Properties

Label 3360.2.e.c.911.11
Level $3360$
Weight $2$
Character 3360.911
Analytic conductor $26.830$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3360,2,Mod(911,3360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3360.911"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44,0,-4,0,-44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.8297350792\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 911.11
Character \(\chi\) \(=\) 3360.911
Dual form 3360.2.e.c.911.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39892 - 1.02128i) q^{3} -1.00000 q^{5} +1.00000i q^{7} +(0.913962 + 2.85739i) q^{9} +2.60621i q^{11} -3.64377i q^{13} +(1.39892 + 1.02128i) q^{15} -4.39342i q^{17} -6.32881 q^{19} +(1.02128 - 1.39892i) q^{21} +0.872985 q^{23} +1.00000 q^{25} +(1.63964 - 4.93068i) q^{27} +2.82610 q^{29} +4.51893i q^{31} +(2.66168 - 3.64589i) q^{33} -1.00000i q^{35} +0.410585i q^{37} +(-3.72132 + 5.09735i) q^{39} -1.31574i q^{41} +2.37889 q^{43} +(-0.913962 - 2.85739i) q^{45} -12.8953 q^{47} -1.00000 q^{49} +(-4.48693 + 6.14606i) q^{51} +6.44201 q^{53} -2.60621i q^{55} +(8.85351 + 6.46351i) q^{57} -10.3119i q^{59} +11.4151i q^{61} +(-2.85739 + 0.913962i) q^{63} +3.64377i q^{65} +9.90769 q^{67} +(-1.22124 - 0.891565i) q^{69} -2.67806 q^{71} +14.6519 q^{73} +(-1.39892 - 1.02128i) q^{75} -2.60621 q^{77} +11.3895i q^{79} +(-7.32935 + 5.22309i) q^{81} +15.8054i q^{83} +4.39342i q^{85} +(-3.95349 - 2.88625i) q^{87} -1.07306i q^{89} +3.64377 q^{91} +(4.61510 - 6.32162i) q^{93} +6.32881 q^{95} -11.4590 q^{97} +(-7.44697 + 2.38198i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 4 q^{3} - 44 q^{5} + 4 q^{9} + 4 q^{15} - 16 q^{19} - 16 q^{23} + 44 q^{25} - 4 q^{27} + 16 q^{29} + 24 q^{33} + 16 q^{39} - 24 q^{43} - 4 q^{45} + 24 q^{47} - 44 q^{49} - 32 q^{53} - 24 q^{67} - 8 q^{69}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times\).

\(n\) \(421\) \(1121\) \(1471\) \(1921\) \(2017\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.39892 1.02128i −0.807668 0.589638i
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 0.913962 + 2.85739i 0.304654 + 0.952463i
\(10\) 0 0
\(11\) 2.60621i 0.785803i 0.919581 + 0.392901i \(0.128529\pi\)
−0.919581 + 0.392901i \(0.871471\pi\)
\(12\) 0 0
\(13\) 3.64377i 1.01060i −0.862944 0.505300i \(-0.831382\pi\)
0.862944 0.505300i \(-0.168618\pi\)
\(14\) 0 0
\(15\) 1.39892 + 1.02128i 0.361200 + 0.263694i
\(16\) 0 0
\(17\) 4.39342i 1.06556i −0.846253 0.532781i \(-0.821147\pi\)
0.846253 0.532781i \(-0.178853\pi\)
\(18\) 0 0
\(19\) −6.32881 −1.45193 −0.725965 0.687732i \(-0.758606\pi\)
−0.725965 + 0.687732i \(0.758606\pi\)
\(20\) 0 0
\(21\) 1.02128 1.39892i 0.222862 0.305270i
\(22\) 0 0
\(23\) 0.872985 0.182030 0.0910150 0.995850i \(-0.470989\pi\)
0.0910150 + 0.995850i \(0.470989\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.63964 4.93068i 0.315549 0.948909i
\(28\) 0 0
\(29\) 2.82610 0.524793 0.262397 0.964960i \(-0.415487\pi\)
0.262397 + 0.964960i \(0.415487\pi\)
\(30\) 0 0
\(31\) 4.51893i 0.811623i 0.913957 + 0.405812i \(0.133011\pi\)
−0.913957 + 0.405812i \(0.866989\pi\)
\(32\) 0 0
\(33\) 2.66168 3.64589i 0.463339 0.634668i
\(34\) 0 0
\(35\) 1.00000i 0.169031i
\(36\) 0 0
\(37\) 0.410585i 0.0674998i 0.999430 + 0.0337499i \(0.0107450\pi\)
−0.999430 + 0.0337499i \(0.989255\pi\)
\(38\) 0 0
\(39\) −3.72132 + 5.09735i −0.595888 + 0.816229i
\(40\) 0 0
\(41\) 1.31574i 0.205484i −0.994708 0.102742i \(-0.967238\pi\)
0.994708 0.102742i \(-0.0327616\pi\)
\(42\) 0 0
\(43\) 2.37889 0.362778 0.181389 0.983411i \(-0.441941\pi\)
0.181389 + 0.983411i \(0.441941\pi\)
\(44\) 0 0
\(45\) −0.913962 2.85739i −0.136245 0.425954i
\(46\) 0 0
\(47\) −12.8953 −1.88097 −0.940483 0.339840i \(-0.889627\pi\)
−0.940483 + 0.339840i \(0.889627\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −4.48693 + 6.14606i −0.628296 + 0.860620i
\(52\) 0 0
\(53\) 6.44201 0.884879 0.442439 0.896798i \(-0.354113\pi\)
0.442439 + 0.896798i \(0.354113\pi\)
\(54\) 0 0
\(55\) 2.60621i 0.351422i
\(56\) 0 0
\(57\) 8.85351 + 6.46351i 1.17268 + 0.856113i
\(58\) 0 0
\(59\) 10.3119i 1.34250i −0.741232 0.671249i \(-0.765758\pi\)
0.741232 0.671249i \(-0.234242\pi\)
\(60\) 0 0
\(61\) 11.4151i 1.46156i 0.682614 + 0.730779i \(0.260843\pi\)
−0.682614 + 0.730779i \(0.739157\pi\)
\(62\) 0 0
\(63\) −2.85739 + 0.913962i −0.359997 + 0.115148i
\(64\) 0 0
\(65\) 3.64377i 0.451954i
\(66\) 0 0
\(67\) 9.90769 1.21042 0.605208 0.796067i \(-0.293090\pi\)
