.547305\pi\)
\(84\) 0 0
\(85\) −14.4534 + 4.95594i −1.56769 + 0.537548i
\(86\) 0 0
\(87\) 2.08400i 0.223428i
\(88\) 0 0
\(89\) 2.66995 0.283014 0.141507 0.989937i \(-0.454805\pi\)
0.141507 + 0.989937i \(0.454805\pi\)
\(90\) 0 0
\(91\) 4.46045i 0.467582i
\(92\) 0 0
\(93\) 1.28335 0.133078
\(94\) 0 0
\(95\) 13.5470 4.64513i 1.38989 0.476581i
\(96\) 0 0
\(97\) 0.641074i 0.0650912i −0.999470 0.0325456i \(-0.989639\pi\)
0.999470 0.0325456i \(-0.0103614\pi\)
\(98\) 0 0
\(99\) 1.98457i 0.199457i
\(100\) 0 0
\(101\) 12.3440i 1.22828i −0.789198 0.614139i \(-0.789503\pi\)
0.789198 0.614139i \(-0.210497\pi\)
\(102\) 0 0
\(103\) 15.6671i 1.54373i −0.635787 0.771865i \(-0.719324\pi\)
0.635787 0.771865i \(-0.280676\pi\)
\(104\) 0 0
\(105\) −2.11518 + 0.725275i −0.206420 + 0.0707795i
\(106\) 0 0
\(107\) 16.6552 1.61011 0.805057 0.593197i \(-0.202134\pi\)
0.805057 + 0.593197i \(0.202134\pi\)
\(108\) 0 0
\(109\) 14.9152i 1.42861i −0.699833 0.714306i \(-0.746742\pi\)
0.699833 0.714306i \(-0.253258\pi\)
\(110\) 0 0
\(111\) −10.5278 −0.999259
\(112\) 0 0
\(113\) 2.41294i 0.226990i 0.993539 + 0.113495i \(0.0362046\pi\)
−0.993539 + 0.113495i \(0.963795\pi\)
\(114\) 0 0
\(115\) −17.4926 + 5.99804i −1.63119 + 0.559320i
\(116\) 0 0
\(117\) 4.46045 0.412368
\(118\) 0 0
\(119\) 6.83320 0.626398
\(120\) 0 0
\(121\) 7.06147 0.641952
\(122\) 0 0
\(123\) 5.84384 0.526921
\(124\) 0 0
\(125\) 9.35307 + 6.12536i 0.836564 + 0.547869i
\(126\) 0 0
\(127\) 18.6981i 1.65919i −0.558366 0.829595i \(-0.688571\pi\)
0.558366 0.829595i \(-0.311429\pi\)
\(128\) 0 0
\(129\) −0.807243 −0.0710738
\(130\) 0 0
\(131\) 14.7118i 1.28537i −0.766129 0.642687i \(-0.777820\pi\)
0.766129 0.642687i \(-0.222180\pi\)
\(132\) 0 0
\(133\) −6.40466 −0.555354
\(134\) 0 0
\(135\) 0.725275 + 2.11518i 0.0624217 + 0.182046i
\(136\) 0 0
\(137\) 10.8323i 0.925464i −0.886498 0.462732i \(-0.846869\pi\)
0.886498 0.462732i \(-0.153131\pi\)
\(138\) 0 0
\(139\) 10.7222i 0.909441i −0.890634 0.454721i \(-0.849739\pi\)
0.890634 0.454721i \(-0.150261\pi\)
\(140\) 0 0
\(141\) 9.01427i 0.759138i
\(142\) 0 0
\(143\) 8.85208i 0.740248i
\(144\) 0 0
\(145\) 4.40803 1.51147i 0.366067 0.125521i
\(146\) 0 0
\(147\) 1.00000 0.0824786
\(148\) 0 0
\(149\) 10.6182i 0.869876i −0.900460 0.434938i \(-0.856770\pi\)
0.900460 0.434938i \(-0.143230\pi\)
\(150\) 0 0
\(151\) 5.53645 0.450550 0.225275 0.974295i \(-0.427672\pi\)
0.225275 + 0.974295i \(0.427672\pi\)
\(152\) 0 0
\(153\) 6.83320i 0.552431i
\(154\) 0 0
\(155\) 0.930784 + 2.71452i 0.0747624 + 0.218036i
\(156\) 0 0
\(157\) 15.0491 1.20105 0.600523 0.799607i \(-0.294959\pi\)
0.600523 + 0.799607i \(0.294959\pi\)
\(158\) 0 0
\(159\) −4.80213 −0.380834
\(160\) 0 0
\(161\) 8.27003 0.651769
\(162\) 0 0
\(163\) −6.23195 −0.488124 −0.244062 0.969760i \(-0.578480\pi\)
−0.244062 + 0.969760i \(0.578480\pi\)
\(164\) 0 0
\(165\) −4.19773 + 1.43936i −0.326793 + 0.112054i
\(166\) 0 0
\(167\) 6.54404i 0.506393i −0.967415 0.253196i \(-0.918518\pi\)
0.967415 0.253196i \(-0.0814819\pi\)
\(168\) 0 0
\(169\) 6.89557 0.530428
\(170\) 0 0
\(171\) 6.40466i 0.489776i
\(172\) 0 0
\(173\) −7.99047 −0.607504 −0.303752 0.952751i \(-0.598240\pi\)
−0.303752 + 0.952751i \(0.598240\pi\)
\(174\) 0 0
\(175\) −3.06817 3.94795i −0.231932 0.298437i
\(176\) 0 0
\(177\) 1.35143i 0.101580i
\(178\) 0 0
\(179\) 8.56129i 0.639901i −0.947434 0.319950i \(-0.896334\pi\)
0.947434 0.319950i \(-0.103666\pi\)
\(180\) 0 0
\(181\) 6.14276i 0.456588i −0.973592 0.228294i \(-0.926685\pi\)
0.973592 0.228294i \(-0.0733147\pi\)
\(182\) 0 0
\(183\) 11.1318i 0.822883i
\(184\) 0 0
\(185\) −7.63558 22.2683i −0.561379 1.63720i
\(186\) 0 0
\(187\) 13.5610 0.991678
\(188\) 0 0
\(189\) 1.00000i 0.0727393i
\(190\) 0 0
\(191\) 8.89586 0.643682 0.321841 0.946794i \(-0.395698\pi\)
0.321841 + 0.946794i \(0.395698\pi\)
\(192\) 0 0
\(193\) 9.05722i 0.651953i 0.945378 + 0.325977i \(0.105693\pi\)
