Properties

Label 3360.2.g.a.1681.5
Level $3360$
Weight $2$
Character 3360.1681
Analytic conductor $26.830$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3360,2,Mod(1681,3360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3360.1681"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.8297350792\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1681.5
Root \(-0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 3360.1681
Dual form 3360.2.g.a.1681.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} -1.00000i q^{5} -1.00000 q^{7} -1.00000 q^{9} -2.61313i q^{11} +5.44155i q^{13} +1.00000 q^{15} -1.53073 q^{17} -6.73925i q^{19} -1.00000i q^{21} +5.53073 q^{23} -1.00000 q^{25} -1.00000i q^{27} +4.52395i q^{29} -10.3086 q^{31} +2.61313 q^{33} +1.00000i q^{35} +1.53073i q^{37} -5.44155 q^{39} -2.39782 q^{41} +5.69552i q^{43} +1.00000i q^{45} -0.469266 q^{47} +1.00000 q^{49} -1.53073i q^{51} +4.44834i q^{53} -2.61313 q^{55} +6.73925 q^{57} +5.06147i q^{59} -10.2581i q^{61} +1.00000 q^{63} +5.44155 q^{65} -15.9150i q^{67} +5.53073i q^{69} -13.4962 q^{71} -4.80750 q^{73} -1.00000i q^{75} +2.61313i q^{77} -14.3842 q^{79} +1.00000 q^{81} -15.1580i q^{83} +1.53073i q^{85} -4.52395 q^{87} -9.55582 q^{89} -5.44155i q^{91} -10.3086i q^{93} -6.73925 q^{95} -10.8713 q^{97} +2.61313i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{7} - 8 q^{9} + 8 q^{15} + 32 q^{23} - 8 q^{25} - 32 q^{31} - 16 q^{47} + 8 q^{49} + 8 q^{63} - 16 q^{79} + 8 q^{81} + 16 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times\).

\(n\) \(421\) \(1121\) \(1471\) \(1921\) \(2017\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 2.61313i − 0.787887i −0.919135 0.393944i \(-0.871111\pi\)
0.919135 0.393944i \(-0.128889\pi\)
\(12\) 0 0
\(13\) 5.44155i 1.50922i 0.656176 + 0.754608i \(0.272173\pi\)
−0.656176 + 0.754608i \(0.727827\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −1.53073 −0.371257 −0.185629 0.982620i \(-0.559432\pi\)
−0.185629 + 0.982620i \(0.559432\pi\)
\(18\) 0 0
\(19\) − 6.73925i − 1.54609i −0.634352 0.773045i \(-0.718733\pi\)
0.634352 0.773045i \(-0.281267\pi\)
\(20\) 0 0
\(21\) − 1.00000i − 0.218218i
\(22\) 0 0
\(23\) 5.53073 1.15324 0.576619 0.817013i \(-0.304372\pi\)
0.576619 + 0.817013i \(0.304372\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) 4.52395i 0.840076i 0.907507 + 0.420038i \(0.137983\pi\)
−0.907507 + 0.420038i \(0.862017\pi\)
\(30\) 0 0
\(31\) −10.3086 −1.85149 −0.925744 0.378152i \(-0.876560\pi\)
−0.925744 + 0.378152i \(0.876560\pi\)
\(32\) 0 0
\(33\) 2.61313 0.454887
\(34\) 0 0
\(35\) 1.00000i 0.169031i
\(36\) 0 0
\(37\) 1.53073i 0.251651i 0.992052 + 0.125826i \(0.0401580\pi\)
−0.992052 + 0.125826i \(0.959842\pi\)
\(38\) 0 0
\(39\) −5.44155 −0.871346
\(40\) 0 0
\(41\) −2.39782 −0.374477 −0.187239 0.982314i \(-0.559954\pi\)
−0.187239 + 0.982314i \(0.559954\pi\)
\(42\) 0 0
\(43\) 5.69552i 0.868558i 0.900778 + 0.434279i \(0.142997\pi\)
−0.900778 + 0.434279i \(0.857003\pi\)
\(44\) 0 0
\(45\) 1.00000i 0.149071i
\(46\) 0 0
\(47\) −0.469266 −0.0684495 −0.0342248 0.999414i \(-0.510896\pi\)
−0.0342248 + 0.999414i \(0.510896\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) − 1.53073i − 0.214346i
\(52\) 0 0
\(53\) 4.44834i 0.611027i 0.952188 + 0.305513i \(0.0988281\pi\)
−0.952188 + 0.305513i \(0.901172\pi\)
\(54\) 0 0
\(55\) −2.61313 −0.352354
\(56\) 0 0
\(57\) 6.73925 0.892635
\(58\) 0 0
\(59\) 5.06147i 0.658947i 0.944165 + 0.329473i \(0.106871\pi\)
−0.944165 + 0.329473i \(0.893129\pi\)
\(60\) 0 0
\(61\) − 10.2581i − 1.31342i −0.754144 0.656709i \(-0.771948\pi\)
0.754144 0.656709i \(-0.228052\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) 5.44155 0.674942
\(66\) 0 0
\(67\) − 15.9150i − 1.94432i −0.234309 0.972162i \(-0.575283\pi\)
0.234309 0.972162i \(-0.424717\pi\)
\(68\) 0 0
\(69\) 5.53073i 0.665822i
\(70\) 0 0
\(71\) −13.4962 −1.60171 −0.800854 0.598860i \(-0.795621\pi\)
−0.800854 + 0.598860i \(0.795621\pi\)
\(72\) 0 0
\(73\) −4.80750 −0.562676 −0.281338 0.959609i \(-0.590778\pi\)
−0.281338 + 0.959609i \(0.590778\pi\)
\(74\) 0 0
\(75\) − 1.00000i − 0.115470i
\(76\) 0 0
\(77\) 2.61313i 0.297793i
\(78\) 0 0
\(79\) −14.3842 −1.61835 −0.809177 0.587565i \(-0.800087\pi\)