0.605208 + 0.796067i \(0.293090\pi\)
\(68\) 0 0
\(69\) −1.22124 0.891565i −0.147020 0.107332i
\(70\) 0 0
\(71\) −2.67806 −0.317828 −0.158914 0.987292i \(-0.550799\pi\)
−0.158914 + 0.987292i \(0.550799\pi\)
\(72\) 0 0
\(73\) 14.6519 1.71487 0.857435 0.514592i \(-0.172056\pi\)
0.857435 + 0.514592i \(0.172056\pi\)
\(74\) 0 0
\(75\) −1.39892 1.02128i −0.161534 0.117928i
\(76\) 0 0
\(77\) −2.60621 −0.297006
\(78\) 0 0
\(79\) 11.3895i 1.28142i 0.767784 + 0.640709i \(0.221359\pi\)
−0.767784 + 0.640709i \(0.778641\pi\)
\(80\) 0 0
\(81\) −7.32935 + 5.22309i −0.814372 + 0.580344i
\(82\) 0 0
\(83\) 15.8054i 1.73487i 0.497551 + 0.867435i \(0.334233\pi\)
−0.497551 + 0.867435i \(0.665767\pi\)
\(84\) 0 0
\(85\) 4.39342i 0.476534i
\(86\) 0 0
\(87\) −3.95349 2.88625i −0.423858 0.309438i
\(88\) 0 0
\(89\) 1.07306i 0.113744i −0.998381 0.0568720i \(-0.981887\pi\)
0.998381 0.0568720i \(-0.0181127\pi\)
\(90\) 0 0
\(91\) 3.64377 0.381971
\(92\) 0 0
\(93\) 4.61510 6.32162i 0.478564 0.655522i
\(94\) 0 0
\(95\) 6.32881 0.649322
\(96\) 0 0
\(97\) −11.4590 −1.16349 −0.581743 0.813373i \(-0.697629\pi\)
−0.581743 + 0.813373i \(0.697629\pi\)
\(98\) 0 0
\(99\) −7.44697 + 2.38198i −0.748448 + 0.239398i
\(100\) 0 0
\(101\) −8.86572 −0.882173 −0.441086 0.897465i \(-0.645407\pi\)
−0.441086 + 0.897465i \(0.645407\pi\)
\(102\) 0 0
\(103\) 4.62254i 0.455472i 0.973723 + 0.227736i \(0.0731323\pi\)
−0.973723 + 0.227736i \(0.926868\pi\)
\(104\) 0 0
\(105\) −1.02128 + 1.39892i −0.0996670 + 0.136521i
\(106\) 0 0
\(107\) 2.82698i 0.273295i 0.990620 + 0.136647i \(0.0436327\pi\)
−0.990620 + 0.136647i \(0.956367\pi\)
\(108\) 0 0
\(109\) 1.54341i 0.147832i 0.997264 + 0.0739158i \(0.0235496\pi\)
−0.997264 + 0.0739158i \(0.976450\pi\)
\(110\) 0 0
\(111\) 0.419324 0.574377i 0.0398005 0.0545174i
\(112\) 0 0
\(113\) 6.52668i 0.613978i −0.951713 0.306989i \(-0.900678\pi\)
0.951713 0.306989i \(-0.0993215\pi\)
\(114\) 0 0
\(115\) −0.872985 −0.0814063
\(116\) 0 0
\(117\) 10.4117 3.33027i 0.962559 0.307884i
\(118\) 0 0
\(119\) 4.39342 0.402745
\(120\) 0 0
\(121\) 4.20765 0.382514
\(122\) 0 0
\(123\) −1.34374 + 1.84062i −0.121161 + 0.165963i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 16.4148i 1.45658i 0.685270 + 0.728289i \(0.259684\pi\)
−0.685270 + 0.728289i \(0.740316\pi\)
\(128\) 0 0
\(129\) −3.32789 2.42952i −0.293004 0.213908i
\(130\) 0 0
\(131\) 13.1259i 1.14681i −0.819271 0.573406i \(-0.805622\pi\)
0.819271 0.573406i \(-0.194378\pi\)
\(132\) 0 0
\(133\) 6.32881i 0.548778i
\(134\) 0 0
\(135\) −1.63964 + 4.93068i −0.141118 + 0.424365i
\(136\) 0 0
\(137\) 5.14434i 0.439510i −0.975555 0.219755i \(-0.929474\pi\)
0.975555 0.219755i \(-0.0705258\pi\)
\(138\) 0 0
\(139\) 23.0112 1.95179 0.975893 0.218251i \(-0.0700351\pi\)
0.975893 + 0.218251i \(0.0700351\pi\)
\(140\) 0 0
\(141\) 18.0395 + 13.1697i 1.51920 + 1.10909i
\(142\) 0 0
\(143\) 9.49645 0.794133
\(144\) 0 0
\(145\) −2.82610 −0.234695
\(146\) 0 0
\(147\) 1.39892 + 1.02128i 0.115381 + 0.0842340i
\(148\) 0 0
\(149\) 12.1682 0.996860 0.498430 0.866930i \(-0.333910\pi\)
0.498430 + 0.866930i \(0.333910\pi\)
\(150\) 0 0
\(151\) 0.557777i 0.0453912i −0.999742 0.0226956i \(-0.992775\pi\)
0.999742 0.0226956i \(-0.00722486\pi\)
\(152\) 0 0
\(153\) 12.5537 4.01543i 1.01491 0.324628i
\(154\) 0 0
\(155\) 4.51893i 0.362969i
\(156\) 0 0
\(157\) 15.7226i 1.25480i 0.778698 + 0.627399i \(0.215880\pi\)
−0.778698 + 0.627399i \(0.784120\pi\)
\(158\) 0 0
\(159\) −9.01187 6.57912i −0.714688 0.521758i
\(160\) 0 0
\(161\) 0.872985i 0.0688009i
\(162\) 0 0
\(163\) 15.7464 1.23335 0.616677 0.787217i \(-0.288479\pi\)
0.616677 + 0.787217i \(0.288479\pi\)
\(164\) 0 0
\(165\) −2.66168 + 3.64589i −0.207212 + 0.283832i
\(166\) 0 0
\(167\) 24.0522 1.86122 0.930608 0.366016i \(-0.119279\pi\)
0.930608 + 0.366016i \(0.119279\pi\)
\(168\) 0 0
\(169\) −0.277070 −0.0213131
\(170\) 0 0
\(171\) −5.78430 18.0839i −0.442336 1.38291i
\(172\) 0 0
\(173\) 10.8040 0.821412 0.410706 0.911768i \(-0.365282\pi\)
0.410706 + 0.911768i \(0.365282\pi\)
\(174\) 0 0
\(175\) 1.00000i 0.0755929i
\(176\) 0 0
\(177\) −10.5314 + 14.4256i −0.791588 + 1.08429i
\(178\) 0 0
\(179\) 5.38759i 0.402687i −0.979521 0.201344i \(-0.935469\pi\)
0.979521 0.201344i \(-0.0645308\pi\)
\(180\) 0 0
\(181\) 10.3954i 0.772684i 0.922356 + 0.386342i \(0.126262\pi\)
−0.922356 + 0.386342i \(0.873738\pi\)
\(182\) 0 0
\(183\) 11.6581 15.9689i 0.861790 1.18045i
\(184\) 0 0
\(185\) 0.410585i 0.0301868i