−0.945378 + 0.325977i \(0.894307\pi\)
\(194\) 0 0
\(195\) 3.23505 + 9.43463i 0.231667 + 0.675628i
\(196\) 0 0
\(197\) −7.65946 −0.545714 −0.272857 0.962055i \(-0.587969\pi\)
−0.272857 + 0.962055i \(0.587969\pi\)
\(198\) 0 0
\(199\) −16.0795 −1.13985 −0.569923 0.821698i \(-0.693027\pi\)
−0.569923 + 0.821698i \(0.693027\pi\)
\(200\) 0 0
\(201\) 6.01414 0.424205
\(202\) 0 0
\(203\) −2.08400 −0.146268
\(204\) 0 0
\(205\) 4.23839 + 12.3608i 0.296022 + 0.863313i
\(206\) 0 0
\(207\) 8.27003i 0.574807i
\(208\) 0 0
\(209\) −12.7105 −0.879204
\(210\) 0 0
\(211\) 18.6220i 1.28199i 0.767545 + 0.640995i \(0.221478\pi\)
−0.767545 + 0.640995i \(0.778522\pi\)
\(212\) 0 0
\(213\) −7.23080 −0.495446
\(214\) 0 0
\(215\) −0.585473 1.70746i −0.0399289 0.116448i
\(216\) 0 0
\(217\) 1.28335i 0.0871197i
\(218\) 0 0
\(219\) 0.829004i 0.0560189i
\(220\) 0 0
\(221\) 30.4791i 2.05025i
\(222\) 0 0
\(223\) 24.8064i 1.66116i −0.556900 0.830579i \(-0.688009\pi\)
0.556900 0.830579i \(-0.311991\pi\)
\(224\) 0 0
\(225\) −3.94795 + 3.06817i −0.263197 + 0.204545i
\(226\) 0 0
\(227\) 6.10249 0.405037 0.202518 0.979278i \(-0.435087\pi\)
0.202518 + 0.979278i \(0.435087\pi\)
\(228\) 0 0
\(229\) 7.13626i 0.471577i 0.971804 + 0.235789i \(0.0757673\pi\)
−0.971804 + 0.235789i \(0.924233\pi\)
\(230\) 0 0
\(231\) 1.98457 0.130575
\(232\) 0 0
\(233\) 26.3887i 1.72878i 0.502819 + 0.864392i \(0.332296\pi\)
−0.502819 + 0.864392i \(0.667704\pi\)
\(234\) 0 0
\(235\) 19.0668 6.53782i 1.24378 0.426480i
\(236\) 0 0
\(237\) −11.0281 −0.716355
\(238\) 0 0
\(239\) −11.8328 −0.765399 −0.382699 0.923873i \(-0.625006\pi\)
−0.382699 + 0.923873i \(0.625006\pi\)
\(240\) 0 0
\(241\) 19.1963 1.23655 0.618273 0.785964i \(-0.287833\pi\)
0.618273 + 0.785964i \(0.287833\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 0.725275 + 2.11518i 0.0463361 + 0.135134i
\(246\) 0 0
\(247\) 28.5676i 1.81771i
\(248\) 0 0
\(249\) 2.69790 0.170972
\(250\) 0 0
\(251\) 1.62899i 0.102821i 0.998678 + 0.0514106i \(0.0163717\pi\)
−0.998678 + 0.0514106i \(0.983628\pi\)
\(252\) 0 0
\(253\) 16.4125 1.03184
\(254\) 0 0
\(255\) 14.4534 4.95594i 0.905109 0.310353i
\(256\) 0 0
\(257\) 1.89332i 0.118102i 0.998255 + 0.0590510i \(0.0188075\pi\)
−0.998255 + 0.0590510i \(0.981193\pi\)
\(258\) 0 0
\(259\) 10.5278i 0.654169i
\(260\) 0 0
\(261\) 2.08400i 0.128996i
\(262\) 0 0
\(263\) 4.66210i 0.287477i −0.989616 0.143739i \(-0.954088\pi\)
0.989616 0.143739i \(-0.0459125\pi\)
\(264\) 0 0
\(265\) −3.48286 10.1574i −0.213950 0.623961i
\(266\) 0 0
\(267\) −2.66995 −0.163398
\(268\) 0 0
\(269\) 12.3189i 0.751099i 0.926802 + 0.375549i \(0.122546\pi\)
−0.926802 + 0.375549i \(0.877454\pi\)
\(270\) 0 0
\(271\) 25.4743 1.54745 0.773726 0.633520i \(-0.218391\pi\)
0.773726 + 0.633520i \(0.218391\pi\)
\(272\) 0 0
\(273\) 4.46045i 0.269958i
\(274\) 0 0
\(275\) −6.08901 7.83501i −0.367181 0.472469i
\(276\) 0 0
\(277\) 15.5659 0.935267 0.467633 0.883923i \(-0.345107\pi\)
0.467633 + 0.883923i \(0.345107\pi\)
\(278\) 0 0
\(279\) −1.28335 −0.0768324
\(280\) 0 0
\(281\) 31.7854 1.89616 0.948078 0.318039i \(-0.103024\pi\)
0.948078 + 0.318039i \(0.103024\pi\)
\(282\) 0 0
\(283\) −24.6006 −1.46235 −0.731176 0.682189i \(-0.761028\pi\)
−0.731176 + 0.682189i \(0.761028\pi\)
\(284\) 0 0
\(285\) −13.5470 + 4.64513i −0.802454 + 0.275154i
\(286\) 0 0
\(287\) 5.84384i 0.344951i
\(288\) 0 0
\(289\) −29.6926 −1.74662
\(290\) 0 0
\(291\) 0.641074i 0.0375804i
\(292\) 0 0
\(293\) −3.65931 −0.213779 −0.106890 0.994271i \(-0.534089\pi\)
−0.106890 + 0.994271i \(0.534089\pi\)
\(294\) 0 0
\(295\) 2.85852 0.980160i 0.166430 0.0570671i
\(296\) 0 0
\(297\) 1.98457i 0.115157i
\(298\) 0 0
\(299\) 36.8880i 2.13329i
\(300\) 0 0
\(301\) 0.807243i 0.0465287i
\(302\) 0 0
\(303\) 12.3440i 0.709147i
\(304\) 0 0
\(305\) 23.5456 8.07358i 1.34822 0.462292i
\(306\) 0 0
\(307\) 23.6180 1.34795 0.673974 0.738755i \(-0.264586\pi\)
0.673974 + 0.738755i \(0.264586\pi\)
