Properties

Label 3360.2.g.a.1681.6
Level $3360$
Weight $2$
Character 3360.1681
Analytic conductor $26.830$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3360,2,Mod(1681,3360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3360.1681"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.8297350792\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1681.6
Root \(0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 3360.1681
Dual form 3360.2.g.a.1681.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} -1.00000i q^{5} -1.00000 q^{7} -1.00000 q^{9} -1.08239i q^{11} -1.74603i q^{13} +1.00000 q^{15} -3.69552 q^{17} +8.26998i q^{19} -1.00000i q^{21} +7.69552 q^{23} -1.00000 q^{25} -1.00000i q^{27} -6.35916i q^{29} -3.55166 q^{31} +1.08239 q^{33} +1.00000i q^{35} +3.69552i q^{37} +1.74603 q^{39} -4.99321 q^{41} +0.469266i q^{43} +1.00000i q^{45} +1.69552 q^{47} +1.00000 q^{49} -3.69552i q^{51} +10.3086i q^{53} -1.08239 q^{55} -8.26998 q^{57} +9.39104i q^{59} -0.236226i q^{61} +1.00000 q^{63} -1.74603 q^{65} +5.42063i q^{67} +7.69552i q^{69} +2.40968 q^{71} -7.17574 q^{73} -1.00000i q^{75} +1.08239i q^{77} +9.11615 q^{79} +1.00000 q^{81} +5.28093i q^{83} +3.69552i q^{85} +6.35916 q^{87} +8.28772 q^{89} +1.74603i q^{91} -3.55166i q^{93} +8.26998 q^{95} +0.681382 q^{97} +1.08239i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{7} - 8 q^{9} + 8 q^{15} + 32 q^{23} - 8 q^{25} - 32 q^{31} - 16 q^{47} + 8 q^{49} + 8 q^{63} - 16 q^{79} + 8 q^{81} + 16 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times\).

\(n\) \(421\) \(1121\) \(1471\) \(1921\) \(2017\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 1.08239i − 0.326354i −0.986597 0.163177i \(-0.947826\pi\)
0.986597 0.163177i \(-0.0521741\pi\)
\(12\) 0 0
\(13\) − 1.74603i − 0.484263i −0.970243 0.242131i \(-0.922153\pi\)
0.970243 0.242131i \(-0.0778465\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −3.69552 −0.896295 −0.448147 0.893960i \(-0.647916\pi\)
−0.448147 + 0.893960i \(0.647916\pi\)
\(18\) 0 0
\(19\) 8.26998i 1.89726i 0.316382 + 0.948632i \(0.397532\pi\)
−0.316382 + 0.948632i \(0.602468\pi\)
\(20\) 0 0
\(21\) − 1.00000i − 0.218218i
\(22\) 0 0
\(23\) 7.69552 1.60463 0.802313 0.596903i \(-0.203602\pi\)
0.802313 + 0.596903i \(0.203602\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) − 6.35916i − 1.18087i −0.807086 0.590433i \(-0.798957\pi\)
0.807086 0.590433i \(-0.201043\pi\)
\(30\) 0 0
\(31\) −3.55166 −0.637897 −0.318948 0.947772i \(-0.603330\pi\)
−0.318948 + 0.947772i \(0.603330\pi\)
\(32\) 0 0
\(33\) 1.08239 0.188420
\(34\) 0 0
\(35\) 1.00000i 0.169031i
\(36\) 0 0
\(37\) 3.69552i 0.607539i 0.952745 + 0.303770i \(0.0982453\pi\)
−0.952745 + 0.303770i \(0.901755\pi\)
\(38\) 0 0
\(39\) 1.74603 0.279589
\(40\) 0 0
\(41\) −4.99321 −0.779809 −0.389904 0.920855i \(-0.627492\pi\)
−0.389904 + 0.920855i \(0.627492\pi\)
\(42\) 0 0
\(43\) 0.469266i 0.0715624i 0.999360 + 0.0357812i \(0.0113919\pi\)
−0.999360 + 0.0357812i \(0.988608\pi\)
\(44\) 0 0
\(45\) 1.00000i 0.149071i
\(46\) 0 0
\(47\) 1.69552 0.247317 0.123658 0.992325i \(-0.460537\pi\)
0.123658 + 0.992325i \(0.460537\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) − 3.69552i − 0.517476i
\(52\) 0 0
\(53\) 10.3086i 1.41600i 0.706212 + 0.708001i \(0.250403\pi\)
−0.706212 + 0.708001i \(0.749597\pi\)
\(54\) 0 0
\(55\) −1.08239 −0.145950
\(56\) 0 0
\(57\) −8.26998 −1.09539
\(58\) 0 0
\(59\) 9.39104i 1.22261i 0.791396 + 0.611304i \(0.209355\pi\)
−0.791396 + 0.611304i \(0.790645\pi\)
\(60\) 0 0
\(61\) − 0.236226i − 0.0302456i −0.999886 0.0151228i \(-0.995186\pi\)
0.999886 0.0151228i \(-0.00481393\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) −1.74603 −0.216569
\(66\) 0 0
\(67\) 5.42063i 0.662235i 0.943590 + 0.331118i \(0.107426\pi\)
−0.943590 + 0.331118i \(0.892574\pi\)
\(68\) 0 0
\(69\) 7.69552i 0.926432i
\(70\) 0 0
\(71\) 2.40968 0.285976 0.142988 0.989724i \(-0.454329\pi\)
0.142988 + 0.989724i \(0.454329\pi\)
\(72\) 0 0
\(73\) −7.17574 −0.839856 −0.419928 0.907557i \(-0.637945\pi\)
−0.419928 + 0.907557i \(0.637945\pi\)
\(74\) 0 0
\(75\) − 1.00000i − 0.115470i
\(76\) 0 0
\(77\) 1.08239i 0.123350i
\(78\) 0 0
\(79\) 9.11615 1.02565 0.512823 0.858494i \(-0.328600\pi\)