\(186\) 0 0
\(187\) 11.4502 0.837322
\(188\) 0 0
\(189\) 4.93068 + 1.63964i 0.358654 + 0.119266i
\(190\) 0 0
\(191\) 22.6073 1.63580 0.817902 0.575358i \(-0.195137\pi\)
0.817902 + 0.575358i \(0.195137\pi\)
\(192\) 0 0
\(193\) 17.1364 1.23351 0.616753 0.787157i \(-0.288448\pi\)
0.616753 + 0.787157i \(0.288448\pi\)
\(194\) 0 0
\(195\) 3.72132 5.09735i 0.266489 0.365029i
\(196\) 0 0
\(197\) 9.63654 0.686575 0.343287 0.939230i \(-0.388460\pi\)
0.343287 + 0.939230i \(0.388460\pi\)
\(198\) 0 0
\(199\) 6.03091i 0.427520i −0.976886 0.213760i \(-0.931429\pi\)
0.976886 0.213760i \(-0.0685711\pi\)
\(200\) 0 0
\(201\) −13.8601 10.1186i −0.977614 0.713708i
\(202\) 0 0
\(203\) 2.82610i 0.198353i
\(204\) 0 0
\(205\) 1.31574i 0.0918952i
\(206\) 0 0
\(207\) 0.797876 + 2.49446i 0.0554562 + 0.173377i
\(208\) 0 0
\(209\) 16.4942i 1.14093i
\(210\) 0 0
\(211\) −9.41330 −0.648039 −0.324019 0.946050i \(-0.605034\pi\)
−0.324019 + 0.946050i \(0.605034\pi\)
\(212\) 0 0
\(213\) 3.74640 + 2.73506i 0.256699 + 0.187403i
\(214\) 0 0
\(215\) −2.37889 −0.162239
\(216\) 0 0
\(217\) −4.51893 −0.306765
\(218\) 0 0
\(219\) −20.4968 14.9637i −1.38505 1.01115i
\(220\) 0 0
\(221\) −16.0086 −1.07686
\(222\) 0 0
\(223\) 2.79614i 0.187243i −0.995608 0.0936217i \(-0.970156\pi\)
0.995608 0.0936217i \(-0.0298444\pi\)
\(224\) 0 0
\(225\) 0.913962 + 2.85739i 0.0609308 + 0.190493i
\(226\) 0 0
\(227\) 23.8776i 1.58481i −0.609996 0.792405i \(-0.708829\pi\)
0.609996 0.792405i \(-0.291171\pi\)
\(228\) 0 0
\(229\) 19.4866i 1.28771i 0.765147 + 0.643856i \(0.222666\pi\)
−0.765147 + 0.643856i \(0.777334\pi\)
\(230\) 0 0
\(231\) 3.64589 + 2.66168i 0.239882 + 0.175126i
\(232\) 0 0
\(233\) 16.8441i 1.10349i 0.834012 + 0.551746i \(0.186038\pi\)
−0.834012 + 0.551746i \(0.813962\pi\)
\(234\) 0 0
\(235\) 12.8953 0.841194
\(236\) 0 0
\(237\) 11.6319 15.9330i 0.755573 1.03496i
\(238\) 0 0
\(239\) 7.03283 0.454916 0.227458 0.973788i \(-0.426959\pi\)
0.227458 + 0.973788i \(0.426959\pi\)
\(240\) 0 0
\(241\) 4.94865 0.318771 0.159385 0.987216i \(-0.449049\pi\)
0.159385 + 0.987216i \(0.449049\pi\)
\(242\) 0 0
\(243\) 15.5874 + 0.178639i 0.999934 + 0.0114597i
\(244\) 0 0
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) 23.0607i 1.46732i
\(248\) 0 0
\(249\) 16.1418 22.1105i 1.02294 1.40120i
\(250\) 0 0
\(251\) 2.99335i 0.188939i 0.995528 + 0.0944693i \(0.0301154\pi\)
−0.995528 + 0.0944693i \(0.969885\pi\)
\(252\) 0 0
\(253\) 2.27519i 0.143040i
\(254\) 0 0
\(255\) 4.48693 6.14606i 0.280982 0.384881i
\(256\) 0 0
\(257\) 10.2629i 0.640184i 0.947386 + 0.320092i \(0.103714\pi\)
−0.947386 + 0.320092i \(0.896286\pi\)
\(258\) 0 0
\(259\) −0.410585 −0.0255125
\(260\) 0 0
\(261\) 2.58295 + 8.07526i 0.159880 + 0.499846i
\(262\) 0 0
\(263\) −18.3429 −1.13107 −0.565536 0.824723i \(-0.691331\pi\)
−0.565536 + 0.824723i \(0.691331\pi\)
\(264\) 0 0
\(265\) −6.44201 −0.395730
\(266\) 0 0
\(267\) −1.09590 + 1.50112i −0.0670677 + 0.0918673i
\(268\) 0 0
\(269\) −24.8952 −1.51789 −0.758944 0.651156i \(-0.774284\pi\)
−0.758944 + 0.651156i \(0.774284\pi\)
\(270\) 0 0
\(271\) 5.68426i 0.345294i −0.984984 0.172647i \(-0.944768\pi\)
0.984984 0.172647i \(-0.0552320\pi\)
\(272\) 0 0
\(273\) −5.09735 3.72132i −0.308506 0.225225i
\(274\) 0 0
\(275\) 2.60621i 0.157161i
\(276\) 0 0
\(277\) 20.4907i 1.23117i −0.788072 0.615583i \(-0.788921\pi\)
0.788072 0.615583i \(-0.211079\pi\)
\(278\) 0 0
\(279\) −12.9123 + 4.13013i −0.773041 + 0.247264i
\(280\) 0 0
\(281\) 1.78658i 0.106579i 0.998579 + 0.0532893i \(0.0169706\pi\)
−0.998579 + 0.0532893i \(0.983029\pi\)
\(282\) 0 0
\(283\) 3.73574 0.222067 0.111033 0.993817i \(-0.464584\pi\)
0.111033 + 0.993817i \(0.464584\pi\)
\(284\) 0 0
\(285\) −8.85351 6.46351i −0.524437 0.382865i
\(286\) 0 0
\(287\) 1.31574 0.0776656
\(288\) 0 0
\(289\) −2.30218 −0.135422
\(290\) 0 0
\(291\) 16.0302 + 11.7029i 0.939709 + 0.686035i
\(292\) 0 0
\(293\) 5.42748 0.317077 0.158538 0.987353i \(-0.449322\pi\)
0.158538 + 0.987353i \(0.449322\pi\)
\(294\) 0 0
\(295\) 10.3119i 0.600383i
\(296\) 0 0
\(297\) 12.8504 + 4.27325i 0.745656 + 0.247959i
\(298\) 0 0
\(299\) 3.18096i 0.183960i
\(300\) 0 0
\(301\) 2.37889i 0.137117i
\(302\) 0 0
\(303\) 12.4025 + 9.05441i 0.712502 + 0.520162i
\(304\) 0 0
\(305\) 11.4151i 0.653628i
\(306\) 0 0
\(307\) 3.30494 0.188623 0.0943114 0.995543i \(-0.469935\pi\)
0.0943114 + 0.995543i \(0.469935\pi\)
\(308\) 0 0
\(309\) 4.72092 6.46657i 0.268564 0.367870i
\(310\) 0 0