−0.809177 + 0.587565i \(0.800087\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 15.1580i − 1.66381i −0.554921 0.831903i \(-0.687251\pi\)
0.554921 0.831903i \(-0.312749\pi\)
\(84\) 0 0
\(85\) 1.53073i 0.166031i
\(86\) 0 0
\(87\) −4.52395 −0.485018
\(88\) 0 0
\(89\) −9.55582 −1.01291 −0.506457 0.862265i \(-0.669045\pi\)
−0.506457 + 0.862265i \(0.669045\pi\)
\(90\) 0 0
\(91\) − 5.44155i − 0.570430i
\(92\) 0 0
\(93\) − 10.3086i − 1.06896i
\(94\) 0 0
\(95\) −6.73925 −0.691432
\(96\) 0 0
\(97\) −10.8713 −1.10381 −0.551904 0.833907i \(-0.686099\pi\)
−0.551904 + 0.833907i \(0.686099\pi\)
\(98\) 0 0
\(99\) 2.61313i 0.262629i
\(100\) 0 0
\(101\) 6.23304i 0.620211i 0.950702 + 0.310105i \(0.100364\pi\)
−0.950702 + 0.310105i \(0.899636\pi\)
\(102\) 0 0
\(103\) 8.76017 0.863165 0.431583 0.902073i \(-0.357955\pi\)
0.431583 + 0.902073i \(0.357955\pi\)
\(104\) 0 0
\(105\) −1.00000 −0.0975900
\(106\) 0 0
\(107\) 12.0843i 1.16823i 0.811671 + 0.584115i \(0.198558\pi\)
−0.811671 + 0.584115i \(0.801442\pi\)
\(108\) 0 0
\(109\) 8.15571i 0.781176i 0.920566 + 0.390588i \(0.127728\pi\)
−0.920566 + 0.390588i \(0.872272\pi\)
\(110\) 0 0
\(111\) −1.53073 −0.145291
\(112\) 0 0
\(113\) −6.81657 −0.641249 −0.320625 0.947206i \(-0.603893\pi\)
−0.320625 + 0.947206i \(0.603893\pi\)
\(114\) 0 0
\(115\) − 5.53073i − 0.515744i
\(116\) 0 0
\(117\) − 5.44155i − 0.503072i
\(118\) 0 0
\(119\) 1.53073 0.140322
\(120\) 0 0
\(121\) 4.17157 0.379234
\(122\) 0 0
\(123\) − 2.39782i − 0.216205i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −8.15571 −0.723702 −0.361851 0.932236i \(-0.617855\pi\)
−0.361851 + 0.932236i \(0.617855\pi\)
\(128\) 0 0
\(129\) −5.69552 −0.501462
\(130\) 0 0
\(131\) 3.22625i 0.281879i 0.990018 + 0.140939i \(0.0450123\pi\)
−0.990018 + 0.140939i \(0.954988\pi\)
\(132\) 0 0
\(133\) 6.73925i 0.584367i
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 0.286743 0.0244981 0.0122490 0.999925i \(-0.496101\pi\)
0.0122490 + 0.999925i \(0.496101\pi\)
\(138\) 0 0
\(139\) − 4.61631i − 0.391550i −0.980649 0.195775i \(-0.937278\pi\)
0.980649 0.195775i \(-0.0627223\pi\)
\(140\) 0 0
\(141\) − 0.469266i − 0.0395193i
\(142\) 0 0
\(143\) 14.2195 1.18909
\(144\) 0 0
\(145\) 4.52395 0.375693
\(146\) 0 0
\(147\) 1.00000i 0.0824786i
\(148\) 0 0
\(149\) 13.1412i 1.07657i 0.842762 + 0.538286i \(0.180928\pi\)
−0.842762 + 0.538286i \(0.819072\pi\)
\(150\) 0 0
\(151\) −4.68554 −0.381304 −0.190652 0.981658i \(-0.561060\pi\)
−0.190652 + 0.981658i \(0.561060\pi\)
\(152\) 0 0
\(153\) 1.53073 0.123752
\(154\) 0 0
\(155\) 10.3086i 0.828010i
\(156\) 0 0
\(157\) − 3.27677i − 0.261515i −0.991414 0.130757i \(-0.958259\pi\)
0.991414 0.130757i \(-0.0417409\pi\)
\(158\) 0 0
\(159\) −4.44834 −0.352776
\(160\) 0 0
\(161\) −5.53073 −0.435883
\(162\) 0 0
\(163\) 6.63405i 0.519619i 0.965660 + 0.259809i \(0.0836598\pi\)
−0.965660 + 0.259809i \(0.916340\pi\)
\(164\) 0 0
\(165\) − 2.61313i − 0.203432i
\(166\) 0 0
\(167\) −22.7981 −1.76417 −0.882084 0.471091i \(-0.843860\pi\)
−0.882084 + 0.471091i \(0.843860\pi\)
\(168\) 0 0
\(169\) −16.6105 −1.27773
\(170\) 0 0
\(171\) 6.73925i 0.515363i
\(172\) 0 0
\(173\) − 23.0060i − 1.74912i −0.484920 0.874558i \(-0.661151\pi\)
0.484920 0.874558i \(-0.338849\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 0 0
\(177\) −5.06147 −0.380443
\(178\) 0 0
\(179\) − 3.47433i − 0.259684i −0.991535 0.129842i \(-0.958553\pi\)
0.991535 0.129842i \(-0.0414470\pi\)
\(180\) 0 0
\(181\) − 12.7525i − 0.947884i −0.880556 0.473942i \(-0.842831\pi\)
0.880556 0.473942i \(-0.157169\pi\)
\(182\) 0 0
\(183\) 10.2581 0.758303
\(184\) 0 0
\(185\) 1.53073 0.112542
\(186\) 0 0
\(187\) 4.00000i 0.292509i
\(188\) 0 0
\(189\) 1.00000i 0.0727393i
\(190\) 0 0
\(191\) −12.9563 −0.937483 −0.468741 0.883335i \(-0.655292\pi\)
−0.468741 + 0.883335i \(0.655292\pi\)
\(192\) 0 0
\(193\) 2.65914 0.191409 0.0957045 0.995410i \(-0.469490\pi\)
0.0957045 + 0.995410i \(0.469490\pi\)
\(194\) 0 0
\(195\) 5.44155i 0.389678i
\(196\) 0 0
\(197\) − 13.4962i − 0.961567i −0.876839 0.480783i \(-0.840352\pi\)
0.876839 0.480783i \(-0.159648\pi\)
\(198\) 0 0
\(199\) 21.1144 1.49676 0.748381 0.663269i \(-0.230832\pi\)
0.748381 + 0.663269i \(0.230832\pi\)
\(200\) 0 0
\(201\) 15.9150 1.12256