\(308\) 0 0
\(309\) 15.6671i 0.891272i
\(310\) 0 0
\(311\) −29.5891 −1.67785 −0.838923 0.544250i \(-0.816814\pi\)
−0.838923 + 0.544250i \(0.816814\pi\)
\(312\) 0 0
\(313\) 33.1631i 1.87449i −0.348671 0.937245i \(-0.613367\pi\)
0.348671 0.937245i \(-0.386633\pi\)
\(314\) 0 0
\(315\) 2.11518 0.725275i 0.119177 0.0408646i
\(316\) 0 0
\(317\) 20.3788 1.14459 0.572295 0.820048i \(-0.306053\pi\)
0.572295 + 0.820048i \(0.306053\pi\)
\(318\) 0 0
\(319\) −4.13585 −0.231563
\(320\) 0 0
\(321\) −16.6552 −0.929600
\(322\) 0 0
\(323\) 43.7643 2.43511
\(324\) 0 0
\(325\) −17.6096 + 13.6854i −0.976807 + 0.759129i
\(326\) 0 0
\(327\) 14.9152i 0.824810i
\(328\) 0 0
\(329\) −9.01427 −0.496973
\(330\) 0 0
\(331\) 1.14980i 0.0631988i −0.999501 0.0315994i \(-0.989940\pi\)
0.999501 0.0315994i \(-0.0100601\pi\)
\(332\) 0 0
\(333\) 10.5278 0.576922
\(334\) 0 0
\(335\) 4.36190 + 12.7210i 0.238316 + 0.695021i
\(336\) 0 0
\(337\) 32.2193i 1.75510i 0.479488 + 0.877549i \(0.340822\pi\)
−0.479488 + 0.877549i \(0.659178\pi\)
\(338\) 0 0
\(339\) 2.41294i 0.131053i
\(340\) 0 0
\(341\) 2.54691i 0.137923i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 17.4926 5.99804i 0.941769 0.322924i
\(346\) 0 0
\(347\) 22.3813 1.20149 0.600746 0.799440i \(-0.294870\pi\)
0.600746 + 0.799440i \(0.294870\pi\)
\(348\) 0 0
\(349\) 16.9131i 0.905339i 0.891678 + 0.452670i \(0.149528\pi\)
−0.891678 + 0.452670i \(0.850472\pi\)
\(350\) 0 0
\(351\) −4.46045 −0.238081
\(352\) 0 0
\(353\) 15.6792i 0.834521i −0.908787 0.417261i \(-0.862990\pi\)
0.908787 0.417261i \(-0.137010\pi\)
\(354\) 0 0
\(355\) −5.24431 15.2944i −0.278339 0.811744i
\(356\) 0 0
\(357\) −6.83320 −0.361651
\(358\) 0 0
\(359\) 3.20198 0.168994 0.0844972 0.996424i \(-0.473072\pi\)
0.0844972 + 0.996424i \(0.473072\pi\)
\(360\) 0 0
\(361\) −22.0196 −1.15893
\(362\) 0 0
\(363\) −7.06147 −0.370631
\(364\) 0 0
\(365\) −1.75349 + 0.601256i −0.0917819 + 0.0314712i
\(366\) 0 0
\(367\) 5.06988i 0.264645i 0.991207 + 0.132323i \(0.0422435\pi\)
−0.991207 + 0.132323i \(0.957756\pi\)
\(368\) 0 0
\(369\) −5.84384 −0.304218
\(370\) 0 0
\(371\) 4.80213i 0.249314i
\(372\) 0 0
\(373\) −10.6334 −0.550578 −0.275289 0.961361i \(-0.588774\pi\)
−0.275289 + 0.961361i \(0.588774\pi\)
\(374\) 0 0
\(375\) −9.35307 6.12536i −0.482991 0.316312i
\(376\) 0 0
\(377\) 9.29556i 0.478746i
\(378\) 0 0
\(379\) 6.22848i 0.319935i −0.987122 0.159968i \(-0.948861\pi\)
0.987122 0.159968i \(-0.0511390\pi\)
\(380\) 0 0
\(381\) 18.6981i 0.957933i
\(382\) 0 0
\(383\) 8.33007i 0.425647i −0.977091 0.212823i \(-0.931734\pi\)
0.977091 0.212823i \(-0.0682659\pi\)
\(384\) 0 0
\(385\) 1.43936 + 4.19773i 0.0733566 + 0.213936i
\(386\) 0 0
\(387\) 0.807243 0.0410345
\(388\) 0 0
\(389\) 5.78317i 0.293218i −0.989195 0.146609i \(-0.953164\pi\)
0.989195 0.146609i \(-0.0468359\pi\)
\(390\) 0 0
\(391\) −56.5107 −2.85787
\(392\) 0 0
\(393\) 14.7118i 0.742111i
\(394\) 0 0
\(395\) −7.99843 23.3265i −0.402445 1.17368i
\(396\) 0 0
\(397\) 9.77342 0.490514 0.245257 0.969458i \(-0.421128\pi\)
0.245257 + 0.969458i \(0.421128\pi\)
\(398\) 0 0
\(399\) 6.40466 0.320634
\(400\) 0 0
\(401\) 34.6449 1.73008 0.865041 0.501701i \(-0.167292\pi\)
0.865041 + 0.501701i \(0.167292\pi\)
\(402\) 0 0
\(403\) −5.72433 −0.285149
\(404\) 0 0
\(405\) −0.725275 2.11518i −0.0360392 0.105104i
\(406\) 0 0
\(407\) 20.8933i 1.03564i
\(408\) 0 0
\(409\) −7.32443 −0.362170 −0.181085 0.983467i \(-0.557961\pi\)
−0.181085 + 0.983467i \(0.557961\pi\)
\(410\) 0 0
\(411\) 10.8323i 0.534317i
\(412\) 0 0
\(413\) −1.35143 −0.0664997
\(414\) 0 0
\(415\) 1.95672 + 5.70654i 0.0960515 + 0.280123i
\(416\) 0 0
\(417\) 10.7222i 0.525066i
\(418\) 0 0
\(419\) 2.85294i 0.139375i 0.997569 + 0.0696876i \(0.0222003\pi\)
−0.997569 + 0.0696876i \(0.977800\pi\)
\(420\) 0 0
\(421\) 21.3514i 1.04060i 0.853982 + 0.520302i \(0.174181\pi\)
−0.853982 + 0.520302i \(0.825819\pi\)
\(422\) 0 0
\(423\) 9.01427i 0.438289i