\(311\) 18.9308 1.07347 0.536734 0.843751i \(-0.319658\pi\)
0.536734 + 0.843751i \(0.319658\pi\)
\(312\) 0 0
\(313\) 19.4397 1.09879 0.549397 0.835561i \(-0.314857\pi\)
0.549397 + 0.835561i \(0.314857\pi\)
\(314\) 0 0
\(315\) 2.85739 0.913962i 0.160996 0.0514960i
\(316\) 0 0
\(317\) −13.4464 −0.755224 −0.377612 0.925964i \(-0.623255\pi\)
−0.377612 + 0.925964i \(0.623255\pi\)
\(318\) 0 0
\(319\) 7.36541i 0.412384i
\(320\) 0 0
\(321\) 2.88715 3.95472i 0.161145 0.220731i
\(322\) 0 0
\(323\) 27.8052i 1.54712i
\(324\) 0 0
\(325\) 3.64377i 0.202120i
\(326\) 0 0
\(327\) 1.57626 2.15911i 0.0871671 0.119399i
\(328\) 0 0
\(329\) 12.8953i 0.710939i
\(330\) 0 0
\(331\) −22.3577 −1.22889 −0.614445 0.788960i \(-0.710620\pi\)
−0.614445 + 0.788960i \(0.710620\pi\)
\(332\) 0 0
\(333\) −1.17320 + 0.375260i −0.0642911 + 0.0205641i
\(334\) 0 0
\(335\) −9.90769 −0.541315
\(336\) 0 0
\(337\) −25.2446 −1.37516 −0.687581 0.726108i \(-0.741327\pi\)
−0.687581 + 0.726108i \(0.741327\pi\)
\(338\) 0 0
\(339\) −6.66559 + 9.13031i −0.362025 + 0.495890i
\(340\) 0 0
\(341\) −11.7773 −0.637776
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 1.22124 + 0.891565i 0.0657492 + 0.0480002i
\(346\) 0 0
\(347\) 10.8735i 0.583721i −0.956461 0.291860i \(-0.905726\pi\)
0.956461 0.291860i \(-0.0942742\pi\)
\(348\) 0 0
\(349\) 32.5032i 1.73986i 0.493180 + 0.869928i \(0.335835\pi\)
−0.493180 + 0.869928i \(0.664165\pi\)
\(350\) 0 0
\(351\) −17.9663 5.97448i −0.958968 0.318894i
\(352\) 0 0
\(353\) 9.36201i 0.498290i 0.968466 + 0.249145i \(0.0801495\pi\)
−0.968466 + 0.249145i \(0.919850\pi\)
\(354\) 0 0
\(355\) 2.67806 0.142137
\(356\) 0 0
\(357\) −6.14606 4.48693i −0.325284 0.237474i
\(358\) 0 0
\(359\) 5.27997 0.278666 0.139333 0.990246i \(-0.455504\pi\)
0.139333 + 0.990246i \(0.455504\pi\)
\(360\) 0 0
\(361\) 21.0539 1.10810
\(362\) 0 0
\(363\) −5.88617 4.29720i −0.308944 0.225545i
\(364\) 0 0
\(365\) −14.6519 −0.766913
\(366\) 0 0
\(367\) 27.9027i 1.45651i 0.685306 + 0.728255i \(0.259668\pi\)
−0.685306 + 0.728255i \(0.740332\pi\)
\(368\) 0 0
\(369\) 3.75958 1.20254i 0.195716 0.0626015i
\(370\) 0 0
\(371\) 6.44201i 0.334453i
\(372\) 0 0
\(373\) 28.1209i 1.45604i 0.685554 + 0.728021i \(0.259560\pi\)
−0.685554 + 0.728021i \(0.740440\pi\)
\(374\) 0 0
\(375\) 1.39892 + 1.02128i 0.0722400 + 0.0527388i
\(376\) 0 0
\(377\) 10.2977i 0.530356i
\(378\) 0 0
\(379\) −26.7110 −1.37205 −0.686027 0.727576i \(-0.740647\pi\)
−0.686027 + 0.727576i \(0.740647\pi\)
\(380\) 0 0
\(381\) 16.7642 22.9630i 0.858854 1.17643i
\(382\) 0 0
\(383\) 29.7598 1.52065 0.760327 0.649541i \(-0.225039\pi\)
0.760327 + 0.649541i \(0.225039\pi\)
\(384\) 0 0
\(385\) 2.60621 0.132825
\(386\) 0 0
\(387\) 2.17422 + 6.79743i 0.110522 + 0.345533i
\(388\) 0 0
\(389\) −7.44233 −0.377341 −0.188670 0.982040i \(-0.560418\pi\)
−0.188670 + 0.982040i \(0.560418\pi\)
\(390\) 0 0
\(391\) 3.83540i 0.193964i
\(392\) 0 0
\(393\) −13.4052 + 18.3621i −0.676204 + 0.926244i
\(394\) 0 0
\(395\) 11.3895i 0.573067i
\(396\) 0 0
\(397\) 16.3521i 0.820687i 0.911931 + 0.410343i \(0.134591\pi\)
−0.911931 + 0.410343i \(0.865409\pi\)
\(398\) 0 0
\(399\) −6.46351 + 8.85351i −0.323580 + 0.443230i
\(400\) 0 0
\(401\) 7.07083i 0.353100i −0.984292 0.176550i \(-0.943506\pi\)
0.984292 0.176550i \(-0.0564938\pi\)
\(402\) 0 0
\(403\) 16.4659 0.820227
\(404\) 0 0
\(405\) 7.32935 5.22309i 0.364198 0.259538i
\(406\) 0 0
\(407\) −1.07007 −0.0530416
\(408\) 0 0
\(409\) 4.95747 0.245131 0.122566 0.992460i \(-0.460888\pi\)
0.122566 + 0.992460i \(0.460888\pi\)
\(410\) 0 0
\(411\) −5.25382 + 7.19652i −0.259152 + 0.354978i
\(412\) 0 0
\(413\) 10.3119 0.507416
\(414\) 0 0
\(415\) 15.8054i 0.775857i
\(416\) 0 0
\(417\) −32.1909 23.5010i −1.57639 1.15085i
\(418\) 0 0
\(419\) 21.0449i 1.02811i 0.857758 + 0.514054i \(0.171857\pi\)
−0.857758 + 0.514054i \(0.828143\pi\)
\(420\) 0 0
\(421\) 5.58224i 0.272062i 0.990705 + 0.136031i \(0.0434346\pi\)
−0.990705 + 0.136031i \(0.956565\pi\)
\(422\) 0 0
\(423\) −11.7858 36.8468i −0.573044 1.79155i
\(424\) 0 0
\(425\) 4.39342i 0.213112i
\(426\) 0 0
\(427\) −11.4151 −0.552417
\(428\) 0 0
\(429\) −13.2848 9.69856i −0.641395 0.468251i
\(430\) 0 0
\(431\) 22.2746 1.07293 0.536465 0.843923i \(-0.319759\pi\)
0.536465 + 0.843923i \(0.319759\pi\)
\(432\) 0 0
\(433\) 27.3240 1.31311 0.656553 0.754280i \(-0.272014\pi\)
0.656553 + 0.754280i \(0.272014\pi\)
\(434\) 0 0
\(435\) 3.95349 + 2.88625i 0.189555 + 0.138385i
\(436\) 0 0
\(437\) −5.52496 −0.264295