\(202\) 0 0
\(203\) − 4.52395i − 0.317519i
\(204\) 0 0
\(205\) 2.39782i 0.167471i
\(206\) 0 0
\(207\) −5.53073 −0.384413
\(208\) 0 0
\(209\) −17.6105 −1.21814
\(210\) 0 0
\(211\) 5.12972i 0.353145i 0.984288 + 0.176572i \(0.0565010\pi\)
−0.984288 + 0.176572i \(0.943499\pi\)
\(212\) 0 0
\(213\) − 13.4962i − 0.924747i
\(214\) 0 0
\(215\) 5.69552 0.388431
\(216\) 0 0
\(217\) 10.3086 0.699796
\(218\) 0 0
\(219\) − 4.80750i − 0.324861i
\(220\) 0 0
\(221\) − 8.32957i − 0.560307i
\(222\) 0 0
\(223\) −10.9604 −0.733965 −0.366982 0.930228i \(-0.619609\pi\)
−0.366982 + 0.930228i \(0.619609\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 8.40795i 0.558055i 0.960283 + 0.279028i \(0.0900121\pi\)
−0.960283 + 0.279028i \(0.909988\pi\)
\(228\) 0 0
\(229\) − 2.43649i − 0.161008i −0.996754 0.0805038i \(-0.974347\pi\)
0.996754 0.0805038i \(-0.0256529\pi\)
\(230\) 0 0
\(231\) −2.61313 −0.171931
\(232\) 0 0
\(233\) −13.3346 −0.873581 −0.436790 0.899563i \(-0.643885\pi\)
−0.436790 + 0.899563i \(0.643885\pi\)
\(234\) 0 0
\(235\) 0.469266i 0.0306116i
\(236\) 0 0
\(237\) − 14.3842i − 0.934357i
\(238\) 0 0
\(239\) −9.10748 −0.589114 −0.294557 0.955634i \(-0.595172\pi\)
−0.294557 + 0.955634i \(0.595172\pi\)
\(240\) 0 0
\(241\) −15.9091 −1.02479 −0.512397 0.858748i \(-0.671243\pi\)
−0.512397 + 0.858748i \(0.671243\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) − 1.00000i − 0.0638877i
\(246\) 0 0
\(247\) 36.6720 2.33338
\(248\) 0 0
\(249\) 15.1580 0.960599
\(250\) 0 0
\(251\) − 13.6433i − 0.861156i −0.902553 0.430578i \(-0.858310\pi\)
0.902553 0.430578i \(-0.141690\pi\)
\(252\) 0 0
\(253\) − 14.4525i − 0.908621i
\(254\) 0 0
\(255\) −1.53073 −0.0958583
\(256\) 0 0
\(257\) −20.1344 −1.25595 −0.627976 0.778233i \(-0.716116\pi\)
−0.627976 + 0.778233i \(0.716116\pi\)
\(258\) 0 0
\(259\) − 1.53073i − 0.0951152i
\(260\) 0 0
\(261\) − 4.52395i − 0.280025i
\(262\) 0 0
\(263\) −26.5786 −1.63891 −0.819454 0.573145i \(-0.805723\pi\)
−0.819454 + 0.573145i \(0.805723\pi\)
\(264\) 0 0
\(265\) 4.44834 0.273259
\(266\) 0 0
\(267\) − 9.55582i − 0.584807i
\(268\) 0 0
\(269\) − 6.70549i − 0.408841i −0.978883 0.204421i \(-0.934469\pi\)
0.978883 0.204421i \(-0.0655310\pi\)
\(270\) 0 0
\(271\) 31.2200 1.89648 0.948241 0.317553i \(-0.102861\pi\)
0.948241 + 0.317553i \(0.102861\pi\)
\(272\) 0 0
\(273\) 5.44155 0.329338
\(274\) 0 0
\(275\) 2.61313i 0.157577i
\(276\) 0 0
\(277\) − 11.6537i − 0.700201i −0.936712 0.350101i \(-0.886147\pi\)
0.936712 0.350101i \(-0.113853\pi\)
\(278\) 0 0
\(279\) 10.3086 0.617162
\(280\) 0 0
\(281\) 30.8277 1.83903 0.919513 0.393061i \(-0.128584\pi\)
0.919513 + 0.393061i \(0.128584\pi\)
\(282\) 0 0
\(283\) − 30.4608i − 1.81071i −0.424657 0.905354i \(-0.639605\pi\)
0.424657 0.905354i \(-0.360395\pi\)
\(284\) 0 0
\(285\) − 6.73925i − 0.399199i
\(286\) 0 0
\(287\) 2.39782 0.141539
\(288\) 0 0
\(289\) −14.6569 −0.862168
\(290\) 0 0
\(291\) − 10.8713i − 0.637284i
\(292\) 0 0
\(293\) 24.8831i 1.45369i 0.686803 + 0.726843i \(0.259013\pi\)
−0.686803 + 0.726843i \(0.740987\pi\)
\(294\) 0 0
\(295\) 5.06147 0.294690
\(296\) 0 0
\(297\) −2.61313 −0.151629
\(298\) 0 0
\(299\) 30.0958i 1.74048i
\(300\) 0 0
\(301\) − 5.69552i − 0.328284i
\(302\) 0 0
\(303\) −6.23304 −0.358079
\(304\) 0 0
\(305\) −10.2581 −0.587379
\(306\) 0 0
\(307\) 3.82164i 0.218112i 0.994036 + 0.109056i \(0.0347829\pi\)
−0.994036 + 0.109056i \(0.965217\pi\)
\(308\) 0 0
\(309\) 8.76017i 0.498349i
\(310\) 0 0
\(311\) 8.60896 0.488170 0.244085 0.969754i \(-0.421512\pi\)
0.244085 + 0.969754i \(0.421512\pi\)
\(312\) 0 0
\(313\) −26.2087 −1.48140 −0.740701 0.671835i \(-0.765506\pi\)
−0.740701 + 0.671835i \(0.765506\pi\)
\(314\) 0 0
\(315\) − 1.00000i − 0.0563436i
\(316\) 0 0
\(317\) 9.32132i 0.523537i 0.965131 + 0.261769i \(0.0843058\pi\)
−0.965131 + 0.261769i \(0.915694\pi\)
\(318\) 0 0
\(319\) 11.8216 0.661885
\(320\) 0 0
\(321\) −12.0843 −0.674478
\(322\) 0 0
\(323\) 10.3160i 0.573997i
\(324\) 0 0
\(325\) − 5.44155i − 0.301843i
\(326\) 0 0
\(327\) −8.15571 −0.451012
\(328\) 0 0
\(329\) 0.469266 0.0258715
\(330\) 0 0
\(331\) 0.527131i 0.0289737i 0.999895 + 0.0144869i \(0.00461147\pi\)
−0.999895 + 0.0144869i \(0.995389\pi\)
\(332\) 0 0
\(333\) − 1.53073i − 0.0838837i