0.512823 + 0.858494i \(0.328600\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 5.28093i 0.579657i 0.957079 + 0.289829i \(0.0935983\pi\)
−0.957079 + 0.289829i \(0.906402\pi\)
\(84\) 0 0
\(85\) 3.69552i 0.400835i
\(86\) 0 0
\(87\) 6.35916 0.681774
\(88\) 0 0
\(89\) 8.28772 0.878496 0.439248 0.898366i \(-0.355245\pi\)
0.439248 + 0.898366i \(0.355245\pi\)
\(90\) 0 0
\(91\) 1.74603i 0.183034i
\(92\) 0 0
\(93\) − 3.55166i − 0.368290i
\(94\) 0 0
\(95\) 8.26998 0.848482
\(96\) 0 0
\(97\) 0.681382 0.0691838 0.0345919 0.999402i \(-0.488987\pi\)
0.0345919 + 0.999402i \(0.488987\pi\)
\(98\) 0 0
\(99\) 1.08239i 0.108785i
\(100\) 0 0
\(101\) 16.2195i 1.61390i 0.590622 + 0.806948i \(0.298883\pi\)
−0.590622 + 0.806948i \(0.701117\pi\)
\(102\) 0 0
\(103\) −14.2741 −1.40647 −0.703237 0.710956i \(-0.748263\pi\)
−0.703237 + 0.710956i \(0.748263\pi\)
\(104\) 0 0
\(105\) −1.00000 −0.0975900
\(106\) 0 0
\(107\) 14.6560i 1.41684i 0.705789 + 0.708422i \(0.250593\pi\)
−0.705789 + 0.708422i \(0.749407\pi\)
\(108\) 0 0
\(109\) 5.96722i 0.571556i 0.958296 + 0.285778i \(0.0922520\pi\)
−0.958296 + 0.285778i \(0.907748\pi\)
\(110\) 0 0
\(111\) −3.69552 −0.350763
\(112\) 0 0
\(113\) −3.98226 −0.374620 −0.187310 0.982301i \(-0.559977\pi\)
−0.187310 + 0.982301i \(0.559977\pi\)
\(114\) 0 0
\(115\) − 7.69552i − 0.717611i
\(116\) 0 0
\(117\) 1.74603i 0.161421i
\(118\) 0 0
\(119\) 3.69552 0.338768
\(120\) 0 0
\(121\) 9.82843 0.893493
\(122\) 0 0
\(123\) − 4.99321i − 0.450223i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −5.96722 −0.529505 −0.264753 0.964316i \(-0.585290\pi\)
−0.264753 + 0.964316i \(0.585290\pi\)
\(128\) 0 0
\(129\) −0.469266 −0.0413166
\(130\) 0 0
\(131\) 0.164784i 0.0143973i 0.999974 + 0.00719864i \(0.00229142\pi\)
−0.999974 + 0.00719864i \(0.997709\pi\)
\(132\) 0 0
\(133\) − 8.26998i − 0.717098i
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −8.59955 −0.734709 −0.367355 0.930081i \(-0.619736\pi\)
−0.367355 + 0.930081i \(0.619736\pi\)
\(138\) 0 0
\(139\) 19.0521i 1.61597i 0.589200 + 0.807987i \(0.299443\pi\)
−0.589200 + 0.807987i \(0.700557\pi\)
\(140\) 0 0
\(141\) 1.69552i 0.142788i
\(142\) 0 0
\(143\) −1.88989 −0.158041
\(144\) 0 0
\(145\) −6.35916 −0.528100
\(146\) 0 0
\(147\) 1.00000i 0.0824786i
\(148\) 0 0
\(149\) − 11.2558i − 0.922115i −0.887370 0.461057i \(-0.847470\pi\)
0.887370 0.461057i \(-0.152530\pi\)
\(150\) 0 0
\(151\) −8.54903 −0.695710 −0.347855 0.937548i \(-0.613090\pi\)
−0.347855 + 0.937548i \(0.613090\pi\)
\(152\) 0 0
\(153\) 3.69552 0.298765
\(154\) 0 0
\(155\) 3.55166i 0.285276i
\(156\) 0 0
\(157\) − 3.48022i − 0.277752i −0.990310 0.138876i \(-0.955651\pi\)
0.990310 0.138876i \(-0.0443489\pi\)
\(158\) 0 0
\(159\) −10.3086 −0.817529
\(160\) 0 0
\(161\) −7.69552 −0.606492
\(162\) 0 0
\(163\) − 2.92177i − 0.228851i −0.993432 0.114425i \(-0.963497\pi\)
0.993432 0.114425i \(-0.0365027\pi\)
\(164\) 0 0
\(165\) − 1.08239i − 0.0842641i
\(166\) 0 0
\(167\) 12.9127 0.999215 0.499607 0.866252i \(-0.333478\pi\)
0.499607 + 0.866252i \(0.333478\pi\)
\(168\) 0 0
\(169\) 9.95136 0.765489
\(170\) 0 0
\(171\) − 8.26998i − 0.632421i
\(172\) 0 0
\(173\) − 17.2900i − 1.31453i −0.753658 0.657267i \(-0.771712\pi\)
0.753658 0.657267i \(-0.228288\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 0 0
\(177\) −9.39104 −0.705874
\(178\) 0 0
\(179\) 14.5609i 1.08833i 0.838978 + 0.544166i \(0.183154\pi\)
−0.838978 + 0.544166i \(0.816846\pi\)
\(180\) 0 0
\(181\) 19.4425i 1.44515i 0.691292 + 0.722576i \(0.257042\pi\)
−0.691292 + 0.722576i \(0.742958\pi\)
\(182\) 0 0
\(183\) 0.236226 0.0174623
\(184\) 0 0
\(185\) 3.69552 0.271700
\(186\) 0 0
\(187\) 4.00000i 0.292509i
\(188\) 0 0
\(189\) 1.00000i 0.0727393i
\(190\) 0 0
\(191\) −22.7392 −1.64535 −0.822677 0.568509i \(-0.807520\pi\)
−0.822677 + 0.568509i \(0.807520\pi\)
\(192\) 0 0
\(193\) −26.9050 −1.93666 −0.968332 0.249664i \(-0.919680\pi\)
−0.968332 + 0.249664i \(0.919680\pi\)
\(194\) 0 0
\(195\) − 1.74603i − 0.125036i
\(196\) 0 0
\(197\) 2.40968i 0.171682i 0.996309 + 0.0858412i \(0.0273578\pi\)
−0.996309 + 0.0858412i \(0.972642\pi\)
\(198\) 0 0
\(199\) −12.1927 −0.864314 −0.432157 0.901798i \(-0.642247\pi\)
−0.432157 + 0.901798i \(0.642247\pi\)
\(200\) 0 0
\(201\) −5.42063 −0.382342