\(424\) 0 0
\(425\) 20.9654 + 26.9772i 1.01697 + 1.30858i
\(426\) 0 0
\(427\) −11.1318 −0.538703
\(428\) 0 0
\(429\) 8.85208i 0.427383i
\(430\) 0 0
\(431\) −6.78558 −0.326850 −0.163425 0.986556i \(-0.552254\pi\)
−0.163425 + 0.986556i \(0.552254\pi\)
\(432\) 0 0
\(433\) 3.90527i 0.187675i 0.995588 + 0.0938377i \(0.0299135\pi\)
−0.995588 + 0.0938377i \(0.970087\pi\)
\(434\) 0 0
\(435\) −4.40803 + 1.51147i −0.211349 + 0.0724695i
\(436\) 0 0
\(437\) 52.9667 2.53374
\(438\) 0 0
\(439\) −10.1113 −0.482586 −0.241293 0.970452i \(-0.577571\pi\)
−0.241293 + 0.970452i \(0.577571\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) −16.6831 −0.792638 −0.396319 0.918113i \(-0.629713\pi\)
−0.396319 + 0.918113i \(0.629713\pi\)
\(444\) 0 0
\(445\) −1.93644 5.64741i −0.0917963 0.267713i
\(446\) 0 0
\(447\) 10.6182i 0.502223i
\(448\) 0 0
\(449\) 13.0239 0.614637 0.307319 0.951607i \(-0.400568\pi\)
0.307319 + 0.951607i \(0.400568\pi\)
\(450\) 0 0
\(451\) 11.5975i 0.546106i
\(452\) 0 0
\(453\) −5.53645 −0.260125
\(454\) 0 0
\(455\) 9.43463 3.23505i 0.442302 0.151661i
\(456\) 0 0
\(457\) 10.8925i 0.509531i −0.967003 0.254765i \(-0.918002\pi\)
0.967003 0.254765i \(-0.0819982\pi\)
\(458\) 0 0
\(459\) 6.83320i 0.318946i
\(460\) 0 0
\(461\) 10.5011i 0.489086i −0.969638 0.244543i \(-0.921362\pi\)
0.969638 0.244543i \(-0.0786380\pi\)
\(462\) 0 0
\(463\) 2.39493i 0.111302i −0.998450 0.0556509i \(-0.982277\pi\)
0.998450 0.0556509i \(-0.0177234\pi\)
\(464\) 0 0
\(465\) −0.930784 2.71452i −0.0431641 0.125883i
\(466\) 0 0
\(467\) −3.22855 −0.149400 −0.0746998 0.997206i \(-0.523800\pi\)
−0.0746998 + 0.997206i \(0.523800\pi\)
\(468\) 0 0
\(469\) 6.01414i 0.277707i
\(470\) 0 0
\(471\) −15.0491 −0.693425
\(472\) 0 0
\(473\) 1.60203i 0.0736616i
\(474\) 0 0
\(475\) −19.6506 25.2853i −0.901630 1.16017i
\(476\) 0 0
\(477\) 4.80213 0.219874
\(478\) 0 0
\(479\) 30.7731 1.40606 0.703029 0.711161i \(-0.251830\pi\)
0.703029 + 0.711161i \(0.251830\pi\)
\(480\) 0 0
\(481\) 46.9589 2.14114
\(482\) 0 0
\(483\) −8.27003 −0.376299
\(484\) 0 0
\(485\) −1.35598 + 0.464954i −0.0615721 + 0.0211125i
\(486\) 0 0
\(487\) 15.8470i 0.718096i −0.933319 0.359048i \(-0.883102\pi\)
0.933319 0.359048i \(-0.116898\pi\)
\(488\) 0 0
\(489\) 6.23195 0.281819
\(490\) 0 0
\(491\) 1.66042i 0.0749335i −0.999298 0.0374668i \(-0.988071\pi\)
0.999298 0.0374668i \(-0.0119288\pi\)
\(492\) 0 0
\(493\) 14.2404 0.641354
\(494\) 0 0
\(495\) 4.19773 1.43936i 0.188674 0.0646945i
\(496\) 0 0
\(497\) 7.23080i 0.324346i
\(498\) 0 0
\(499\) 13.1726i 0.589687i 0.955546 + 0.294843i \(0.0952675\pi\)
−0.955546 + 0.294843i \(0.904733\pi\)
\(500\) 0 0
\(501\) 6.54404i 0.292366i
\(502\) 0 0
\(503\) 23.5632i 1.05063i −0.850907 0.525316i \(-0.823947\pi\)
0.850907 0.525316i \(-0.176053\pi\)
\(504\) 0 0
\(505\) −26.1099 + 8.95282i −1.16187 + 0.398395i
\(506\) 0 0
\(507\) −6.89557 −0.306243
\(508\) 0 0
\(509\) 18.3350i 0.812683i 0.913721 + 0.406341i \(0.133196\pi\)
−0.913721 + 0.406341i \(0.866804\pi\)
\(510\) 0 0
\(511\) 0.829004 0.0366730
\(512\) 0 0
\(513\) 6.40466i 0.282772i
\(514\) 0 0
\(515\) −33.1388 + 11.3630i −1.46027 + 0.500713i
\(516\) 0 0
\(517\) −17.8895 −0.786779
\(518\) 0 0
\(519\) 7.99047 0.350743
\(520\) 0 0
\(521\) −19.9787 −0.875281 −0.437640 0.899150i \(-0.644186\pi\)
−0.437640 + 0.899150i \(0.644186\pi\)
\(522\) 0 0
\(523\) −30.3642 −1.32773 −0.663867 0.747850i \(-0.731086\pi\)
−0.663867 + 0.747850i \(0.731086\pi\)
\(524\) 0 0
\(525\) 3.06817 + 3.94795i 0.133906 + 0.172303i
\(526\) 0 0
\(527\) 8.76941i 0.382002i
\(528\) 0 0
\(529\) −45.3934 −1.97362
\(530\) 0 0
\(531\) 1.35143i 0.0586472i
\(532\) 0 0
\(533\) −26.0661 −1.12905
\(534\) 0 0
\(535\) −12.0796 35.2286i −0.522245 1.52307i
\(536\) 0 0
\(537\) 8.56129i 0.369447i
\(538\) 0 0
\(539\) 1.98457i 0.0854816i
\(540\) 0 0
\(541\) 29.7815i 1.28041i 0.768206 + 0.640203i \(0.221150\pi\)
−0.768206 + 0.640203i \(0.778850\pi\)