\(438\) 0 0
\(439\) 2.62754i 0.125406i −0.998032 0.0627029i \(-0.980028\pi\)
0.998032 0.0627029i \(-0.0199721\pi\)
\(440\) 0 0
\(441\) −0.913962 2.85739i −0.0435220 0.136066i
\(442\) 0 0
\(443\) 27.5339i 1.30818i 0.756418 + 0.654088i \(0.226948\pi\)
−0.756418 + 0.654088i \(0.773052\pi\)
\(444\) 0 0
\(445\) 1.07306i 0.0508678i
\(446\) 0 0
\(447\) −17.0224 12.4272i −0.805131 0.587786i
\(448\) 0 0
\(449\) 30.5641i 1.44241i −0.692722 0.721205i \(-0.743589\pi\)
0.692722 0.721205i \(-0.256411\pi\)
\(450\) 0 0
\(451\) 3.42910 0.161470
\(452\) 0 0
\(453\) −0.569648 + 0.780286i −0.0267644 + 0.0366610i
\(454\) 0 0
\(455\) −3.64377 −0.170823
\(456\) 0 0
\(457\) −30.6201 −1.43235 −0.716174 0.697922i \(-0.754108\pi\)
−0.716174 + 0.697922i \(0.754108\pi\)
\(458\) 0 0
\(459\) −21.6626 7.20364i −1.01112 0.336237i
\(460\) 0 0
\(461\) 3.21566 0.149768 0.0748841 0.997192i \(-0.476141\pi\)
0.0748841 + 0.997192i \(0.476141\pi\)
\(462\) 0 0
\(463\) 26.6753i 1.23971i −0.784717 0.619854i \(-0.787192\pi\)
0.784717 0.619854i \(-0.212808\pi\)
\(464\) 0 0
\(465\) −4.61510 + 6.32162i −0.214020 + 0.293158i
\(466\) 0 0
\(467\) 22.6319i 1.04728i 0.851941 + 0.523639i \(0.175426\pi\)
−0.851941 + 0.523639i \(0.824574\pi\)
\(468\) 0 0
\(469\) 9.90769i 0.457495i
\(470\) 0 0
\(471\) 16.0572 21.9946i 0.739876 1.01346i
\(472\) 0 0
\(473\) 6.19991i 0.285072i
\(474\) 0 0
\(475\) −6.32881 −0.290386
\(476\) 0 0
\(477\) 5.88776 + 18.4073i 0.269582 + 0.842814i
\(478\) 0 0
\(479\) −12.8958 −0.589226 −0.294613 0.955617i \(-0.595191\pi\)
−0.294613 + 0.955617i \(0.595191\pi\)
\(480\) 0 0
\(481\) 1.49608 0.0682153
\(482\) 0 0
\(483\) 0.891565 1.22124i 0.0405676 0.0555682i
\(484\) 0 0
\(485\) 11.4590 0.520326
\(486\) 0 0
\(487\) 0.438571i 0.0198736i −0.999951 0.00993678i \(-0.996837\pi\)
0.999951 0.00993678i \(-0.00316303\pi\)
\(488\) 0 0
\(489\) −22.0280 16.0815i −0.996139 0.727232i
\(490\) 0 0
\(491\) 22.4073i 1.01123i 0.862760 + 0.505614i \(0.168734\pi\)
−0.862760 + 0.505614i \(0.831266\pi\)
\(492\) 0 0
\(493\) 12.4162i 0.559200i
\(494\) 0 0
\(495\) 7.44697 2.38198i 0.334716 0.107062i
\(496\) 0 0
\(497\) 2.67806i 0.120128i
\(498\) 0 0
\(499\) −20.1466 −0.901884 −0.450942 0.892553i \(-0.648912\pi\)
−0.450942 + 0.892553i \(0.648912\pi\)
\(500\) 0 0
\(501\) −33.6472 24.5641i −1.50324 1.09744i
\(502\) 0 0
\(503\) −16.2587 −0.724942 −0.362471 0.931995i \(-0.618067\pi\)
−0.362471 + 0.931995i \(0.618067\pi\)
\(504\) 0 0
\(505\) 8.86572 0.394520
\(506\) 0 0
\(507\) 0.387599 + 0.282967i 0.0172139 + 0.0125670i
\(508\) 0 0
\(509\) 5.87104 0.260229 0.130115 0.991499i \(-0.458465\pi\)
0.130115 + 0.991499i \(0.458465\pi\)
\(510\) 0 0
\(511\) 14.6519i 0.648160i
\(512\) 0 0
\(513\) −10.3770 + 31.2053i −0.458155 + 1.37775i
\(514\) 0 0
\(515\) 4.62254i 0.203693i
\(516\) 0 0
\(517\) 33.6078i 1.47807i
\(518\) 0 0
\(519\) −15.1139 11.0339i −0.663428 0.484335i
\(520\) 0 0
\(521\) 26.7975i 1.17402i 0.809579 + 0.587010i \(0.199695\pi\)
−0.809579 + 0.587010i \(0.800305\pi\)
\(522\) 0 0
\(523\) −20.0527 −0.876844 −0.438422 0.898769i \(-0.644462\pi\)
−0.438422 + 0.898769i \(0.644462\pi\)
\(524\) 0 0
\(525\) 1.02128 1.39892i 0.0445724 0.0610539i
\(526\) 0 0
\(527\) 19.8536 0.864835
\(528\) 0 0
\(529\) −22.2379 −0.966865
\(530\) 0 0
\(531\) 29.4652 9.42471i 1.27868 0.408997i
\(532\) 0 0
\(533\) −4.79425 −0.207662
\(534\) 0 0
\(535\) 2.82698i 0.122221i
\(536\) 0 0
\(537\) −5.50225 + 7.53682i −0.237440 + 0.325238i
\(538\) 0 0
\(539\) 2.60621i 0.112258i
\(540\) 0 0
\(541\) 3.77748i 0.162406i −0.996698 0.0812032i \(-0.974124\pi\)
0.996698 0.0812032i \(-0.0258763\pi\)
\(542\) 0 0
\(543\) 10.6166 14.5423i 0.455604 0.624072i
\(544\) 0 0
\(545\) 1.54341i 0.0661123i
\(546\) 0 0
\(547\) 33.2021 1.41962 0.709811 0.704393i \(-0.248781\pi\)
0.709811 + 0.704393i \(0.248781\pi\)
\(548\) 0 0
\(549\) −32.6175 + 10.4330i −1.39208 + 0.445270i
\(550\) 0 0
\(551\) −17.8858 −0.761963
\(552\) 0 0
\(553\) −11.3895 −0.484330
\(554\) 0 0
\(555\) −0.419324 + 0.574377i −0.0177993 + 0.0243809i
\(556\) 0 0
\(557\) −19.9269 −0.844329 −0.422165 0.906519i \(-0.638730\pi\)
−0.422165 + 0.906519i \(0.638730\pi\)
\(558\) 0 0
\(559\) 8.66815i 0.366623i
\(560\) 0 0
\(561\) −16.0179 11.6939i −0.676278 0.493717i
\(562\) 0 0
\(563\) 22.0502i 0.929304i −0.885493 0.464652i \(-0.846180\pi\)
0.885493 0.464652i \(-0.153820\pi\)
\(564\) 0 0
\(565\) 6.52668i 0.274579i
\(566\) 0 0
\(567\) −5.22309 7.32935i −0.219349 0.307804i
\(568\) 0 0