\(202\) 0 0
\(203\) 6.35916i 0.446326i
\(204\) 0 0
\(205\) 4.99321i 0.348741i
\(206\) 0 0
\(207\) −7.69552 −0.534875
\(208\) 0 0
\(209\) 8.95136 0.619179
\(210\) 0 0
\(211\) 26.8368i 1.84752i 0.382974 + 0.923759i \(0.374900\pi\)
−0.382974 + 0.923759i \(0.625100\pi\)
\(212\) 0 0
\(213\) 2.40968i 0.165108i
\(214\) 0 0
\(215\) 0.469266 0.0320037
\(216\) 0 0
\(217\) 3.55166 0.241102
\(218\) 0 0
\(219\) − 7.17574i − 0.484891i
\(220\) 0 0
\(221\) 6.45250i 0.434042i
\(222\) 0 0
\(223\) −8.76017 −0.586624 −0.293312 0.956017i \(-0.594758\pi\)
−0.293312 + 0.956017i \(0.594758\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) − 20.7375i − 1.37640i −0.725522 0.688199i \(-0.758402\pi\)
0.725522 0.688199i \(-0.241598\pi\)
\(228\) 0 0
\(229\) − 11.1193i − 0.734786i −0.930066 0.367393i \(-0.880250\pi\)
0.930066 0.367393i \(-0.119750\pi\)
\(230\) 0 0
\(231\) −1.08239 −0.0712162
\(232\) 0 0
\(233\) 17.3179 1.13453 0.567266 0.823535i \(-0.308001\pi\)
0.567266 + 0.823535i \(0.308001\pi\)
\(234\) 0 0
\(235\) − 1.69552i − 0.110603i
\(236\) 0 0
\(237\) 9.11615i 0.592157i
\(238\) 0 0
\(239\) 14.5964 0.944160 0.472080 0.881556i \(-0.343503\pi\)
0.472080 + 0.881556i \(0.343503\pi\)
\(240\) 0 0
\(241\) 22.3616 1.44044 0.720219 0.693747i \(-0.244041\pi\)
0.720219 + 0.693747i \(0.244041\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) − 1.00000i − 0.0638877i
\(246\) 0 0
\(247\) 14.4397 0.918774
\(248\) 0 0
\(249\) −5.28093 −0.334665
\(250\) 0 0
\(251\) 23.7662i 1.50011i 0.661375 + 0.750055i \(0.269973\pi\)
−0.661375 + 0.750055i \(0.730027\pi\)
\(252\) 0 0
\(253\) − 8.32957i − 0.523676i
\(254\) 0 0
\(255\) −3.69552 −0.231422
\(256\) 0 0
\(257\) 17.3105 1.07980 0.539900 0.841729i \(-0.318462\pi\)
0.539900 + 0.841729i \(0.318462\pi\)
\(258\) 0 0
\(259\) − 3.69552i − 0.229628i
\(260\) 0 0
\(261\) 6.35916i 0.393622i
\(262\) 0 0
\(263\) −6.97720 −0.430232 −0.215116 0.976588i \(-0.569013\pi\)
−0.215116 + 0.976588i \(0.569013\pi\)
\(264\) 0 0
\(265\) 10.3086 0.633255
\(266\) 0 0
\(267\) 8.28772i 0.507200i
\(268\) 0 0
\(269\) 7.61050i 0.464020i 0.972713 + 0.232010i \(0.0745303\pi\)
−0.972713 + 0.232010i \(0.925470\pi\)
\(270\) 0 0
\(271\) −32.0581 −1.94739 −0.973695 0.227854i \(-0.926829\pi\)
−0.973695 + 0.227854i \(0.926829\pi\)
\(272\) 0 0
\(273\) −1.74603 −0.105675
\(274\) 0 0
\(275\) 1.08239i 0.0652707i
\(276\) 0 0
\(277\) − 22.4776i − 1.35055i −0.737567 0.675274i \(-0.764025\pi\)
0.737567 0.675274i \(-0.235975\pi\)
\(278\) 0 0
\(279\) 3.55166 0.212632
\(280\) 0 0
\(281\) 6.40690 0.382203 0.191102 0.981570i \(-0.438794\pi\)
0.191102 + 0.981570i \(0.438794\pi\)
\(282\) 0 0
\(283\) − 0.371418i − 0.0220785i −0.999939 0.0110393i \(-0.996486\pi\)
0.999939 0.0110393i \(-0.00351398\pi\)
\(284\) 0 0
\(285\) 8.26998i 0.489871i
\(286\) 0 0
\(287\) 4.99321 0.294740
\(288\) 0 0
\(289\) −3.34315 −0.196656
\(290\) 0 0
\(291\) 0.681382i 0.0399433i
\(292\) 0 0
\(293\) 10.5079i 0.613880i 0.951729 + 0.306940i \(0.0993051\pi\)
−0.951729 + 0.306940i \(0.900695\pi\)
\(294\) 0 0
\(295\) 9.39104 0.546767
\(296\) 0 0
\(297\) −1.08239 −0.0628068
\(298\) 0 0
\(299\) − 13.4366i − 0.777061i
\(300\) 0 0
\(301\) − 0.469266i − 0.0270481i
\(302\) 0 0
\(303\) −16.2195 −0.931784
\(304\) 0 0
\(305\) −0.236226 −0.0135263
\(306\) 0 0
\(307\) − 14.8831i − 0.849424i −0.905329 0.424712i \(-0.860375\pi\)
0.905329 0.424712i \(-0.139625\pi\)
\(308\) 0 0
\(309\) − 14.2741i − 0.812028i
\(310\) 0 0
\(311\) 19.0615 1.08088 0.540438 0.841384i \(-0.318258\pi\)
0.540438 + 0.841384i \(0.318258\pi\)
\(312\) 0 0
\(313\) 13.6165 0.769648 0.384824 0.922990i \(-0.374262\pi\)
0.384824 + 0.922990i \(0.374262\pi\)
\(314\) 0 0
\(315\) − 1.00000i − 0.0563436i
\(316\) 0 0
\(317\) 32.5473i 1.82804i 0.405670 + 0.914019i \(0.367038\pi\)
−0.405670 + 0.914019i \(0.632962\pi\)
\(318\) 0 0
\(319\) −6.88311 −0.385380
\(320\) 0 0
\(321\) −14.6560 −0.818015
\(322\) 0 0
\(323\) − 30.5619i − 1.70051i
\(324\) 0 0
\(325\) 1.74603i 0.0968526i
\(326\) 0 0
\(327\) −5.96722 −0.329988
\(328\) 0 0
\(329\) −1.69552 −0.0934769
\(330\) 0 0
\(331\) − 32.4936i − 1.78601i −0.450047 0.893005i \(-0.648593\pi\)
0.450047 0.893005i \(-0.351407\pi\)
\(332\) 0 0
\(333\) − 3.69552i − 0.202513i
\(334\) 0 0
\(335\) 5.42063 0.296161
\(336\) 0 0