\(542\) 0 0
\(543\) 6.14276i 0.263611i
\(544\) 0 0
\(545\) −31.5482 + 10.8176i −1.35138 + 0.463374i
\(546\) 0 0
\(547\) −12.9079 −0.551901 −0.275951 0.961172i \(-0.588993\pi\)
−0.275951 + 0.961172i \(0.588993\pi\)
\(548\) 0 0
\(549\) 11.1318i 0.475092i
\(550\) 0 0
\(551\) −13.3473 −0.568614
\(552\) 0 0
\(553\) 11.0281i 0.468964i
\(554\) 0 0
\(555\) 7.63558 + 22.2683i 0.324112 + 0.945235i
\(556\) 0 0
\(557\) −39.3089 −1.66557 −0.832787 0.553594i \(-0.813256\pi\)
−0.832787 + 0.553594i \(0.813256\pi\)
\(558\) 0 0
\(559\) 3.60066 0.152292
\(560\) 0 0
\(561\) −13.5610 −0.572545
\(562\) 0 0
\(563\) −16.5242 −0.696411 −0.348205 0.937418i \(-0.613209\pi\)
−0.348205 + 0.937418i \(0.613209\pi\)
\(564\) 0 0
\(565\) 5.10379 1.75004i 0.214718 0.0736248i
\(566\) 0 0
\(567\) 1.00000i 0.0419961i
\(568\) 0 0
\(569\) 43.3602 1.81775 0.908876 0.417065i \(-0.136941\pi\)
0.908876 + 0.417065i \(0.136941\pi\)
\(570\) 0 0
\(571\) 13.8810i 0.580903i 0.956890 + 0.290452i \(0.0938055\pi\)
−0.956890 + 0.290452i \(0.906194\pi\)
\(572\) 0 0
\(573\) −8.89586 −0.371630
\(574\) 0 0
\(575\) 25.3738 + 32.6497i 1.05816 + 1.36159i
\(576\) 0 0
\(577\) 5.64868i 0.235158i 0.993064 + 0.117579i \(0.0375133\pi\)
−0.993064 + 0.117579i \(0.962487\pi\)
\(578\) 0 0
\(579\) 9.05722i 0.376405i
\(580\) 0 0
\(581\) 2.69790i 0.111928i
\(582\) 0 0
\(583\) 9.53018i 0.394700i
\(584\) 0 0
\(585\) −3.23505 9.43463i −0.133753 0.390074i
\(586\) 0 0
\(587\) 42.8700 1.76944 0.884718 0.466127i \(-0.154351\pi\)
0.884718 + 0.466127i \(0.154351\pi\)
\(588\) 0 0
\(589\) 8.21944i 0.338676i
\(590\) 0 0
\(591\) 7.65946 0.315068
\(592\) 0 0
\(593\) 13.2361i 0.543540i 0.962362 + 0.271770i \(0.0876091\pi\)
−0.962362 + 0.271770i \(0.912391\pi\)
\(594\) 0 0
\(595\) −4.95594 14.4534i −0.203174 0.592533i
\(596\) 0 0
\(597\) 16.0795 0.658091
\(598\) 0 0
\(599\) −17.7652 −0.725866 −0.362933 0.931815i \(-0.618225\pi\)
−0.362933 + 0.931815i \(0.618225\pi\)
\(600\) 0 0
\(601\) −7.38082 −0.301070 −0.150535 0.988605i \(-0.548100\pi\)
−0.150535 + 0.988605i \(0.548100\pi\)
\(602\) 0 0
\(603\) −6.01414 −0.244915
\(604\) 0 0
\(605\) −5.12150 14.9363i −0.208219 0.607245i
\(606\) 0 0
\(607\) 7.45733i 0.302683i 0.988481 + 0.151342i \(0.0483594\pi\)
−0.988481 + 0.151342i \(0.951641\pi\)
\(608\) 0 0
\(609\) 2.08400 0.0844479
\(610\) 0 0
\(611\) 40.2077i 1.62663i
\(612\) 0 0
\(613\) −35.3238 −1.42672 −0.713358 0.700800i \(-0.752827\pi\)
−0.713358 + 0.700800i \(0.752827\pi\)
\(614\) 0 0
\(615\) −4.23839 12.3608i −0.170908 0.498434i
\(616\) 0 0
\(617\) 24.2477i 0.976176i 0.872794 + 0.488088i \(0.162306\pi\)
−0.872794 + 0.488088i \(0.837694\pi\)
\(618\) 0 0
\(619\) 16.9940i 0.683045i 0.939874 + 0.341522i \(0.110943\pi\)
−0.939874 + 0.341522i \(0.889057\pi\)
\(620\) 0 0
\(621\) 8.27003i 0.331865i
\(622\) 0 0
\(623\) 2.66995i 0.106969i
\(624\) 0 0
\(625\) 6.17268 24.2260i 0.246907 0.969039i
\(626\) 0 0
\(627\) 12.7105 0.507609
\(628\) 0 0
\(629\) 71.9389i 2.86839i
\(630\) 0 0
\(631\) 9.21604 0.366885 0.183442 0.983030i \(-0.441276\pi\)
0.183442 + 0.983030i \(0.441276\pi\)
\(632\) 0 0
\(633\) 18.6220i 0.740157i
\(634\) 0 0
\(635\) −39.5498 + 13.5613i −1.56949 + 0.538162i
\(636\) 0 0
\(637\) −4.46045 −0.176729
\(638\) 0 0
\(639\) 7.23080 0.286046
\(640\) 0 0
\(641\) −22.2379 −0.878344 −0.439172 0.898403i \(-0.644728\pi\)
−0.439172 + 0.898403i \(0.644728\pi\)
\(642\) 0 0
\(643\) 24.8103 0.978425 0.489212 0.872165i \(-0.337284\pi\)
0.489212 + 0.872165i \(0.337284\pi\)
\(644\) 0 0
\(645\) 0.585473 + 1.70746i 0.0230530 + 0.0672313i
\(646\) 0 0
\(647\) 27.1413i 1.06703i 0.845790 + 0.533516i \(0.179130\pi\)
−0.845790 + 0.533516i \(0.820870\pi\)
\(648\) 0 0
\(649\) −2.68202 −0.105278
\(650\) 0 0
\(651\) 1.28335i 0.0502986i
\(652\) 0 0
\(653\) 12.6387 0.494589 0.247294 0.968940i \(-0.420458\pi\)
0.247294 + 0.968940i \(0.420458\pi\)
\(654\) 0 0
\(655\) −31.1180 + 10.6701i −1.21588 + 0.416914i
\(656\) 0 0