\(334\) 0 0
\(335\) −15.9150 −0.869528
\(336\) 0 0
\(337\) 20.0958 1.09469 0.547343 0.836908i \(-0.315639\pi\)
0.547343 + 0.836908i \(0.315639\pi\)
\(338\) 0 0
\(339\) − 6.81657i − 0.370225i
\(340\) 0 0
\(341\) 26.9378i 1.45876i
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 5.53073 0.297765
\(346\) 0 0
\(347\) 16.3365i 0.876990i 0.898734 + 0.438495i \(0.144488\pi\)
−0.898734 + 0.438495i \(0.855512\pi\)
\(348\) 0 0
\(349\) 3.76377i 0.201470i 0.994913 + 0.100735i \(0.0321195\pi\)
−0.994913 + 0.100735i \(0.967881\pi\)
\(350\) 0 0
\(351\) 5.44155 0.290449
\(352\) 0 0
\(353\) 29.2513 1.55689 0.778446 0.627712i \(-0.216008\pi\)
0.778446 + 0.627712i \(0.216008\pi\)
\(354\) 0 0
\(355\) 13.4962i 0.716306i
\(356\) 0 0
\(357\) 1.53073i 0.0810150i
\(358\) 0 0
\(359\) 28.1508 1.48574 0.742871 0.669434i \(-0.233463\pi\)
0.742871 + 0.669434i \(0.233463\pi\)
\(360\) 0 0
\(361\) −26.4174 −1.39039
\(362\) 0 0
\(363\) 4.17157i 0.218951i
\(364\) 0 0
\(365\) 4.80750i 0.251636i
\(366\) 0 0
\(367\) −16.4661 −0.859522 −0.429761 0.902943i \(-0.641402\pi\)
−0.429761 + 0.902943i \(0.641402\pi\)
\(368\) 0 0
\(369\) 2.39782 0.124826
\(370\) 0 0
\(371\) − 4.44834i − 0.230946i
\(372\) 0 0
\(373\) 19.4161i 1.00533i 0.864482 + 0.502664i \(0.167647\pi\)
−0.864482 + 0.502664i \(0.832353\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −24.6173 −1.26785
\(378\) 0 0
\(379\) − 35.1900i − 1.80759i −0.427965 0.903795i \(-0.640769\pi\)
0.427965 0.903795i \(-0.359231\pi\)
\(380\) 0 0
\(381\) − 8.15571i − 0.417830i
\(382\) 0 0
\(383\) 7.73662 0.395323 0.197661 0.980270i \(-0.436665\pi\)
0.197661 + 0.980270i \(0.436665\pi\)
\(384\) 0 0
\(385\) 2.61313 0.133177
\(386\) 0 0
\(387\) − 5.69552i − 0.289519i
\(388\) 0 0
\(389\) 25.0994i 1.27259i 0.771446 + 0.636295i \(0.219534\pi\)
−0.771446 + 0.636295i \(0.780466\pi\)
\(390\) 0 0
\(391\) −8.46608 −0.428148
\(392\) 0 0
\(393\) −3.22625 −0.162743
\(394\) 0 0
\(395\) 14.3842i 0.723750i
\(396\) 0 0
\(397\) − 7.56449i − 0.379651i −0.981818 0.189825i \(-0.939208\pi\)
0.981818 0.189825i \(-0.0607922\pi\)
\(398\) 0 0
\(399\) −6.73925 −0.337384
\(400\) 0 0
\(401\) 6.50793 0.324991 0.162495 0.986709i \(-0.448046\pi\)
0.162495 + 0.986709i \(0.448046\pi\)
\(402\) 0 0
\(403\) − 56.0950i − 2.79429i
\(404\) 0 0
\(405\) − 1.00000i − 0.0496904i
\(406\) 0 0
\(407\) 4.00000 0.198273
\(408\) 0 0
\(409\) −26.6493 −1.31772 −0.658862 0.752264i \(-0.728962\pi\)
−0.658862 + 0.752264i \(0.728962\pi\)
\(410\) 0 0
\(411\) 0.286743i 0.0141440i
\(412\) 0 0
\(413\) − 5.06147i − 0.249059i
\(414\) 0 0
\(415\) −15.1580 −0.744077
\(416\) 0 0
\(417\) 4.61631 0.226062
\(418\) 0 0
\(419\) 34.0675i 1.66431i 0.554546 + 0.832153i \(0.312892\pi\)
−0.554546 + 0.832153i \(0.687108\pi\)
\(420\) 0 0
\(421\) − 2.12293i − 0.103466i −0.998661 0.0517328i \(-0.983526\pi\)
0.998661 0.0517328i \(-0.0164744\pi\)
\(422\) 0 0
\(423\) 0.469266 0.0228165
\(424\) 0 0
\(425\) 1.53073 0.0742515
\(426\) 0 0
\(427\) 10.2581i 0.496426i
\(428\) 0 0
\(429\) 14.2195i 0.686522i
\(430\) 0 0
\(431\) −25.9770 −1.25127 −0.625634 0.780117i \(-0.715160\pi\)
−0.625634 + 0.780117i \(0.715160\pi\)
\(432\) 0 0
\(433\) 23.3437 1.12183 0.560913 0.827874i \(-0.310450\pi\)
0.560913 + 0.827874i \(0.310450\pi\)
\(434\) 0 0
\(435\) 4.52395i 0.216907i
\(436\) 0 0
\(437\) − 37.2730i − 1.78301i
\(438\) 0 0
\(439\) −6.20761 −0.296273 −0.148137 0.988967i \(-0.547328\pi\)
−0.148137 + 0.988967i \(0.547328\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) 7.88220i 0.374495i 0.982313 + 0.187247i \(0.0599566\pi\)
−0.982313 + 0.187247i \(0.940043\pi\)
\(444\) 0 0
\(445\) 9.55582i 0.452989i
\(446\) 0 0
\(447\) −13.1412 −0.621559
\(448\) 0 0
\(449\) 2.83113 0.133609 0.0668046 0.997766i \(-0.478720\pi\)
0.0668046 + 0.997766i \(0.478720\pi\)
\(450\) 0 0
\(451\) 6.26582i 0.295046i
\(452\) 0 0
\(453\) − 4.68554i − 0.220146i
\(454\) 0 0
\(455\) −5.44155 −0.255104
\(456\) 0 0
\(457\) 24.3835 1.14061 0.570306 0.821432i \(-0.306825\pi\)
0.570306 + 0.821432i \(0.306825\pi\)
\(458\) 0 0
\(459\) 1.53073i 0.0714485i
\(460\) 0 0
\(461\) − 3.62482i − 0.168825i −0.996431 0.0844124i \(-0.973099\pi\)
0.996431 0.0844124i \(-0.0269013\pi\)
\(462\) 0 0
\(463\) 16.1995 0.752855 0.376428 0.926446i \(-0.377152\pi\)