\(337\) −23.4366 −1.27668 −0.638338 0.769756i \(-0.720378\pi\)
−0.638338 + 0.769756i \(0.720378\pi\)
\(338\) 0 0
\(339\) − 3.98226i − 0.216287i
\(340\) 0 0
\(341\) 3.84429i 0.208180i
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 7.69552 0.414313
\(346\) 0 0
\(347\) − 8.04879i − 0.432082i −0.976384 0.216041i \(-0.930686\pi\)
0.976384 0.216041i \(-0.0693145\pi\)
\(348\) 0 0
\(349\) 15.9150i 0.851909i 0.904744 + 0.425955i \(0.140062\pi\)
−0.904744 + 0.425955i \(0.859938\pi\)
\(350\) 0 0
\(351\) −1.74603 −0.0931964
\(352\) 0 0
\(353\) 6.18155 0.329011 0.164505 0.986376i \(-0.447397\pi\)
0.164505 + 0.986376i \(0.447397\pi\)
\(354\) 0 0
\(355\) − 2.40968i − 0.127892i
\(356\) 0 0
\(357\) 3.69552i 0.195588i
\(358\) 0 0
\(359\) 19.1816 1.01237 0.506184 0.862426i \(-0.331056\pi\)
0.506184 + 0.862426i \(0.331056\pi\)
\(360\) 0 0
\(361\) −49.3926 −2.59961
\(362\) 0 0
\(363\) 9.82843i 0.515859i
\(364\) 0 0
\(365\) 7.17574i 0.375595i
\(366\) 0 0
\(367\) −36.4389 −1.90210 −0.951048 0.309042i \(-0.899991\pi\)
−0.951048 + 0.309042i \(0.899991\pi\)
\(368\) 0 0
\(369\) 4.99321 0.259936
\(370\) 0 0
\(371\) − 10.3086i − 0.535198i
\(372\) 0 0
\(373\) − 11.0447i − 0.571873i −0.958249 0.285937i \(-0.907695\pi\)
0.958249 0.285937i \(-0.0923047\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −11.1033 −0.571850
\(378\) 0 0
\(379\) 14.8605i 0.763330i 0.924301 + 0.381665i \(0.124649\pi\)
−0.924301 + 0.381665i \(0.875351\pi\)
\(380\) 0 0
\(381\) − 5.96722i − 0.305710i
\(382\) 0 0
\(383\) −32.3037 −1.65064 −0.825322 0.564663i \(-0.809006\pi\)
−0.825322 + 0.564663i \(0.809006\pi\)
\(384\) 0 0
\(385\) 1.08239 0.0551638
\(386\) 0 0
\(387\) − 0.469266i − 0.0238541i
\(388\) 0 0
\(389\) 16.7525i 0.849384i 0.905338 + 0.424692i \(0.139618\pi\)
−0.905338 + 0.424692i \(0.860382\pi\)
\(390\) 0 0
\(391\) −28.4389 −1.43822
\(392\) 0 0
\(393\) −0.164784 −0.00831227
\(394\) 0 0
\(395\) − 9.11615i − 0.458683i
\(396\) 0 0
\(397\) − 9.03604i − 0.453506i −0.973952 0.226753i \(-0.927189\pi\)
0.973952 0.226753i \(-0.0728110\pi\)
\(398\) 0 0
\(399\) 8.26998 0.414017
\(400\) 0 0
\(401\) 10.4306 0.520879 0.260440 0.965490i \(-0.416132\pi\)
0.260440 + 0.965490i \(0.416132\pi\)
\(402\) 0 0
\(403\) 6.20132i 0.308910i
\(404\) 0 0
\(405\) − 1.00000i − 0.0496904i
\(406\) 0 0
\(407\) 4.00000 0.198273
\(408\) 0 0
\(409\) 16.4762 0.814696 0.407348 0.913273i \(-0.366454\pi\)
0.407348 + 0.913273i \(0.366454\pi\)
\(410\) 0 0
\(411\) − 8.59955i − 0.424184i
\(412\) 0 0
\(413\) − 9.39104i − 0.462103i
\(414\) 0 0
\(415\) 5.28093 0.259231
\(416\) 0 0
\(417\) −19.0521 −0.932983
\(418\) 0 0
\(419\) 32.6810i 1.59657i 0.602278 + 0.798287i \(0.294260\pi\)
−0.602278 + 0.798287i \(0.705740\pi\)
\(420\) 0 0
\(421\) − 10.7821i − 0.525486i −0.964866 0.262743i \(-0.915373\pi\)
0.964866 0.262743i \(-0.0846271\pi\)
\(422\) 0 0
\(423\) −1.69552 −0.0824389
\(424\) 0 0
\(425\) 3.69552 0.179259
\(426\) 0 0
\(427\) 0.236226i 0.0114318i
\(428\) 0 0
\(429\) − 1.88989i − 0.0912450i
\(430\) 0 0
\(431\) 38.1978 1.83992 0.919961 0.392009i \(-0.128220\pi\)
0.919961 + 0.392009i \(0.128220\pi\)
\(432\) 0 0
\(433\) −12.5113 −0.601257 −0.300628 0.953741i \(-0.597196\pi\)
−0.300628 + 0.953741i \(0.597196\pi\)
\(434\) 0 0
\(435\) − 6.35916i − 0.304898i
\(436\) 0 0
\(437\) 63.6418i 3.04440i
\(438\) 0 0
\(439\) 7.07921 0.337872 0.168936 0.985627i \(-0.445967\pi\)
0.168936 + 0.985627i \(0.445967\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) − 2.60578i − 0.123804i −0.998082 0.0619021i \(-0.980283\pi\)
0.998082 0.0619021i \(-0.0197167\pi\)
\(444\) 0 0
\(445\) − 8.28772i − 0.392876i
\(446\) 0 0
\(447\) 11.2558 0.532383
\(448\) 0 0
\(449\) 36.2470 1.71060 0.855301 0.518132i \(-0.173372\pi\)
0.855301 + 0.518132i \(0.173372\pi\)
\(450\) 0 0
\(451\) 5.40461i 0.254493i
\(452\) 0 0
\(453\) − 8.54903i − 0.401669i
\(454\) 0 0
\(455\) 1.74603 0.0818554
\(456\) 0 0
\(457\) −17.8808 −0.836430 −0.418215 0.908348i \(-0.637344\pi\)
−0.418215 + 0.908348i \(0.637344\pi\)
\(458\) 0 0
\(459\) 3.69552i 0.172492i
\(460\) 0 0
\(461\) − 21.9227i − 1.02104i −0.859866 0.510520i \(-0.829453\pi\)
0.859866 0.510520i \(-0.170547\pi\)
\(462\) 0 0
\(463\) 18.2696 0.849062 0.424531 0.905413i \(-0.360439\pi\)
0.424531 + 0.905413i \(0.360439\pi\)