\(569\) 20.5477i 0.861406i 0.902494 + 0.430703i \(0.141734\pi\)
−0.902494 + 0.430703i \(0.858266\pi\)
\(570\) 0 0
\(571\) 5.11523 0.214066 0.107033 0.994255i \(-0.465865\pi\)
0.107033 + 0.994255i \(0.465865\pi\)
\(572\) 0 0
\(573\) −31.6258 23.0884i −1.32119 0.964532i
\(574\) 0 0
\(575\) 0.872985 0.0364060
\(576\) 0 0
\(577\) 42.2812 1.76019 0.880094 0.474800i \(-0.157480\pi\)
0.880094 + 0.474800i \(0.157480\pi\)
\(578\) 0 0
\(579\) −23.9725 17.5011i −0.996262 0.727321i
\(580\) 0 0
\(581\) −15.8054 −0.655719
\(582\) 0 0
\(583\) 16.7893i 0.695340i
\(584\) 0 0
\(585\) −10.4117 + 3.33027i −0.430470 + 0.137690i
\(586\) 0 0
\(587\) 38.6250i 1.59422i −0.603833 0.797111i \(-0.706360\pi\)
0.603833 0.797111i \(-0.293640\pi\)
\(588\) 0 0
\(589\) 28.5994i 1.17842i
\(590\) 0 0
\(591\) −13.4808 9.84163i −0.554524 0.404831i
\(592\) 0 0
\(593\) 15.3379i 0.629854i 0.949116 + 0.314927i \(0.101980\pi\)
−0.949116 + 0.314927i \(0.898020\pi\)
\(594\) 0 0
\(595\) −4.39342 −0.180113
\(596\) 0 0
\(597\) −6.15927 + 8.43677i −0.252082 + 0.345294i
\(598\) 0 0
\(599\) −29.8200 −1.21841 −0.609207 0.793011i \(-0.708512\pi\)
−0.609207 + 0.793011i \(0.708512\pi\)
\(600\) 0 0
\(601\) 45.2523 1.84588 0.922939 0.384946i \(-0.125780\pi\)
0.922939 + 0.384946i \(0.125780\pi\)
\(602\) 0 0
\(603\) 9.05525 + 28.3101i 0.368758 + 1.15288i
\(604\) 0 0
\(605\) −4.20765 −0.171065
\(606\) 0 0
\(607\) 35.2729i 1.43168i −0.698264 0.715841i \(-0.746044\pi\)
0.698264 0.715841i \(-0.253956\pi\)
\(608\) 0 0
\(609\) 2.88625 3.95349i 0.116957 0.160203i
\(610\) 0 0
\(611\) 46.9874i 1.90091i
\(612\) 0 0
\(613\) 15.4175i 0.622709i −0.950294 0.311354i \(-0.899217\pi\)
0.950294 0.311354i \(-0.100783\pi\)
\(614\) 0 0
\(615\) 1.34374 1.84062i 0.0541849 0.0742208i
\(616\) 0 0
\(617\) 15.6194i 0.628812i 0.949289 + 0.314406i \(0.101805\pi\)
−0.949289 + 0.314406i \(0.898195\pi\)
\(618\) 0 0
\(619\) −31.7001 −1.27413 −0.637067 0.770808i \(-0.719853\pi\)
−0.637067 + 0.770808i \(0.719853\pi\)
\(620\) 0 0
\(621\) 1.43138 4.30441i 0.0574394 0.172730i
\(622\) 0 0
\(623\) 1.07306 0.0429912
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −16.8453 + 23.0741i −0.672736 + 0.921492i
\(628\) 0 0
\(629\) 1.80388 0.0719253
\(630\) 0 0
\(631\) 36.6634i 1.45955i 0.683688 + 0.729774i \(0.260375\pi\)
−0.683688 + 0.729774i \(0.739625\pi\)
\(632\) 0 0
\(633\) 13.1685 + 9.61365i 0.523400 + 0.382108i
\(634\) 0 0
\(635\) 16.4148i 0.651402i
\(636\) 0 0
\(637\) 3.64377i 0.144371i
\(638\) 0 0
\(639\) −2.44765 7.65227i −0.0968275 0.302719i
\(640\) 0 0
\(641\) 3.14434i 0.124194i −0.998070 0.0620969i \(-0.980221\pi\)
0.998070 0.0620969i \(-0.0197788\pi\)
\(642\) 0 0
\(643\) 32.3300 1.27497 0.637486 0.770462i \(-0.279975\pi\)
0.637486 + 0.770462i \(0.279975\pi\)
\(644\) 0 0
\(645\) 3.32789 + 2.42952i 0.131035 + 0.0956624i
\(646\) 0 0
\(647\) 11.3287 0.445379 0.222689 0.974889i \(-0.428516\pi\)
0.222689 + 0.974889i \(0.428516\pi\)
\(648\) 0 0
\(649\) 26.8751 1.05494
\(650\) 0 0
\(651\) 6.32162 + 4.61510i 0.247764 + 0.180880i
\(652\) 0 0
\(653\) 29.7903 1.16579 0.582893 0.812549i \(-0.301921\pi\)
0.582893 + 0.812549i \(0.301921\pi\)
\(654\) 0 0
\(655\) 13.1259i 0.512870i
\(656\) 0 0
\(657\) 13.3913 + 41.8661i 0.522442 + 1.63335i
\(658\) 0 0
\(659\) 37.0098i 1.44170i 0.693092 + 0.720849i \(0.256248\pi\)
−0.693092 + 0.720849i \(0.743752\pi\)
\(660\) 0 0
\(661\) 6.31954i 0.245802i −0.992419 0.122901i \(-0.960780\pi\)
0.992419 0.122901i \(-0.0392197\pi\)
\(662\) 0 0
\(663\) 22.3948 + 16.3493i 0.869743 + 0.634956i
\(664\) 0 0
\(665\) 6.32881i 0.245421i
\(666\) 0 0
\(667\) 2.46714 0.0955281
\(668\) 0 0
\(669\) −2.85565 + 3.91158i −0.110406 + 0.151230i
\(670\) 0 0
\(671\) −29.7503 −1.14850
\(672\) 0 0
\(673\) −37.4069 −1.44193 −0.720964 0.692972i \(-0.756301\pi\)
−0.720964 + 0.692972i \(0.756301\pi\)
\(674\) 0 0
\(675\) 1.63964 4.93068i 0.0631098 0.189782i
\(676\) 0 0
\(677\) −24.4385 −0.939248 −0.469624 0.882866i \(-0.655611\pi\)
−0.469624 + 0.882866i \(0.655611\pi\)
\(678\) 0 0
\(679\) 11.4590i 0.439756i
\(680\) 0 0
\(681\) −24.3857 + 33.4028i −0.934464 + 1.28000i
\(682\) 0 0
\(683\) 35.3525i 1.35273i −0.736568 0.676363i \(-0.763555\pi\)
0.736568 0.676363i \(-0.236445\pi\)
\(684\) 0 0
\(685\) 5.14434i 0.196555i
\(686\) 0 0
\(687\) 19.9014 27.2603i 0.759284 1.04004i
\(688\) 0 0
\(689\) 23.4732i 0.894259i
\(690\) 0 0
\(691\) −10.8725 −0.413610 −0.206805 0.978382i \(-0.566306\pi\)
−0.206805 + 0.978382i \(0.566306\pi\)
\(692\) 0 0