0.376428 + 0.926446i \(0.377152\pi\)
\(464\) 0 0
\(465\) −10.3086 −0.478052
\(466\) 0 0
\(467\) 8.34240i 0.386040i 0.981195 + 0.193020i \(0.0618283\pi\)
−0.981195 + 0.193020i \(0.938172\pi\)
\(468\) 0 0
\(469\) 15.9150i 0.734886i
\(470\) 0 0
\(471\) 3.27677 0.150986
\(472\) 0 0
\(473\) 14.8831 0.684326
\(474\) 0 0
\(475\) 6.73925i 0.309218i
\(476\) 0 0
\(477\) − 4.44834i − 0.203676i
\(478\) 0 0
\(479\) −6.42047 −0.293359 −0.146679 0.989184i \(-0.546859\pi\)
−0.146679 + 0.989184i \(0.546859\pi\)
\(480\) 0 0
\(481\) −8.32957 −0.379796
\(482\) 0 0
\(483\) − 5.53073i − 0.251657i
\(484\) 0 0
\(485\) 10.8713i 0.493638i
\(486\) 0 0
\(487\) 42.2633 1.91513 0.957566 0.288215i \(-0.0930618\pi\)
0.957566 + 0.288215i \(0.0930618\pi\)
\(488\) 0 0
\(489\) −6.63405 −0.300002
\(490\) 0 0
\(491\) − 13.7756i − 0.621685i −0.950461 0.310843i \(-0.899389\pi\)
0.950461 0.310843i \(-0.100611\pi\)
\(492\) 0 0
\(493\) − 6.92496i − 0.311884i
\(494\) 0 0
\(495\) 2.61313 0.117451
\(496\) 0 0
\(497\) 13.4962 0.605389
\(498\) 0 0
\(499\) 17.2036i 0.770139i 0.922888 + 0.385070i \(0.125823\pi\)
−0.922888 + 0.385070i \(0.874177\pi\)
\(500\) 0 0
\(501\) − 22.7981i − 1.01854i
\(502\) 0 0
\(503\) 24.3456 1.08552 0.542758 0.839889i \(-0.317380\pi\)
0.542758 + 0.839889i \(0.317380\pi\)
\(504\) 0 0
\(505\) 6.23304 0.277367
\(506\) 0 0
\(507\) − 16.6105i − 0.737698i
\(508\) 0 0
\(509\) 0.983083i 0.0435744i 0.999763 + 0.0217872i \(0.00693563\pi\)
−0.999763 + 0.0217872i \(0.993064\pi\)
\(510\) 0 0
\(511\) 4.80750 0.212671
\(512\) 0 0
\(513\) −6.73925 −0.297545
\(514\) 0 0
\(515\) − 8.76017i − 0.386019i
\(516\) 0 0
\(517\) 1.22625i 0.0539305i
\(518\) 0 0
\(519\) 23.0060 1.00985
\(520\) 0 0
\(521\) −28.6636 −1.25578 −0.627888 0.778303i \(-0.716081\pi\)
−0.627888 + 0.778303i \(0.716081\pi\)
\(522\) 0 0
\(523\) − 29.1927i − 1.27651i −0.769826 0.638254i \(-0.779657\pi\)
0.769826 0.638254i \(-0.220343\pi\)
\(524\) 0 0
\(525\) 1.00000i 0.0436436i
\(526\) 0 0
\(527\) 15.7798 0.687378
\(528\) 0 0
\(529\) 7.58902 0.329957
\(530\) 0 0
\(531\) − 5.06147i − 0.219649i
\(532\) 0 0
\(533\) − 13.0479i − 0.565167i
\(534\) 0 0
\(535\) 12.0843 0.522449
\(536\) 0 0
\(537\) 3.47433 0.149928
\(538\) 0 0
\(539\) − 2.61313i − 0.112555i
\(540\) 0 0
\(541\) − 30.1550i − 1.29646i −0.761443 0.648232i \(-0.775509\pi\)
0.761443 0.648232i \(-0.224491\pi\)
\(542\) 0 0
\(543\) 12.7525 0.547261
\(544\) 0 0
\(545\) 8.15571 0.349352
\(546\) 0 0
\(547\) 25.5127i 1.09084i 0.838162 + 0.545421i \(0.183630\pi\)
−0.838162 + 0.545421i \(0.816370\pi\)
\(548\) 0 0
\(549\) 10.2581i 0.437806i
\(550\) 0 0
\(551\) 30.4880 1.29883
\(552\) 0 0
\(553\) 14.3842 0.611680
\(554\) 0 0
\(555\) 1.53073i 0.0649760i
\(556\) 0 0
\(557\) 25.5046i 1.08066i 0.841452 + 0.540331i \(0.181701\pi\)
−0.841452 + 0.540331i \(0.818299\pi\)
\(558\) 0 0
\(559\) −30.9925 −1.31084
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) 0 0
\(563\) 23.8955i 1.00708i 0.863973 + 0.503538i \(0.167969\pi\)
−0.863973 + 0.503538i \(0.832031\pi\)
\(564\) 0 0
\(565\) 6.81657i 0.286775i
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) 7.36276 0.308663 0.154332 0.988019i \(-0.450678\pi\)
0.154332 + 0.988019i \(0.450678\pi\)
\(570\) 0 0
\(571\) 2.82843i 0.118366i 0.998247 + 0.0591830i \(0.0188495\pi\)
−0.998247 + 0.0591830i \(0.981150\pi\)
\(572\) 0 0
\(573\) − 12.9563i − 0.541256i
\(574\) 0 0
\(575\) −5.53073 −0.230648
\(576\) 0 0
\(577\) 15.4802 0.644450 0.322225 0.946663i \(-0.395569\pi\)
0.322225 + 0.946663i \(0.395569\pi\)
\(578\) 0 0
\(579\) 2.65914i 0.110510i
\(580\) 0 0
\(581\) 15.1580i 0.628860i
\(582\) 0 0
\(583\) 11.6241 0.481420
\(584\) 0 0
\(585\) −5.44155 −0.224981
\(586\) 0 0
\(587\) 7.28168i 0.300547i 0.988644 + 0.150274i \(0.0480154\pi\)
−0.988644 + 0.150274i \(0.951985\pi\)
\(588\) 0 0
\(589\) 69.4725i 2.86256i
\(590\) 0 0
\(591\) 13.4962 0.555161
\(592\) 0 0
\(593\) 28.1699 1.15680 0.578400 0.815753i \(-0.303677\pi\)
0.578400 + 0.815753i \(0.303677\pi\)
\(594\) 0 0
\(595\) − 1.53073i − 0.0627540i
\(596\) 0 0
\(597\) 21.1144i 0.864156i
\(598\) 0 0
\(599\) −15.6373 −0.638923 −0.319462 0.947599i \(-0.603502\pi\)
−0.319462 + 0.947599i \(0.603502\pi\)
\(600\) 0 0
\(601\) −10.0083 −0.408248 −0.204124 0.978945i \(-0.565435\pi\)