\(464\) 0 0
\(465\) −3.55166 −0.164704
\(466\) 0 0
\(467\) 0.892178i 0.0412851i 0.999787 + 0.0206425i \(0.00657119\pi\)
−0.999787 + 0.0206425i \(0.993429\pi\)
\(468\) 0 0
\(469\) − 5.42063i − 0.250301i
\(470\) 0 0
\(471\) 3.48022 0.160360
\(472\) 0 0
\(473\) 0.507930 0.0233547
\(474\) 0 0
\(475\) − 8.26998i − 0.379453i
\(476\) 0 0
\(477\) − 10.3086i − 0.472000i
\(478\) 0 0
\(479\) −29.9091 −1.36658 −0.683291 0.730146i \(-0.739452\pi\)
−0.683291 + 0.730146i \(0.739452\pi\)
\(480\) 0 0
\(481\) 6.45250 0.294209
\(482\) 0 0
\(483\) − 7.69552i − 0.350158i
\(484\) 0 0
\(485\) − 0.681382i − 0.0309400i
\(486\) 0 0
\(487\) 30.4125 1.37812 0.689061 0.724703i \(-0.258023\pi\)
0.689061 + 0.724703i \(0.258023\pi\)
\(488\) 0 0
\(489\) 2.92177 0.132127
\(490\) 0 0
\(491\) − 23.1043i − 1.04268i −0.853348 0.521341i \(-0.825432\pi\)
0.853348 0.521341i \(-0.174568\pi\)
\(492\) 0 0
\(493\) 23.5004i 1.05840i
\(494\) 0 0
\(495\) 1.08239 0.0486499
\(496\) 0 0
\(497\) −2.40968 −0.108089
\(498\) 0 0
\(499\) − 6.75110i − 0.302221i −0.988517 0.151110i \(-0.951715\pi\)
0.988517 0.151110i \(-0.0482849\pi\)
\(500\) 0 0
\(501\) 12.9127i 0.576897i
\(502\) 0 0
\(503\) −5.24227 −0.233741 −0.116871 0.993147i \(-0.537286\pi\)
−0.116871 + 0.993147i \(0.537286\pi\)
\(504\) 0 0
\(505\) 16.2195 0.721757
\(506\) 0 0
\(507\) 9.95136i 0.441956i
\(508\) 0 0
\(509\) 19.6761i 0.872126i 0.899916 + 0.436063i \(0.143627\pi\)
−0.899916 + 0.436063i \(0.856373\pi\)
\(510\) 0 0
\(511\) 7.17574 0.317436
\(512\) 0 0
\(513\) 8.26998 0.365129
\(514\) 0 0
\(515\) 14.2741i 0.628994i
\(516\) 0 0
\(517\) − 1.83522i − 0.0807127i
\(518\) 0 0
\(519\) 17.2900 0.758947
\(520\) 0 0
\(521\) −30.3978 −1.33175 −0.665876 0.746062i \(-0.731942\pi\)
−0.665876 + 0.746062i \(0.731942\pi\)
\(522\) 0 0
\(523\) − 18.2150i − 0.796485i −0.917280 0.398242i \(-0.869620\pi\)
0.917280 0.398242i \(-0.130380\pi\)
\(524\) 0 0
\(525\) 1.00000i 0.0436436i
\(526\) 0 0
\(527\) 13.1252 0.571743
\(528\) 0 0
\(529\) 36.2210 1.57483
\(530\) 0 0
\(531\) − 9.39104i − 0.407536i
\(532\) 0 0
\(533\) 8.71832i 0.377632i
\(534\) 0 0
\(535\) 14.6560 0.633632
\(536\) 0 0
\(537\) −14.5609 −0.628349
\(538\) 0 0
\(539\) − 1.08239i − 0.0466219i
\(540\) 0 0
\(541\) − 9.20255i − 0.395648i −0.980238 0.197824i \(-0.936612\pi\)
0.980238 0.197824i \(-0.0633875\pi\)
\(542\) 0 0
\(543\) −19.4425 −0.834359
\(544\) 0 0
\(545\) 5.96722 0.255608
\(546\) 0 0
\(547\) − 29.7167i − 1.27059i −0.772268 0.635297i \(-0.780878\pi\)
0.772268 0.635297i \(-0.219122\pi\)
\(548\) 0 0
\(549\) 0.236226i 0.0100819i
\(550\) 0 0
\(551\) 52.5901 2.24042
\(552\) 0 0
\(553\) −9.11615 −0.387658
\(554\) 0 0
\(555\) 3.69552i 0.156866i
\(556\) 0 0
\(557\) − 14.3678i − 0.608784i −0.952547 0.304392i \(-0.901547\pi\)
0.952547 0.304392i \(-0.0984533\pi\)
\(558\) 0 0
\(559\) 0.819355 0.0346550
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) 0 0
\(563\) − 40.4710i − 1.70565i −0.522199 0.852824i \(-0.674888\pi\)
0.522199 0.852824i \(-0.325112\pi\)
\(564\) 0 0
\(565\) 3.98226i 0.167535i
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) 39.0562 1.63732 0.818661 0.574277i \(-0.194717\pi\)
0.818661 + 0.574277i \(0.194717\pi\)
\(570\) 0 0
\(571\) − 2.82843i − 0.118366i −0.998247 0.0591830i \(-0.981150\pi\)
0.998247 0.0591830i \(-0.0188495\pi\)
\(572\) 0 0
\(573\) − 22.7392i − 0.949946i
\(574\) 0 0
\(575\) −7.69552 −0.320925
\(576\) 0 0
\(577\) 14.3801 0.598651 0.299325 0.954151i \(-0.403238\pi\)
0.299325 + 0.954151i \(0.403238\pi\)
\(578\) 0 0
\(579\) − 26.9050i − 1.11813i
\(580\) 0 0
\(581\) − 5.28093i − 0.219090i
\(582\) 0 0
\(583\) 11.1580 0.462117
\(584\) 0 0
\(585\) 1.74603 0.0721897
\(586\) 0 0
\(587\) 14.2658i 0.588813i 0.955680 + 0.294407i \(0.0951220\pi\)
−0.955680 + 0.294407i \(0.904878\pi\)
\(588\) 0 0
\(589\) − 29.3721i − 1.21026i
\(590\) 0 0
\(591\) −2.40968 −0.0991209
\(592\) 0 0
\(593\) 18.9500 0.778185 0.389092 0.921199i \(-0.372789\pi\)
0.389092 + 0.921199i \(0.372789\pi\)
\(594\) 0 0
\(595\) − 3.69552i − 0.151501i
\(596\) 0 0
\(597\) − 12.1927i − 0.499012i
\(598\) 0 0
\(599\) 2.01455 0.0823124 0.0411562 0.999153i \(-0.486896\pi\)
0.0411562 + 0.999153i \(0.486896\pi\)
\(600\) 0 0
\(601\) 13.9582 0.569365 0.284682 0.958622i \(-0.408112\pi\)