\(693\) −2.38198 7.44697i −0.0904840 0.282887i
\(694\) 0 0
\(695\) −23.0112 −0.872865
\(696\) 0 0
\(697\) −5.78060 −0.218956
\(698\) 0 0
\(699\) 17.2026 23.5636i 0.650661 0.891255i
\(700\) 0 0
\(701\) 24.9216 0.941276 0.470638 0.882326i \(-0.344024\pi\)
0.470638 + 0.882326i \(0.344024\pi\)
\(702\) 0 0
\(703\) 2.59852i 0.0980050i
\(704\) 0 0
\(705\) −18.0395 13.1697i −0.679405 0.496000i
\(706\) 0 0
\(707\) 8.86572i 0.333430i
\(708\) 0 0
\(709\) 42.2314i 1.58603i 0.609200 + 0.793016i \(0.291490\pi\)
−0.609200 + 0.793016i \(0.708510\pi\)
\(710\) 0 0
\(711\) −32.5442 + 10.4096i −1.22050 + 0.390389i
\(712\) 0 0
\(713\) 3.94496i 0.147740i
\(714\) 0 0
\(715\) −9.49645 −0.355147
\(716\) 0 0
\(717\) −9.83838 7.18251i −0.367421 0.268236i
\(718\) 0 0
\(719\) −27.6757 −1.03213 −0.516064 0.856550i \(-0.672603\pi\)
−0.516064 + 0.856550i \(0.672603\pi\)
\(720\) 0 0
\(721\) −4.62254 −0.172152
\(722\) 0 0
\(723\) −6.92277 5.05397i −0.257461 0.187959i
\(724\) 0 0
\(725\) 2.82610 0.104959
\(726\) 0 0
\(727\) 38.7201i 1.43605i −0.696018 0.718024i \(-0.745047\pi\)
0.696018 0.718024i \(-0.254953\pi\)
\(728\) 0 0
\(729\) −21.6232 16.1691i −0.800858 0.598855i
\(730\) 0 0
\(731\) 10.4515i 0.386562i
\(732\) 0 0
\(733\) 30.8836i 1.14071i −0.821397 0.570356i \(-0.806805\pi\)
0.821397 0.570356i \(-0.193195\pi\)
\(734\) 0 0
\(735\) −1.39892 1.02128i −0.0516000 0.0376706i
\(736\) 0 0
\(737\) 25.8215i 0.951149i
\(738\) 0 0
\(739\) 11.8412 0.435586 0.217793 0.975995i \(-0.430114\pi\)
0.217793 + 0.975995i \(0.430114\pi\)
\(740\) 0 0
\(741\) 23.5515 32.2602i 0.865188 1.18511i
\(742\) 0 0
\(743\) −18.3374 −0.672734 −0.336367 0.941731i \(-0.609198\pi\)
−0.336367 + 0.941731i \(0.609198\pi\)
\(744\) 0 0
\(745\) −12.1682 −0.445809
\(746\) 0 0
\(747\) −45.1622 + 14.4456i −1.65240 + 0.528535i
\(748\) 0 0
\(749\) −2.82698 −0.103296
\(750\) 0 0
\(751\) 31.9649i 1.16642i −0.812323 0.583208i \(-0.801797\pi\)
0.812323 0.583208i \(-0.198203\pi\)
\(752\) 0 0
\(753\) 3.05706 4.18746i 0.111405 0.152600i
\(754\) 0 0
\(755\) 0.557777i 0.0202996i
\(756\) 0 0
\(757\) 9.13341i 0.331960i −0.986129 0.165980i \(-0.946921\pi\)
0.986129 0.165980i \(-0.0530787\pi\)
\(758\) 0 0
\(759\) 2.32361 3.18281i 0.0843416 0.115529i
\(760\) 0 0
\(761\) 51.4586i 1.86537i 0.360687 + 0.932687i \(0.382542\pi\)
−0.360687 + 0.932687i \(0.617458\pi\)
\(762\) 0 0
\(763\) −1.54341 −0.0558751
\(764\) 0 0
\(765\) −12.5537 + 4.01543i −0.453881 + 0.145178i
\(766\) 0 0
\(767\) −37.5743 −1.35673
\(768\) 0 0
\(769\) −4.72688 −0.170456 −0.0852279 0.996361i \(-0.527162\pi\)
−0.0852279 + 0.996361i \(0.527162\pi\)
\(770\) 0 0
\(771\) 10.4814 14.3570i 0.377477 0.517056i
\(772\) 0 0
\(773\) 7.49571 0.269602 0.134801 0.990873i \(-0.456960\pi\)
0.134801 + 0.990873i \(0.456960\pi\)
\(774\) 0 0
\(775\) 4.51893i 0.162325i
\(776\) 0 0
\(777\) 0.574377 + 0.419324i 0.0206057 + 0.0150432i
\(778\) 0 0
\(779\) 8.32706i 0.298348i
\(780\) 0 0
\(781\) 6.97961i 0.249750i
\(782\) 0 0
\(783\) 4.63379 13.9346i 0.165598 0.497981i
\(784\) 0 0
\(785\) 15.7226i 0.561163i
\(786\) 0 0
\(787\) 15.6092 0.556408 0.278204 0.960522i \(-0.410261\pi\)
0.278204 + 0.960522i \(0.410261\pi\)
\(788\) 0 0
\(789\) 25.6603 + 18.7333i 0.913531 + 0.666923i
\(790\) 0 0
\(791\) 6.52668 0.232062
\(792\) 0 0
\(793\) 41.5941 1.47705
\(794\) 0 0
\(795\) 9.01187 + 6.57912i 0.319618 + 0.233337i
\(796\) 0 0
\(797\) −31.1859 −1.10466 −0.552331 0.833625i \(-0.686262\pi\)
−0.552331 + 0.833625i \(0.686262\pi\)
\(798\) 0 0
\(799\) 56.6543i 2.00429i
\(800\) 0 0
\(801\) 3.06614 0.980735i 0.108337 0.0346526i
\(802\) 0 0
\(803\) 38.1859i 1.34755i
\(804\) 0 0
\(805\) 0.872985i 0.0307687i
\(806\) 0 0
\(807\) 34.8264 + 25.4251i 1.22595 + 0.895004i
\(808\) 0 0
\(809\) 7.84808i 0.275924i 0.990438 + 0.137962i \(0.0440551\pi\)
−0.990438 + 0.137962i \(0.955945\pi\)
\(810\) 0 0
\(811\) −33.3680 −1.17171 −0.585855 0.810416i \(-0.699241\pi\)
−0.585855 + 0.810416i \(0.699241\pi\)
\(812\) 0 0
\(813\) −5.80524 + 7.95184i −0.203599 + 0.278883i
\(814\) 0 0
\(815\) −15.7464 −0.551572
\(816\) 0 0
\(817\) −15.0556 −0.526728
\(818\) 0 0
\(819\) 3.33027 + 10.4117i 0.116369 + 0.363813i
\(820\) 0 0
\(821\) 37.6886 1.31534 0.657670 0.753306i \(-0.271542\pi\)
0.657670 + 0.753306i \(0.271542\pi\)
\(822\) 0 0
\(823\) 16.6410i 0.580068i −0.957016 0.290034i \(-0.906333\pi\)
0.957016 0.290034i \(-0.0936667\pi\)
\(824\) 0 0
\(825\) 2.66168 3.64589i 0.0926678 0.126934i
\(826\) 0 0