−0.204124 + 0.978945i \(0.565435\pi\)
\(602\) 0 0
\(603\) 15.9150i 0.648108i
\(604\) 0 0
\(605\) − 4.17157i − 0.169599i
\(606\) 0 0
\(607\) −14.1293 −0.573491 −0.286745 0.958007i \(-0.592573\pi\)
−0.286745 + 0.958007i \(0.592573\pi\)
\(608\) 0 0
\(609\) 4.52395 0.183320
\(610\) 0 0
\(611\) − 2.55354i − 0.103305i
\(612\) 0 0
\(613\) − 35.7812i − 1.44519i −0.691273 0.722594i \(-0.742950\pi\)
0.691273 0.722594i \(-0.257050\pi\)
\(614\) 0 0
\(615\) −2.39782 −0.0966896
\(616\) 0 0
\(617\) 36.2197 1.45815 0.729075 0.684434i \(-0.239951\pi\)
0.729075 + 0.684434i \(0.239951\pi\)
\(618\) 0 0
\(619\) 38.5628i 1.54997i 0.631979 + 0.774986i \(0.282243\pi\)
−0.631979 + 0.774986i \(0.717757\pi\)
\(620\) 0 0
\(621\) − 5.53073i − 0.221941i
\(622\) 0 0
\(623\) 9.55582 0.382846
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) − 17.6105i − 0.703296i
\(628\) 0 0
\(629\) − 2.34315i − 0.0934273i
\(630\) 0 0
\(631\) −19.3046 −0.768505 −0.384253 0.923228i \(-0.625541\pi\)
−0.384253 + 0.923228i \(0.625541\pi\)
\(632\) 0 0
\(633\) −5.12972 −0.203888
\(634\) 0 0
\(635\) 8.15571i 0.323650i
\(636\) 0 0
\(637\) 5.44155i 0.215602i
\(638\) 0 0
\(639\) 13.4962 0.533903
\(640\) 0 0
\(641\) 28.4344 1.12309 0.561545 0.827446i \(-0.310207\pi\)
0.561545 + 0.827446i \(0.310207\pi\)
\(642\) 0 0
\(643\) 10.1146i 0.398881i 0.979910 + 0.199441i \(0.0639125\pi\)
−0.979910 + 0.199441i \(0.936087\pi\)
\(644\) 0 0
\(645\) 5.69552i 0.224261i
\(646\) 0 0
\(647\) −33.7940 −1.32858 −0.664290 0.747475i \(-0.731266\pi\)
−0.664290 + 0.747475i \(0.731266\pi\)
\(648\) 0 0
\(649\) 13.2263 0.519176
\(650\) 0 0
\(651\) 10.3086i 0.404028i
\(652\) 0 0
\(653\) 25.1395i 0.983785i 0.870656 + 0.491893i \(0.163695\pi\)
−0.870656 + 0.491893i \(0.836305\pi\)
\(654\) 0 0
\(655\) 3.22625 0.126060
\(656\) 0 0
\(657\) 4.80750 0.187559
\(658\) 0 0
\(659\) 36.7625i 1.43206i 0.698067 + 0.716032i \(0.254044\pi\)
−0.698067 + 0.716032i \(0.745956\pi\)
\(660\) 0 0
\(661\) − 18.2400i − 0.709453i −0.934970 0.354727i \(-0.884574\pi\)
0.934970 0.354727i \(-0.115426\pi\)
\(662\) 0 0
\(663\) 8.32957 0.323494
\(664\) 0 0
\(665\) 6.73925 0.261337
\(666\) 0 0
\(667\) 25.0207i 0.968807i
\(668\) 0 0
\(669\) − 10.9604i − 0.423755i
\(670\) 0 0
\(671\) −26.8058 −1.03483
\(672\) 0 0
\(673\) 41.2447 1.58987 0.794933 0.606697i \(-0.207506\pi\)
0.794933 + 0.606697i \(0.207506\pi\)
\(674\) 0 0
\(675\) 1.00000i 0.0384900i
\(676\) 0 0
\(677\) 20.6810i 0.794837i 0.917637 + 0.397418i \(0.130094\pi\)
−0.917637 + 0.397418i \(0.869906\pi\)
\(678\) 0 0
\(679\) 10.8713 0.417200
\(680\) 0 0
\(681\) −8.40795 −0.322193
\(682\) 0 0
\(683\) 8.28078i 0.316855i 0.987371 + 0.158428i \(0.0506424\pi\)
−0.987371 + 0.158428i \(0.949358\pi\)
\(684\) 0 0
\(685\) − 0.286743i − 0.0109559i
\(686\) 0 0
\(687\) 2.43649 0.0929578
\(688\) 0 0
\(689\) −24.2059 −0.922171
\(690\) 0 0
\(691\) 21.8864i 0.832597i 0.909228 + 0.416298i \(0.136673\pi\)
−0.909228 + 0.416298i \(0.863327\pi\)
\(692\) 0 0
\(693\) − 2.61313i − 0.0992644i
\(694\) 0 0
\(695\) −4.61631 −0.175107
\(696\) 0 0
\(697\) 3.67043 0.139027
\(698\) 0 0
\(699\) − 13.3346i − 0.504362i
\(700\) 0 0
\(701\) 40.3776i 1.52504i 0.646964 + 0.762521i \(0.276038\pi\)
−0.646964 + 0.762521i \(0.723962\pi\)
\(702\) 0 0
\(703\) 10.3160 0.389075
\(704\) 0 0
\(705\) −0.469266 −0.0176736
\(706\) 0 0
\(707\) − 6.23304i − 0.234418i
\(708\) 0 0
\(709\) − 29.5524i − 1.10986i −0.831896 0.554931i \(-0.812745\pi\)
0.831896 0.554931i \(-0.187255\pi\)
\(710\) 0 0
\(711\) 14.3842 0.539451
\(712\) 0 0
\(713\) −57.0144 −2.13520
\(714\) 0 0
\(715\) − 14.2195i − 0.531778i
\(716\) 0 0
\(717\) − 9.10748i − 0.340125i
\(718\) 0 0
\(719\) −21.9509 −0.818632 −0.409316 0.912393i \(-0.634233\pi\)
−0.409316 + 0.912393i \(0.634233\pi\)
\(720\) 0 0
\(721\) −8.76017 −0.326246
\(722\) 0 0
\(723\) − 15.9091i − 0.591666i
\(724\) 0 0
\(725\) − 4.52395i − 0.168015i
\(726\) 0 0
\(727\) −41.6972 −1.54646 −0.773232 0.634123i \(-0.781361\pi\)
−0.773232 + 0.634123i \(0.781361\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) − 8.71832i − 0.322459i
\(732\) 0 0
\(733\) 13.2549i 0.489580i 0.969576 + 0.244790i \(0.0787190\pi\)
−0.969576 + 0.244790i \(0.921281\pi\)
\(734\) 0 0
\(735\) 1.00000 0.0368856