0.284682 + 0.958622i \(0.408112\pi\)
\(602\) 0 0
\(603\) − 5.42063i − 0.220745i
\(604\) 0 0
\(605\) − 9.82843i − 0.399582i
\(606\) 0 0
\(607\) 21.4868 0.872123 0.436062 0.899917i \(-0.356373\pi\)
0.436062 + 0.899917i \(0.356373\pi\)
\(608\) 0 0
\(609\) −6.35916 −0.257686
\(610\) 0 0
\(611\) − 2.96043i − 0.119766i
\(612\) 0 0
\(613\) − 18.7634i − 0.757845i −0.925428 0.378922i \(-0.876295\pi\)
0.925428 0.378922i \(-0.123705\pi\)
\(614\) 0 0
\(615\) −4.99321 −0.201346
\(616\) 0 0
\(617\) 11.5008 0.463005 0.231502 0.972834i \(-0.425636\pi\)
0.231502 + 0.972834i \(0.425636\pi\)
\(618\) 0 0
\(619\) 25.1577i 1.01117i 0.862776 + 0.505586i \(0.168724\pi\)
−0.862776 + 0.505586i \(0.831276\pi\)
\(620\) 0 0
\(621\) − 7.69552i − 0.308811i
\(622\) 0 0
\(623\) −8.28772 −0.332040
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 8.95136i 0.357483i
\(628\) 0 0
\(629\) − 13.6569i − 0.544534i
\(630\) 0 0
\(631\) −1.87977 −0.0748323 −0.0374161 0.999300i \(-0.511913\pi\)
−0.0374161 + 0.999300i \(0.511913\pi\)
\(632\) 0 0
\(633\) −26.8368 −1.06667
\(634\) 0 0
\(635\) 5.96722i 0.236802i
\(636\) 0 0
\(637\) − 1.74603i − 0.0691804i
\(638\) 0 0
\(639\) −2.40968 −0.0953254
\(640\) 0 0
\(641\) 32.7165 1.29222 0.646112 0.763242i \(-0.276394\pi\)
0.646112 + 0.763242i \(0.276394\pi\)
\(642\) 0 0
\(643\) 42.7402i 1.68551i 0.538297 + 0.842755i \(0.319068\pi\)
−0.538297 + 0.842755i \(0.680932\pi\)
\(644\) 0 0
\(645\) 0.469266i 0.0184773i
\(646\) 0 0
\(647\) −24.1080 −0.947785 −0.473892 0.880583i \(-0.657151\pi\)
−0.473892 + 0.880583i \(0.657151\pi\)
\(648\) 0 0
\(649\) 10.1648 0.399003
\(650\) 0 0
\(651\) 3.55166i 0.139200i
\(652\) 0 0
\(653\) − 28.1759i − 1.10261i −0.834305 0.551304i \(-0.814130\pi\)
0.834305 0.551304i \(-0.185870\pi\)
\(654\) 0 0
\(655\) 0.164784 0.00643866
\(656\) 0 0
\(657\) 7.17574 0.279952
\(658\) 0 0
\(659\) 9.51937i 0.370822i 0.982661 + 0.185411i \(0.0593616\pi\)
−0.982661 + 0.185411i \(0.940638\pi\)
\(660\) 0 0
\(661\) − 18.6232i − 0.724358i −0.932109 0.362179i \(-0.882033\pi\)
0.932109 0.362179i \(-0.117967\pi\)
\(662\) 0 0
\(663\) −6.45250 −0.250594
\(664\) 0 0
\(665\) −8.26998 −0.320696
\(666\) 0 0
\(667\) − 48.9370i − 1.89485i
\(668\) 0 0
\(669\) − 8.76017i − 0.338688i
\(670\) 0 0
\(671\) −0.255689 −0.00987077
\(672\) 0 0
\(673\) −17.5241 −0.675504 −0.337752 0.941235i \(-0.609667\pi\)
−0.337752 + 0.941235i \(0.609667\pi\)
\(674\) 0 0
\(675\) 1.00000i 0.0384900i
\(676\) 0 0
\(677\) − 6.75380i − 0.259570i −0.991542 0.129785i \(-0.958571\pi\)
0.991542 0.129785i \(-0.0414287\pi\)
\(678\) 0 0
\(679\) −0.681382 −0.0261490
\(680\) 0 0
\(681\) 20.7375 0.794664
\(682\) 0 0
\(683\) 19.1521i 0.732835i 0.930451 + 0.366418i \(0.119416\pi\)
−0.930451 + 0.366418i \(0.880584\pi\)
\(684\) 0 0
\(685\) 8.59955i 0.328572i
\(686\) 0 0
\(687\) 11.1193 0.424229
\(688\) 0 0
\(689\) 17.9993 0.685717
\(690\) 0 0
\(691\) − 0.584853i − 0.0222489i −0.999938 0.0111244i \(-0.996459\pi\)
0.999938 0.0111244i \(-0.00354109\pi\)
\(692\) 0 0
\(693\) − 1.08239i − 0.0411167i
\(694\) 0 0
\(695\) 19.0521 0.722686
\(696\) 0 0
\(697\) 18.4525 0.698938
\(698\) 0 0
\(699\) 17.3179i 0.655022i
\(700\) 0 0
\(701\) − 18.8218i − 0.710889i −0.934697 0.355445i \(-0.884329\pi\)
0.934697 0.355445i \(-0.115671\pi\)
\(702\) 0 0
\(703\) −30.5619 −1.15266
\(704\) 0 0
\(705\) 1.69552 0.0638569
\(706\) 0 0
\(707\) − 16.2195i − 0.609996i
\(708\) 0 0
\(709\) 46.1278i 1.73237i 0.499727 + 0.866183i \(0.333434\pi\)
−0.499727 + 0.866183i \(0.666566\pi\)
\(710\) 0 0
\(711\) −9.11615 −0.341882
\(712\) 0 0
\(713\) −27.3319 −1.02359
\(714\) 0 0
\(715\) 1.88989i 0.0706781i
\(716\) 0 0
\(717\) 14.5964i 0.545111i
\(718\) 0 0
\(719\) 32.3699 1.20719 0.603597 0.797289i \(-0.293734\pi\)
0.603597 + 0.797289i \(0.293734\pi\)
\(720\) 0 0
\(721\) 14.2741 0.531597
\(722\) 0 0
\(723\) 22.3616i 0.831637i
\(724\) 0 0
\(725\) 6.35916i 0.236173i
\(726\) 0 0
\(727\) 23.1945 0.860238 0.430119 0.902772i \(-0.358472\pi\)
0.430119 + 0.902772i \(0.358472\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) − 1.73418i − 0.0641410i
\(732\) 0 0
\(733\) 11.3290i 0.418447i 0.977868 + 0.209223i \(0.0670935\pi\)
−0.977868 + 0.209223i \(0.932906\pi\)
\(734\) 0 0
\(735\) 1.00000 0.0368856
\(736\) 0 0