\(657\) 0.829004i 0.0323425i
\(658\) 0 0
\(659\) 20.7416i 0.807979i −0.914764 0.403990i \(-0.867623\pi\)
0.914764 0.403990i \(-0.132377\pi\)
\(660\) 0 0
\(661\) 31.3436i 1.21913i −0.792737 0.609563i \(-0.791345\pi\)
0.792737 0.609563i \(-0.208655\pi\)
\(662\) 0 0
\(663\) 30.4791i 1.18371i
\(664\) 0 0
\(665\) 4.64513 + 13.5470i 0.180131 + 0.525330i
\(666\) 0 0
\(667\) 17.2347 0.667331
\(668\) 0 0
\(669\) 24.8064i 0.959071i
\(670\) 0 0
\(671\) −22.0918 −0.852844
\(672\) 0 0
\(673\) 24.9548i 0.961937i −0.876738 0.480969i \(-0.840285\pi\)
0.876738 0.480969i \(-0.159715\pi\)
\(674\) 0 0
\(675\) 3.94795 3.06817i 0.151957 0.118094i
\(676\) 0 0
\(677\) −5.72843 −0.220161 −0.110081 0.993923i \(-0.535111\pi\)
−0.110081 + 0.993923i \(0.535111\pi\)
\(678\) 0 0
\(679\) 0.641074 0.0246021
\(680\) 0 0
\(681\) −6.10249 −0.233848
\(682\) 0 0
\(683\) −5.51566 −0.211051 −0.105525 0.994417i \(-0.533652\pi\)
−0.105525 + 0.994417i \(0.533652\pi\)
\(684\) 0 0
\(685\) −22.9122 + 7.85638i −0.875430 + 0.300177i
\(686\) 0 0
\(687\) 7.13626i 0.272265i
\(688\) 0 0
\(689\) 21.4196 0.816023
\(690\) 0 0
\(691\) 22.2544i 0.846599i 0.905990 + 0.423299i \(0.139128\pi\)
−0.905990 + 0.423299i \(0.860872\pi\)
\(692\) 0 0
\(693\) −1.98457 −0.0753877
\(694\) 0 0
\(695\) −22.6793 + 7.77650i −0.860273 + 0.294980i
\(696\) 0 0
\(697\) 39.9321i 1.51254i
\(698\) 0 0
\(699\) 26.3887i 0.998113i
\(700\) 0 0
\(701\) 34.2655i 1.29419i −0.762410 0.647095i \(-0.775984\pi\)
0.762410 0.647095i \(-0.224016\pi\)
\(702\) 0 0
\(703\) 67.4272i 2.54307i
\(704\) 0 0
\(705\) −19.0668 + 6.53782i −0.718097 + 0.246229i
\(706\) 0 0
\(707\) 12.3440 0.464246
\(708\) 0 0
\(709\) 3.36438i 0.126352i 0.998002 + 0.0631759i \(0.0201229\pi\)
−0.998002 + 0.0631759i \(0.979877\pi\)
\(710\) 0 0
\(711\) 11.0281 0.413588
\(712\) 0 0
\(713\) 10.6134i 0.397474i
\(714\) 0 0
\(715\) 18.7237 6.42019i 0.700228 0.240101i
\(716\) 0 0
\(717\) 11.8328 0.441903
\(718\) 0 0
\(719\) 23.7926 0.887315 0.443657 0.896196i \(-0.353681\pi\)
0.443657 + 0.896196i \(0.353681\pi\)
\(720\) 0 0
\(721\) 15.6671 0.583475
\(722\) 0 0
\(723\) −19.1963 −0.713920
\(724\) 0 0
\(725\) −6.39406 8.22753i −0.237469 0.305563i
\(726\) 0 0
\(727\) 10.4614i 0.387992i −0.981002 0.193996i \(-0.937855\pi\)
0.981002 0.193996i \(-0.0621448\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 5.51605i 0.204019i
\(732\) 0 0
\(733\) 14.3975 0.531783 0.265891 0.964003i \(-0.414334\pi\)
0.265891 + 0.964003i \(0.414334\pi\)
\(734\) 0 0
\(735\) −0.725275 2.11518i −0.0267522 0.0780195i
\(736\) 0 0
\(737\) 11.9355i 0.439650i
\(738\) 0 0
\(739\) 19.5159i 0.717905i 0.933356 + 0.358952i \(0.116866\pi\)
−0.933356 + 0.358952i \(0.883134\pi\)
\(740\) 0 0
\(741\) 28.5676i 1.04946i
\(742\) 0 0
\(743\) 21.0471i 0.772143i −0.922469 0.386072i \(-0.873832\pi\)
0.922469 0.386072i \(-0.126168\pi\)
\(744\) 0 0
\(745\) −22.4594 + 7.70110i −0.822847 + 0.282146i
\(746\) 0 0
\(747\) −2.69790 −0.0987110
\(748\) 0 0
\(749\) 16.6552i 0.608566i
\(750\) 0 0
\(751\) 40.0984 1.46321 0.731606 0.681728i \(-0.238771\pi\)
0.731606 + 0.681728i \(0.238771\pi\)
\(752\) 0 0
\(753\) 1.62899i 0.0593638i
\(754\) 0 0
\(755\) −4.01545 11.7106i −0.146137 0.426192i
\(756\) 0 0
\(757\) 11.1584 0.405560 0.202780 0.979224i \(-0.435002\pi\)
0.202780 + 0.979224i \(0.435002\pi\)
\(758\) 0 0
\(759\) −16.4125 −0.595735
\(760\) 0 0
\(761\) −49.3013 −1.78717 −0.893586 0.448893i \(-0.851819\pi\)
−0.893586 + 0.448893i \(0.851819\pi\)
\(762\) 0 0
\(763\) 14.9152 0.539965
\(764\) 0 0
\(765\) −14.4534 + 4.95594i −0.522565 + 0.179183i
\(766\) 0 0
\(767\) 6.02799i 0.217658i
\(768\) 0 0
\(769\) −45.0982 −1.62628 −0.813141 0.582066i \(-0.802244\pi\)
−0.813141 + 0.582066i \(0.802244\pi\)
\(770\) 0 0
\(771\) 1.89332i 0.0681862i
\(772\) 0 0
\(773\) −28.0013 −1.00714 −0.503568 0.863956i \(-0.667980\pi\)
−0.503568 + 0.863956i \(0.667980\pi\)
\(774\) 0 0
\(775\) 5.06662 3.93755i 0.181998 0.141441i