\(736\) 0 0
\(737\) −41.5879 −1.53191
\(738\) 0 0
\(739\) 15.2353i 0.560440i 0.959936 + 0.280220i \(0.0904075\pi\)
−0.959936 + 0.280220i \(0.909593\pi\)
\(740\) 0 0
\(741\) 36.6720i 1.34718i
\(742\) 0 0
\(743\) 12.2453 0.449236 0.224618 0.974447i \(-0.427887\pi\)
0.224618 + 0.974447i \(0.427887\pi\)
\(744\) 0 0
\(745\) 13.1412 0.481458
\(746\) 0 0
\(747\) 15.1580i 0.554602i
\(748\) 0 0
\(749\) − 12.0843i − 0.441550i
\(750\) 0 0
\(751\) 36.6667 1.33799 0.668994 0.743268i \(-0.266725\pi\)
0.668994 + 0.743268i \(0.266725\pi\)
\(752\) 0 0
\(753\) 13.6433 0.497189
\(754\) 0 0
\(755\) 4.68554i 0.170524i
\(756\) 0 0
\(757\) 10.2317i 0.371878i 0.982561 + 0.185939i \(0.0595327\pi\)
−0.982561 + 0.185939i \(0.940467\pi\)
\(758\) 0 0
\(759\) 14.4525 0.524593
\(760\) 0 0
\(761\) 37.2311 1.34963 0.674814 0.737988i \(-0.264224\pi\)
0.674814 + 0.737988i \(0.264224\pi\)
\(762\) 0 0
\(763\) − 8.15571i − 0.295257i
\(764\) 0 0
\(765\) − 1.53073i − 0.0553438i
\(766\) 0 0
\(767\) −27.5422 −0.994493
\(768\) 0 0
\(769\) −21.2244 −0.765373 −0.382687 0.923878i \(-0.625001\pi\)
−0.382687 + 0.923878i \(0.625001\pi\)
\(770\) 0 0
\(771\) − 20.1344i − 0.725124i
\(772\) 0 0
\(773\) − 12.2678i − 0.441241i −0.975360 0.220621i \(-0.929192\pi\)
0.975360 0.220621i \(-0.0708082\pi\)
\(774\) 0 0
\(775\) 10.3086 0.370297
\(776\) 0 0
\(777\) 1.53073 0.0549148
\(778\) 0 0
\(779\) 16.1595i 0.578975i
\(780\) 0 0
\(781\) 35.2674i 1.26197i
\(782\) 0 0
\(783\) 4.52395 0.161673
\(784\) 0 0
\(785\) −3.27677 −0.116953
\(786\) 0 0
\(787\) 20.3379i 0.724968i 0.931990 + 0.362484i \(0.118071\pi\)
−0.931990 + 0.362484i \(0.881929\pi\)
\(788\) 0 0
\(789\) − 26.5786i − 0.946224i
\(790\) 0 0
\(791\) 6.81657 0.242369
\(792\) 0 0
\(793\) 55.8201 1.98223
\(794\) 0 0
\(795\) 4.44834i 0.157766i
\(796\) 0 0
\(797\) − 34.6675i − 1.22798i −0.789312 0.613992i \(-0.789563\pi\)
0.789312 0.613992i \(-0.210437\pi\)
\(798\) 0 0
\(799\) 0.718322 0.0254124
\(800\) 0 0
\(801\) 9.55582 0.337638
\(802\) 0 0
\(803\) 12.5626i 0.443325i
\(804\) 0 0
\(805\) 5.53073i 0.194933i
\(806\) 0 0
\(807\) 6.70549 0.236045
\(808\) 0 0
\(809\) −26.4453 −0.929767 −0.464884 0.885372i \(-0.653904\pi\)
−0.464884 + 0.885372i \(0.653904\pi\)
\(810\) 0 0
\(811\) − 36.8532i − 1.29409i −0.762452 0.647045i \(-0.776005\pi\)
0.762452 0.647045i \(-0.223995\pi\)
\(812\) 0 0
\(813\) 31.2200i 1.09493i
\(814\) 0 0
\(815\) 6.63405 0.232381
\(816\) 0 0
\(817\) 38.3835 1.34287
\(818\) 0 0
\(819\) 5.44155i 0.190143i
\(820\) 0 0
\(821\) 18.1872i 0.634737i 0.948302 + 0.317368i \(0.102799\pi\)
−0.948302 + 0.317368i \(0.897201\pi\)
\(822\) 0 0
\(823\) −13.9219 −0.485288 −0.242644 0.970115i \(-0.578015\pi\)
−0.242644 + 0.970115i \(0.578015\pi\)
\(824\) 0 0
\(825\) −2.61313 −0.0909774
\(826\) 0 0
\(827\) − 23.9651i − 0.833348i −0.909056 0.416674i \(-0.863196\pi\)
0.909056 0.416674i \(-0.136804\pi\)
\(828\) 0 0
\(829\) 24.7762i 0.860513i 0.902707 + 0.430256i \(0.141577\pi\)
−0.902707 + 0.430256i \(0.858423\pi\)
\(830\) 0 0
\(831\) 11.6537 0.404261
\(832\) 0 0
\(833\) −1.53073 −0.0530368
\(834\) 0 0
\(835\) 22.7981i 0.788960i
\(836\) 0 0
\(837\) 10.3086i 0.356319i
\(838\) 0 0
\(839\) 14.6309 0.505114 0.252557 0.967582i \(-0.418729\pi\)
0.252557 + 0.967582i \(0.418729\pi\)
\(840\) 0 0
\(841\) 8.53392 0.294273
\(842\) 0 0
\(843\) 30.8277i 1.06176i
\(844\) 0 0
\(845\) 16.6105i 0.571419i
\(846\) 0 0
\(847\) −4.17157 −0.143337
\(848\) 0 0
\(849\) 30.4608 1.04541
\(850\) 0 0
\(851\) 8.46608i 0.290214i
\(852\) 0 0
\(853\) − 30.6086i − 1.04802i −0.851712 0.524010i \(-0.824436\pi\)
0.851712 0.524010i \(-0.175564\pi\)
\(854\) 0 0
\(855\) 6.73925 0.230477
\(856\) 0 0
\(857\) 8.45914 0.288959 0.144479 0.989508i \(-0.453849\pi\)
0.144479 + 0.989508i \(0.453849\pi\)
\(858\) 0 0
\(859\) − 7.38369i − 0.251928i −0.992035 0.125964i \(-0.959798\pi\)
0.992035 0.125964i \(-0.0402024\pi\)
\(860\) 0 0
\(861\) 2.39782i 0.0817176i
\(862\) 0 0
\(863\) 19.8641 0.676180 0.338090 0.941114i \(-0.390219\pi\)
0.338090 + 0.941114i \(0.390219\pi\)
\(864\) 0 0
\(865\) −23.0060 −0.782229
\(866\) 0 0
\(867\) − 14.6569i − 0.497773i
\(868\) 0 0
\(869\) 37.5879i 1.27508i
\(870\) 0 0
\(871\) 86.6022 2.93440
\(872\) 0 0
\(873\) 10.8713 0.367936
\(874\) 0 0