\(737\) 5.86725 0.216123
\(738\) 0 0
\(739\) 6.97131i 0.256444i 0.991746 + 0.128222i \(0.0409270\pi\)
−0.991746 + 0.128222i \(0.959073\pi\)
\(740\) 0 0
\(741\) 14.4397i 0.530455i
\(742\) 0 0
\(743\) −5.10846 −0.187411 −0.0937055 0.995600i \(-0.529871\pi\)
−0.0937055 + 0.995600i \(0.529871\pi\)
\(744\) 0 0
\(745\) −11.2558 −0.412382
\(746\) 0 0
\(747\) − 5.28093i − 0.193219i
\(748\) 0 0
\(749\) − 14.6560i − 0.535517i
\(750\) 0 0
\(751\) −35.6278 −1.30008 −0.650039 0.759901i \(-0.725247\pi\)
−0.650039 + 0.759901i \(0.725247\pi\)
\(752\) 0 0
\(753\) −23.7662 −0.866089
\(754\) 0 0
\(755\) 8.54903i 0.311131i
\(756\) 0 0
\(757\) − 33.2178i − 1.20732i −0.797241 0.603661i \(-0.793708\pi\)
0.797241 0.603661i \(-0.206292\pi\)
\(758\) 0 0
\(759\) 8.32957 0.302344
\(760\) 0 0
\(761\) −47.6335 −1.72671 −0.863356 0.504596i \(-0.831642\pi\)
−0.863356 + 0.504596i \(0.831642\pi\)
\(762\) 0 0
\(763\) − 5.96722i − 0.216028i
\(764\) 0 0
\(765\) − 3.69552i − 0.133612i
\(766\) 0 0
\(767\) 16.3971 0.592064
\(768\) 0 0
\(769\) −25.9374 −0.935325 −0.467663 0.883907i \(-0.654904\pi\)
−0.467663 + 0.883907i \(0.654904\pi\)
\(770\) 0 0
\(771\) 17.3105i 0.623423i
\(772\) 0 0
\(773\) − 31.7154i − 1.14072i −0.821394 0.570361i \(-0.806803\pi\)
0.821394 0.570361i \(-0.193197\pi\)
\(774\) 0 0
\(775\) 3.55166 0.127579
\(776\) 0 0
\(777\) 3.69552 0.132576
\(778\) 0 0
\(779\) − 41.2938i − 1.47950i
\(780\) 0 0
\(781\) − 2.60822i − 0.0933293i
\(782\) 0 0
\(783\) −6.35916 −0.227258
\(784\) 0 0
\(785\) −3.48022 −0.124214
\(786\) 0 0
\(787\) − 18.4107i − 0.656269i −0.944631 0.328134i \(-0.893580\pi\)
0.944631 0.328134i \(-0.106420\pi\)
\(788\) 0 0
\(789\) − 6.97720i − 0.248395i
\(790\) 0 0
\(791\) 3.98226 0.141593
\(792\) 0 0
\(793\) −0.412459 −0.0146468
\(794\) 0 0
\(795\) 10.3086i 0.365610i
\(796\) 0 0
\(797\) 18.8632i 0.668167i 0.942543 + 0.334084i \(0.108427\pi\)
−0.942543 + 0.334084i \(0.891573\pi\)
\(798\) 0 0
\(799\) −6.26582 −0.221669
\(800\) 0 0
\(801\) −8.28772 −0.292832
\(802\) 0 0
\(803\) 7.76696i 0.274090i
\(804\) 0 0
\(805\) 7.69552i 0.271231i
\(806\) 0 0
\(807\) −7.61050 −0.267902
\(808\) 0 0
\(809\) 50.0487 1.75962 0.879809 0.475328i \(-0.157670\pi\)
0.879809 + 0.475328i \(0.157670\pi\)
\(810\) 0 0
\(811\) 32.0936i 1.12696i 0.826130 + 0.563479i \(0.190537\pi\)
−0.826130 + 0.563479i \(0.809463\pi\)
\(812\) 0 0
\(813\) − 32.0581i − 1.12433i
\(814\) 0 0
\(815\) −2.92177 −0.102345
\(816\) 0 0
\(817\) −3.88082 −0.135773
\(818\) 0 0
\(819\) − 1.74603i − 0.0610114i
\(820\) 0 0
\(821\) − 48.2849i − 1.68515i −0.538575 0.842577i \(-0.681037\pi\)
0.538575 0.842577i \(-0.318963\pi\)
\(822\) 0 0
\(823\) 17.0169 0.593172 0.296586 0.955006i \(-0.404152\pi\)
0.296586 + 0.955006i \(0.404152\pi\)
\(824\) 0 0
\(825\) −1.08239 −0.0376841
\(826\) 0 0
\(827\) − 30.4120i − 1.05753i −0.848768 0.528765i \(-0.822655\pi\)
0.848768 0.528765i \(-0.177345\pi\)
\(828\) 0 0
\(829\) − 13.0639i − 0.453728i −0.973926 0.226864i \(-0.927153\pi\)
0.973926 0.226864i \(-0.0728473\pi\)
\(830\) 0 0
\(831\) 22.4776 0.779739
\(832\) 0 0
\(833\) −3.69552 −0.128042
\(834\) 0 0
\(835\) − 12.9127i − 0.446862i
\(836\) 0 0
\(837\) 3.55166i 0.122763i
\(838\) 0 0
\(839\) 27.2127 0.939486 0.469743 0.882803i \(-0.344347\pi\)
0.469743 + 0.882803i \(0.344347\pi\)
\(840\) 0 0
\(841\) −11.4389 −0.394446
\(842\) 0 0
\(843\) 6.40690i 0.220665i
\(844\) 0 0
\(845\) − 9.95136i − 0.342337i
\(846\) 0 0
\(847\) −9.82843 −0.337709
\(848\) 0 0
\(849\) 0.371418 0.0127470
\(850\) 0 0
\(851\) 28.4389i 0.974874i
\(852\) 0 0
\(853\) 2.22044i 0.0760264i 0.999277 + 0.0380132i \(0.0121029\pi\)
−0.999277 + 0.0380132i \(0.987897\pi\)
\(854\) 0 0
\(855\) −8.26998 −0.282827
\(856\) 0 0
\(857\) 38.0352 1.29926 0.649629 0.760251i \(-0.274924\pi\)
0.649629 + 0.760251i \(0.274924\pi\)
\(858\) 0 0
\(859\) − 31.0521i − 1.05948i −0.848159 0.529741i \(-0.822289\pi\)
0.848159 0.529741i \(-0.177711\pi\)
\(860\) 0 0
\(861\) 4.99321i 0.170168i
\(862\) 0 0
\(863\) 19.7812 0.673359 0.336679 0.941619i \(-0.390696\pi\)
0.336679 + 0.941619i \(0.390696\pi\)
\(864\) 0 0
\(865\) −17.2900 −0.587878
\(866\) 0 0
\(867\) − 3.34315i − 0.113539i
\(868\) 0 0
\(869\) − 9.86725i − 0.334723i
\(870\) 0 0
\(871\) 9.46461 0.320696
\(872\) 0 0
\(873\) −0.681382 −0.0230613