\(776\) 0 0
\(777\) 10.5278i 0.377684i
\(778\) 0 0
\(779\) 37.4278i 1.34099i
\(780\) 0 0
\(781\) 14.3501i 0.513485i
\(782\) 0 0
\(783\) 2.08400i 0.0744760i
\(784\) 0 0
\(785\) −10.9147 31.8315i −0.389563 1.13611i
\(786\) 0 0
\(787\) 5.29498 0.188746 0.0943728 0.995537i \(-0.469915\pi\)
0.0943728 + 0.995537i \(0.469915\pi\)
\(788\) 0 0
\(789\) 4.66210i 0.165975i
\(790\) 0 0
\(791\) −2.41294 −0.0857942
\(792\) 0 0
\(793\) 49.6526i 1.76321i
\(794\) 0 0
\(795\) 3.48286 + 10.1574i 0.123524 + 0.360244i
\(796\) 0 0
\(797\) 41.9018 1.48424 0.742119 0.670268i \(-0.233821\pi\)
0.742119 + 0.670268i \(0.233821\pi\)
\(798\) 0 0
\(799\) 61.5963 2.17912
\(800\) 0 0
\(801\) 2.66995 0.0943379
\(802\) 0 0
\(803\) 1.64522 0.0580585
\(804\) 0 0
\(805\) −5.99804 17.4926i −0.211403 0.616532i
\(806\) 0 0
\(807\) 12.3189i 0.433647i
\(808\) 0 0
\(809\) −33.9710 −1.19436 −0.597178 0.802108i \(-0.703712\pi\)
−0.597178 + 0.802108i \(0.703712\pi\)
\(810\) 0 0
\(811\) 35.2089i 1.23635i 0.786040 + 0.618176i \(0.212128\pi\)
−0.786040 + 0.618176i \(0.787872\pi\)
\(812\) 0 0
\(813\) −25.4743 −0.893422
\(814\) 0 0
\(815\) 4.51988 + 13.1817i 0.158324 + 0.461734i
\(816\) 0 0
\(817\) 5.17012i 0.180879i
\(818\) 0 0
\(819\) 4.46045i 0.155861i
\(820\) 0 0
\(821\) 3.87307i 0.135171i 0.997713 + 0.0675855i \(0.0215296\pi\)
−0.997713 + 0.0675855i \(0.978470\pi\)
\(822\) 0 0
\(823\) 11.7389i 0.409194i 0.978846 + 0.204597i \(0.0655884\pi\)
−0.978846 + 0.204597i \(0.934412\pi\)
\(824\) 0 0
\(825\) 6.08901 + 7.83501i 0.211992 + 0.272780i
\(826\) 0 0
\(827\) −11.6682 −0.405744 −0.202872 0.979205i \(-0.565028\pi\)
−0.202872 + 0.979205i \(0.565028\pi\)
\(828\) 0 0
\(829\) 31.3408i 1.08851i −0.838920 0.544255i \(-0.816813\pi\)
0.838920 0.544255i \(-0.183187\pi\)
\(830\) 0 0
\(831\) −15.5659 −0.539976
\(832\) 0 0
\(833\) 6.83320i 0.236756i
\(834\) 0 0
\(835\) −13.8418 + 4.74623i −0.479015 + 0.164250i
\(836\) 0 0
\(837\) 1.28335 0.0443592
\(838\) 0 0
\(839\) −36.2751 −1.25236 −0.626178 0.779680i \(-0.715382\pi\)
−0.626178 + 0.779680i \(0.715382\pi\)
\(840\) 0 0
\(841\) 24.6570 0.850240
\(842\) 0 0
\(843\) −31.7854 −1.09475
\(844\) 0 0
\(845\) −5.00118 14.5854i −0.172046 0.501751i
\(846\) 0 0
\(847\) 7.06147i 0.242635i
\(848\) 0 0
\(849\) 24.6006 0.844290
\(850\) 0 0
\(851\) 87.0656i 2.98457i
\(852\) 0 0
\(853\) −7.35109 −0.251696 −0.125848 0.992050i \(-0.540165\pi\)
−0.125848 + 0.992050i \(0.540165\pi\)
\(854\) 0 0
\(855\) 13.5470 4.64513i 0.463297 0.158860i
\(856\) 0 0
\(857\) 32.9054i 1.12403i 0.827128 + 0.562014i \(0.189973\pi\)
−0.827128 + 0.562014i \(0.810027\pi\)
\(858\) 0 0
\(859\) 47.6274i 1.62502i 0.582944 + 0.812512i \(0.301901\pi\)
−0.582944 + 0.812512i \(0.698099\pi\)
\(860\) 0 0
\(861\) 5.84384i 0.199157i
\(862\) 0 0
\(863\) 9.15980i 0.311803i 0.987773 + 0.155902i \(0.0498283\pi\)
−0.987773 + 0.155902i \(0.950172\pi\)
\(864\) 0 0
\(865\) 5.79529 + 16.9013i 0.197046 + 0.574661i
\(866\) 0 0
\(867\) 29.6926 1.00841
\(868\) 0 0
\(869\) 21.8862i 0.742437i
\(870\) 0 0
\(871\) −26.8257 −0.908956
\(872\) 0 0
\(873\) 0.641074i 0.0216971i
\(874\) 0 0
\(875\) −6.12536 + 9.35307i −0.207075 + 0.316192i
\(876\) 0 0
\(877\) −11.9012 −0.401876 −0.200938 0.979604i \(-0.564399\pi\)
−0.200938 + 0.979604i \(0.564399\pi\)
\(878\) 0 0
\(879\) 3.65931 0.123425
\(880\) 0 0
\(881\) 0.573821 0.0193325 0.00966626 0.999953i \(-0.496923\pi\)
0.00966626 + 0.999953i \(0.496923\pi\)
\(882\) 0 0
\(883\) −15.2575 −0.513456 −0.256728 0.966484i \(-0.582644\pi\)
−0.256728 + 0.966484i \(0.582644\pi\)
\(884\) 0 0
\(885\) −2.85852 + 0.980160i −0.0960881 + 0.0329477i
\(886\) 0 0
\(887\) 12.3853i 0.415858i −0.978144 0.207929i \(-0.933328\pi\)
0.978144 0.207929i \(-0.0666723\pi\)
\(888\) 0 0
\(889\) 18.6981 0.627115
\(890\) 0 0
\(891\) 1.98457i 0.0664857i
\(892\) 0 0
\(893\) −57.7333 −1.93197
\(894\) 0 0
\(895\) −18.1086 + 6.20928i −0.605305 + 0.207553i
\(896\) 0 0