\(875\) − 1.00000i − 0.0338062i
\(876\) 0 0
\(877\) − 49.6658i − 1.67709i −0.544830 0.838547i \(-0.683406\pi\)
0.544830 0.838547i \(-0.316594\pi\)
\(878\) 0 0
\(879\) −24.8831 −0.839286
\(880\) 0 0
\(881\) 12.5143 0.421618 0.210809 0.977527i \(-0.432390\pi\)
0.210809 + 0.977527i \(0.432390\pi\)
\(882\) 0 0
\(883\) − 43.8494i − 1.47565i −0.674992 0.737825i \(-0.735853\pi\)
0.674992 0.737825i \(-0.264147\pi\)
\(884\) 0 0
\(885\) 5.06147i 0.170139i
\(886\) 0 0
\(887\) 26.9538 0.905020 0.452510 0.891759i \(-0.350529\pi\)
0.452510 + 0.891759i \(0.350529\pi\)
\(888\) 0 0
\(889\) 8.15571 0.273534
\(890\) 0 0
\(891\) − 2.61313i − 0.0875430i
\(892\) 0 0
\(893\) 3.16250i 0.105829i
\(894\) 0 0
\(895\) −3.47433 −0.116134
\(896\) 0 0
\(897\) −30.0958 −1.00487
\(898\) 0 0
\(899\) − 46.6357i − 1.55539i
\(900\) 0 0
\(901\) − 6.80923i − 0.226848i
\(902\) 0 0
\(903\) 5.69552 0.189535
\(904\) 0 0
\(905\) −12.7525 −0.423907
\(906\) 0 0
\(907\) 15.0036i 0.498186i 0.968480 + 0.249093i \(0.0801326\pi\)
−0.968480 + 0.249093i \(0.919867\pi\)
\(908\) 0 0
\(909\) − 6.23304i − 0.206737i
\(910\) 0 0
\(911\) 9.29416 0.307929 0.153965 0.988076i \(-0.450796\pi\)
0.153965 + 0.988076i \(0.450796\pi\)
\(912\) 0 0
\(913\) −39.6098 −1.31089
\(914\) 0 0
\(915\) − 10.2581i − 0.339123i
\(916\) 0 0
\(917\) − 3.22625i − 0.106540i
\(918\) 0 0
\(919\) −17.7571 −0.585754 −0.292877 0.956150i \(-0.594613\pi\)
−0.292877 + 0.956150i \(0.594613\pi\)
\(920\) 0 0
\(921\) −3.82164 −0.125927
\(922\) 0 0
\(923\) − 73.4405i − 2.41732i
\(924\) 0 0
\(925\) − 1.53073i − 0.0503302i
\(926\) 0 0
\(927\) −8.76017 −0.287722
\(928\) 0 0
\(929\) 22.5200 0.738858 0.369429 0.929259i \(-0.379553\pi\)
0.369429 + 0.929259i \(0.379553\pi\)
\(930\) 0 0
\(931\) − 6.73925i − 0.220870i
\(932\) 0 0
\(933\) 8.60896i 0.281845i
\(934\) 0 0
\(935\) 4.00000 0.130814
\(936\) 0 0
\(937\) 51.9595 1.69744 0.848721 0.528840i \(-0.177373\pi\)
0.848721 + 0.528840i \(0.177373\pi\)
\(938\) 0 0
\(939\) − 26.2087i − 0.855288i
\(940\) 0 0
\(941\) − 37.5596i − 1.22441i −0.790700 0.612204i \(-0.790283\pi\)
0.790700 0.612204i \(-0.209717\pi\)
\(942\) 0 0
\(943\) −13.2617 −0.431861
\(944\) 0 0
\(945\) 1.00000 0.0325300
\(946\) 0 0
\(947\) − 14.7151i − 0.478178i −0.970998 0.239089i \(-0.923151\pi\)
0.970998 0.239089i \(-0.0768487\pi\)
\(948\) 0 0
\(949\) − 26.1603i − 0.849199i
\(950\) 0 0
\(951\) −9.32132 −0.302264
\(952\) 0 0
\(953\) 38.6465 1.25188 0.625942 0.779870i \(-0.284715\pi\)
0.625942 + 0.779870i \(0.284715\pi\)
\(954\) 0 0
\(955\) 12.9563i 0.419255i
\(956\) 0 0
\(957\) 11.8216i 0.382139i
\(958\) 0 0
\(959\) −0.286743 −0.00925941
\(960\) 0 0
\(961\) 75.2681 2.42800
\(962\) 0 0
\(963\) − 12.0843i − 0.389410i
\(964\) 0 0
\(965\) − 2.65914i − 0.0856007i
\(966\) 0 0
\(967\) 14.2003 0.456650 0.228325 0.973585i \(-0.426675\pi\)
0.228325 + 0.973585i \(0.426675\pi\)
\(968\) 0 0
\(969\) −10.3160 −0.331397
\(970\) 0 0
\(971\) − 30.2843i − 0.971869i −0.873995 0.485934i \(-0.838479\pi\)
0.873995 0.485934i \(-0.161521\pi\)
\(972\) 0 0
\(973\) 4.61631i 0.147992i
\(974\) 0 0
\(975\) 5.44155 0.174269
\(976\) 0 0
\(977\) −6.67369 −0.213510 −0.106755 0.994285i \(-0.534046\pi\)
−0.106755 + 0.994285i \(0.534046\pi\)
\(978\) 0 0
\(979\) 24.9706i 0.798063i
\(980\) 0 0
\(981\) − 8.15571i − 0.260392i
\(982\) 0 0
\(983\) −7.84216 −0.250126 −0.125063 0.992149i \(-0.539913\pi\)
−0.125063 + 0.992149i \(0.539913\pi\)
\(984\) 0 0
\(985\) −13.4962 −0.430026
\(986\) 0 0
\(987\) 0.469266i 0.0149369i
\(988\) 0 0
\(989\) 31.5004i 1.00165i
\(990\) 0 0
\(991\) −15.9254 −0.505886 −0.252943 0.967481i \(-0.581399\pi\)
−0.252943 + 0.967481i \(0.581399\pi\)
\(992\) 0 0
\(993\) −0.527131 −0.0167280
\(994\) 0 0
\(995\) − 21.1144i − 0.669372i
\(996\) 0 0
\(997\) 25.4317i 0.805431i 0.915325 + 0.402716i \(0.131934\pi\)
−0.915325 + 0.402716i \(0.868066\pi\)
\(998\) 0 0
\(999\) 1.53073 0.0484303
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3360.2.g.a.1681.5 8
4.3 odd 2 840.2.g.a.421.2 yes 8
8.3 odd 2 840.2.g.a.421.1 8
8.5 even 2 inner 3360.2.g.a.1681.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.g.a.421.1 8 8.3 odd 2
840.2.g.a.421.2 yes 8 4.3 odd 2
3360.2.g.a.1681.4 8 8.5 even 2 inner
3360.2.g.a.1681.5 8 1.1 even 1 trivial