\(874\) 0 0
\(875\) − 1.00000i − 0.0338062i
\(876\) 0 0
\(877\) − 49.0576i − 1.65656i −0.560316 0.828279i \(-0.689320\pi\)
0.560316 0.828279i \(-0.310680\pi\)
\(878\) 0 0
\(879\) −10.5079 −0.354424
\(880\) 0 0
\(881\) −27.8383 −0.937896 −0.468948 0.883226i \(-0.655367\pi\)
−0.468948 + 0.883226i \(0.655367\pi\)
\(882\) 0 0
\(883\) − 44.2091i − 1.48775i −0.668317 0.743877i \(-0.732985\pi\)
0.668317 0.743877i \(-0.267015\pi\)
\(884\) 0 0
\(885\) 9.39104i 0.315676i
\(886\) 0 0
\(887\) −10.9455 −0.367513 −0.183757 0.982972i \(-0.558826\pi\)
−0.183757 + 0.982972i \(0.558826\pi\)
\(888\) 0 0
\(889\) 5.96722 0.200134
\(890\) 0 0
\(891\) − 1.08239i − 0.0362615i
\(892\) 0 0
\(893\) 14.0219i 0.469225i
\(894\) 0 0
\(895\) 14.5609 0.486717
\(896\) 0 0
\(897\) 13.4366 0.448636
\(898\) 0 0
\(899\) 22.5856i 0.753271i
\(900\) 0 0
\(901\) − 38.0958i − 1.26915i
\(902\) 0 0
\(903\) 0.469266 0.0156162
\(904\) 0 0
\(905\) 19.4425 0.646292
\(906\) 0 0
\(907\) 50.1891i 1.66650i 0.552895 + 0.833251i \(0.313523\pi\)
−0.552895 + 0.833251i \(0.686477\pi\)
\(908\) 0 0
\(909\) − 16.2195i − 0.537966i
\(910\) 0 0
\(911\) −19.6714 −0.651743 −0.325871 0.945414i \(-0.605658\pi\)
−0.325871 + 0.945414i \(0.605658\pi\)
\(912\) 0 0
\(913\) 5.71604 0.189173
\(914\) 0 0
\(915\) − 0.236226i − 0.00780939i
\(916\) 0 0
\(917\) − 0.164784i − 0.00544166i
\(918\) 0 0
\(919\) 5.79067 0.191016 0.0955082 0.995429i \(-0.469552\pi\)
0.0955082 + 0.995429i \(0.469552\pi\)
\(920\) 0 0
\(921\) 14.8831 0.490415
\(922\) 0 0
\(923\) − 4.20738i − 0.138488i
\(924\) 0 0
\(925\) − 3.69552i − 0.121508i
\(926\) 0 0
\(927\) 14.2741 0.468824
\(928\) 0 0
\(929\) 15.0106 0.492482 0.246241 0.969209i \(-0.420805\pi\)
0.246241 + 0.969209i \(0.420805\pi\)
\(930\) 0 0
\(931\) 8.26998i 0.271038i
\(932\) 0 0
\(933\) 19.0615i 0.624044i
\(934\) 0 0
\(935\) 4.00000 0.130814
\(936\) 0 0
\(937\) −34.9374 −1.14135 −0.570677 0.821174i \(-0.693319\pi\)
−0.570677 + 0.821174i \(0.693319\pi\)
\(938\) 0 0
\(939\) 13.6165i 0.444357i
\(940\) 0 0
\(941\) − 32.2504i − 1.05133i −0.850690 0.525667i \(-0.823816\pi\)
0.850690 0.525667i \(-0.176184\pi\)
\(942\) 0 0
\(943\) −38.4253 −1.25130
\(944\) 0 0
\(945\) 1.00000 0.0325300
\(946\) 0 0
\(947\) − 29.8686i − 0.970600i −0.874348 0.485300i \(-0.838710\pi\)
0.874348 0.485300i \(-0.161290\pi\)
\(948\) 0 0
\(949\) 12.5291i 0.406711i
\(950\) 0 0
\(951\) −32.5473 −1.05542
\(952\) 0 0
\(953\) −6.85900 −0.222185 −0.111092 0.993810i \(-0.535435\pi\)
−0.111092 + 0.993810i \(0.535435\pi\)
\(954\) 0 0
\(955\) 22.7392i 0.735825i
\(956\) 0 0
\(957\) − 6.88311i − 0.222499i
\(958\) 0 0
\(959\) 8.59955 0.277694
\(960\) 0 0
\(961\) −18.3857 −0.593088
\(962\) 0 0
\(963\) − 14.6560i − 0.472281i
\(964\) 0 0
\(965\) 26.9050i 0.866103i
\(966\) 0 0
\(967\) 35.0343 1.12663 0.563314 0.826243i \(-0.309526\pi\)
0.563314 + 0.826243i \(0.309526\pi\)
\(968\) 0 0
\(969\) 30.5619 0.981788
\(970\) 0 0
\(971\) 26.2843i 0.843502i 0.906712 + 0.421751i \(0.138584\pi\)
−0.906712 + 0.421751i \(0.861416\pi\)
\(972\) 0 0
\(973\) − 19.0521i − 0.610781i
\(974\) 0 0
\(975\) −1.74603 −0.0559179
\(976\) 0 0
\(977\) −13.3597 −0.427415 −0.213708 0.976898i \(-0.568554\pi\)
−0.213708 + 0.976898i \(0.568554\pi\)
\(978\) 0 0
\(979\) − 8.97056i − 0.286700i
\(980\) 0 0
\(981\) − 5.96722i − 0.190519i
\(982\) 0 0
\(983\) −5.62996 −0.179568 −0.0897840 0.995961i \(-0.528618\pi\)
−0.0897840 + 0.995961i \(0.528618\pi\)
\(984\) 0 0
\(985\) 2.40968 0.0767787
\(986\) 0 0
\(987\) − 1.69552i − 0.0539689i
\(988\) 0 0
\(989\) 3.61125i 0.114831i
\(990\) 0 0
\(991\) −42.8232 −1.36032 −0.680161 0.733062i \(-0.738090\pi\)
−0.680161 + 0.733062i \(0.738090\pi\)
\(992\) 0 0
\(993\) 32.4936 1.03115
\(994\) 0 0
\(995\) 12.1927i 0.386533i
\(996\) 0 0
\(997\) 4.68276i 0.148305i 0.997247 + 0.0741523i \(0.0236251\pi\)
−0.997247 + 0.0741523i \(0.976375\pi\)
\(998\) 0 0
\(999\) 3.69552 0.116921
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3360.2.g.a.1681.6 8
4.3 odd 2 840.2.g.a.421.3 8
8.3 odd 2 840.2.g.a.421.4 yes 8
8.5 even 2 inner 3360.2.g.a.1681.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.g.a.421.3 8 4.3 odd 2
840.2.g.a.421.4 yes 8 8.3 odd 2
3360.2.g.a.1681.3 8 8.5 even 2 inner
3360.2.g.a.1681.6 8 1.1 even 1 trivial