\(897\) 36.8880i 1.23165i
\(898\) 0 0
\(899\) 2.67451i 0.0891998i
\(900\) 0 0
\(901\) 32.8139i 1.09319i
\(902\) 0 0
\(903\) 0.807243i 0.0268634i
\(904\) 0 0
\(905\) −12.9930 + 4.45519i −0.431903 + 0.148095i
\(906\) 0 0
\(907\) 17.4322 0.578826 0.289413 0.957204i \(-0.406540\pi\)
0.289413 + 0.957204i \(0.406540\pi\)
\(908\) 0 0
\(909\) 12.3440i 0.409426i
\(910\) 0 0
\(911\) 9.42203 0.312166 0.156083 0.987744i \(-0.450113\pi\)
0.156083 + 0.987744i \(0.450113\pi\)
\(912\) 0 0
\(913\) 5.35418i 0.177198i
\(914\) 0 0
\(915\) −23.5456 + 8.07358i −0.778395 + 0.266904i
\(916\) 0 0
\(917\) 14.7118 0.485825
\(918\) 0 0
\(919\) 20.0200 0.660398 0.330199 0.943911i \(-0.392884\pi\)
0.330199 + 0.943911i \(0.392884\pi\)
\(920\) 0 0
\(921\) −23.6180 −0.778238
\(922\) 0 0
\(923\) 32.2526 1.06161
\(924\) 0 0
\(925\) −41.5634 + 32.3012i −1.36660 + 1.06206i
\(926\) 0 0
\(927\) 15.6671i 0.514576i
\(928\) 0 0
\(929\) 46.9433 1.54016 0.770081 0.637947i \(-0.220216\pi\)
0.770081 + 0.637947i \(0.220216\pi\)
\(930\) 0 0
\(931\) 6.40466i 0.209904i
\(932\) 0 0
\(933\) 29.5891 0.968705
\(934\) 0 0
\(935\) −9.83544 28.6839i −0.321653 0.938064i
\(936\) 0 0
\(937\) 48.8178i 1.59481i −0.603446 0.797404i \(-0.706206\pi\)
0.603446 0.797404i \(-0.293794\pi\)
\(938\) 0 0
\(939\) 33.1631i 1.08224i
\(940\) 0 0
\(941\) 18.9062i 0.616324i −0.951334 0.308162i \(-0.900286\pi\)
0.951334 0.308162i \(-0.0997139\pi\)
\(942\) 0 0
\(943\) 48.3287i 1.57380i
\(944\) 0 0
\(945\) −2.11518 + 0.725275i −0.0688067 + 0.0235932i
\(946\) 0 0
\(947\) −23.8515 −0.775068 −0.387534 0.921855i \(-0.626673\pi\)
−0.387534 + 0.921855i \(0.626673\pi\)
\(948\) 0 0
\(949\) 3.69773i 0.120033i
\(950\) 0 0
\(951\) −20.3788 −0.660829
\(952\) 0 0
\(953\) 8.36369i 0.270927i −0.990782 0.135463i \(-0.956748\pi\)
0.990782 0.135463i \(-0.0432523\pi\)
\(954\) 0 0
\(955\) −6.45194 18.8163i −0.208780 0.608882i
\(956\) 0 0
\(957\) 4.13585 0.133693
\(958\) 0 0
\(959\) 10.8323 0.349793
\(960\) 0 0
\(961\) −29.3530 −0.946871
\(962\) 0 0
\(963\) 16.6552 0.536705
\(964\) 0 0
\(965\) 19.1576 6.56897i 0.616706 0.211463i
\(966\) 0 0
\(967\) 12.3031i 0.395642i 0.980238 + 0.197821i \(0.0633866\pi\)
−0.980238 + 0.197821i \(0.936613\pi\)
\(968\) 0 0
\(969\) −43.7643 −1.40591
\(970\) 0 0
\(971\) 22.8211i 0.732362i 0.930544 + 0.366181i \(0.119335\pi\)
−0.930544 + 0.366181i \(0.880665\pi\)
\(972\) 0 0
\(973\) 10.7222 0.343736
\(974\) 0 0
\(975\) 17.6096 13.6854i 0.563960 0.438284i
\(976\) 0 0
\(977\) 26.6256i 0.851828i 0.904764 + 0.425914i \(0.140047\pi\)
−0.904764 + 0.425914i \(0.859953\pi\)
\(978\) 0 0
\(979\) 5.29871i 0.169347i
\(980\) 0 0
\(981\) 14.9152i 0.476204i
\(982\) 0 0
\(983\) 52.9053i 1.68742i 0.536801 + 0.843709i \(0.319633\pi\)
−0.536801 + 0.843709i \(0.680367\pi\)
\(984\) 0 0
\(985\) 5.55521 + 16.2011i 0.177004 + 0.516210i
\(986\) 0 0
\(987\) 9.01427 0.286927
\(988\) 0 0
\(989\) 6.67593i 0.212282i
\(990\) 0 0
\(991\) 31.6648 1.00586 0.502932 0.864326i \(-0.332255\pi\)
0.502932 + 0.864326i \(0.332255\pi\)
\(992\) 0 0
\(993\) 1.14980i 0.0364878i
\(994\) 0 0
\(995\) 11.6621 + 34.0110i 0.369712 + 1.07822i
\(996\) 0 0
\(997\) −41.9637 −1.32900 −0.664502 0.747286i \(-0.731356\pi\)
−0.664502 + 0.747286i \(0.731356\pi\)
\(998\) 0 0
\(999\) −10.5278 −0.333086
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3360.2.j.e.1009.13 32
4.3 odd 2 840.2.j.f.589.22 yes 32
5.4 even 2 3360.2.j.f.1009.19 32
8.3 odd 2 840.2.j.e.589.12 yes 32
8.5 even 2 3360.2.j.f.1009.20 32
20.19 odd 2 840.2.j.e.589.11 32
40.19 odd 2 840.2.j.f.589.21 yes 32
40.29 even 2 inner 3360.2.j.e.1009.14 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.j.e.589.11 32 20.19 odd 2
840.2.j.e.589.12 yes 32 8.3 odd 2
840.2.j.f.589.21 yes 32 40.19 odd 2
840.2.j.f.589.22 yes 32 4.3 odd 2
3360.2.j.e.1009.13 32 1.1 even 1 trivial
3360.2.j.e.1009.14 32 40.29 even 2 inner
3360.2.j.f.1009.19 32 5.4 even 2
3360.2.j.f.1009.20 32 8.5 even 2