\(827\) 12.5710i 0.437136i −0.975822 0.218568i \(-0.929861\pi\)
0.975822 0.218568i \(-0.0701386\pi\)
\(828\) 0 0
\(829\) 20.9681i 0.728251i −0.931350 0.364125i \(-0.881368\pi\)
0.931350 0.364125i \(-0.118632\pi\)
\(830\) 0 0
\(831\) −20.9268 + 28.6649i −0.725942 + 0.994373i
\(832\) 0 0
\(833\) 4.39342i 0.152223i
\(834\) 0 0
\(835\) −24.0522 −0.832362
\(836\) 0 0
\(837\) 22.2814 + 7.40942i 0.770157 + 0.256107i
\(838\) 0 0
\(839\) −31.7318 −1.09550 −0.547752 0.836641i \(-0.684516\pi\)
−0.547752 + 0.836641i \(0.684516\pi\)
\(840\) 0 0
\(841\) −21.0132 −0.724592
\(842\) 0 0
\(843\) 1.82461 2.49929i 0.0628428 0.0860801i
\(844\) 0 0
\(845\) 0.277070 0.00953149
\(846\) 0 0
\(847\) 4.20765i 0.144577i
\(848\) 0 0
\(849\) −5.22601 3.81525i −0.179356 0.130939i
\(850\) 0 0
\(851\) 0.358435i 0.0122870i
\(852\) 0 0
\(853\) 38.4646i 1.31700i −0.752580 0.658501i \(-0.771191\pi\)
0.752580 0.658501i \(-0.228809\pi\)
\(854\) 0 0
\(855\) 5.78430 + 18.0839i 0.197819 + 0.618456i
\(856\) 0 0
\(857\) 43.6229i 1.49013i 0.666991 + 0.745066i \(0.267582\pi\)
−0.666991 + 0.745066i \(0.732418\pi\)
\(858\) 0 0
\(859\) 2.10572 0.0718463 0.0359232 0.999355i \(-0.488563\pi\)
0.0359232 + 0.999355i \(0.488563\pi\)
\(860\) 0 0
\(861\) −1.84062 1.34374i −0.0627280 0.0457946i
\(862\) 0 0
\(863\) −14.1968 −0.483263 −0.241632 0.970368i \(-0.577683\pi\)
−0.241632 + 0.970368i \(0.577683\pi\)
\(864\) 0 0
\(865\) −10.8040 −0.367346
\(866\) 0 0
\(867\) 3.22057 + 2.35118i 0.109376 + 0.0798502i
\(868\) 0 0
\(869\) −29.6834 −1.00694
\(870\) 0 0
\(871\) 36.1014i 1.22325i
\(872\) 0 0
\(873\) −10.4731 32.7428i −0.354461 1.10818i
\(874\) 0 0
\(875\) 1.00000i 0.0338062i
\(876\) 0 0
\(877\) 38.8947i 1.31338i −0.754161 0.656690i \(-0.771956\pi\)
0.754161 0.656690i \(-0.228044\pi\)
\(878\) 0 0
\(879\) −7.59261 5.54299i −0.256093 0.186960i
\(880\) 0 0
\(881\) 37.6748i 1.26930i −0.772801 0.634649i \(-0.781145\pi\)
0.772801 0.634649i \(-0.218855\pi\)
\(882\) 0 0
\(883\) 7.31822 0.246278 0.123139 0.992389i \(-0.460704\pi\)
0.123139 + 0.992389i \(0.460704\pi\)
\(884\) 0 0
\(885\) 10.5314 14.4256i 0.354009 0.484910i
\(886\) 0 0
\(887\) 8.75464 0.293952 0.146976 0.989140i \(-0.453046\pi\)
0.146976 + 0.989140i \(0.453046\pi\)
\(888\) 0 0
\(889\) −16.4148 −0.550535
\(890\) 0 0
\(891\) −13.6125 19.1018i −0.456036 0.639936i
\(892\) 0 0
\(893\) 81.6117 2.73103
\(894\) 0 0
\(895\) 5.38759i 0.180087i
\(896\) 0 0
\(897\) −3.24866 + 4.44991i −0.108470 + 0.148578i
\(898\) 0 0
\(899\) 12.7709i 0.425934i
\(900\) 0 0
\(901\) 28.3025i 0.942893i
\(902\) 0 0
\(903\) 2.42952 3.32789i 0.0808495 0.110745i
\(904\) 0 0
\(905\) 10.3954i 0.345555i
\(906\) 0 0
\(907\) 50.4547 1.67532 0.837660 0.546191i \(-0.183923\pi\)
0.837660 + 0.546191i \(0.183923\pi\)
\(908\) 0 0
\(909\) −8.10294 25.3328i −0.268758 0.840237i
\(910\) 0 0
\(911\) −26.7091 −0.884913 −0.442456 0.896790i \(-0.645893\pi\)
−0.442456 + 0.896790i \(0.645893\pi\)
\(912\) 0 0
\(913\) −41.1923 −1.36327
\(914\) 0 0
\(915\) −11.6581 + 15.9689i −0.385404 + 0.527915i
\(916\) 0 0
\(917\) 13.1259 0.433454
\(918\) 0 0
\(919\) 18.4650i 0.609104i 0.952496 + 0.304552i \(0.0985067\pi\)
−0.952496 + 0.304552i \(0.901493\pi\)
\(920\) 0 0
\(921\) −4.62335 3.37528i −0.152344 0.111219i
\(922\) 0 0
\(923\) 9.75825i 0.321197i
\(924\) 0 0
\(925\) 0.410585i 0.0135000i
\(926\) 0 0
\(927\) −13.2084 + 4.22483i −0.433820 + 0.138761i
\(928\) 0 0
\(929\) 30.4117i 0.997777i 0.866666 + 0.498889i \(0.166258\pi\)
−0.866666 + 0.498889i \(0.833742\pi\)
\(930\) 0 0
\(931\) 6.32881 0.207418
\(932\) 0 0
\(933\) −26.4827 19.3337i −0.867006 0.632958i
\(934\) 0 0
\(935\) −11.4502 −0.374462
\(936\) 0 0
\(937\) 27.8966 0.911343 0.455671 0.890148i \(-0.349399\pi\)
0.455671 + 0.890148i \(0.349399\pi\)
\(938\) 0 0
\(939\) −27.1946 19.8534i −0.887461 0.647891i
\(940\) 0 0
\(941\) −25.9404 −0.845633 −0.422816 0.906215i \(-0.638959\pi\)
−0.422816 + 0.906215i \(0.638959\pi\)
\(942\) 0 0
\(943\) 1.14862i 0.0374042i
\(944\) 0 0
\(945\) −4.93068 1.63964i −0.160395 0.0533375i
\(946\) 0 0
\(947\) 22.9262i 0.745001i −0.928032 0.372501i \(-0.878500\pi\)
0.928032 0.372501i \(-0.121500\pi\)
\(948\) 0 0
\(949\) 53.3880i 1.73305i
\(950\) 0 0
\(951\) 18.8104 + 13.7326i 0.609970 + 0.445309i
\(952\) 0 0
\(953\) 9.26963i 0.300273i 0.988665 + 0.150136i \(0.0479713\pi\)
−0.988665 + 0.150136i \(0.952029\pi\)
\(954\) 0 0
\(955\) −22.6073 −0.731554
\(956\) 0 0
\(957\) 7.52217 10.3036i 0.243157 0.333069i
\(958\) 0 0
\(959\) 5.14434 0.166119
\(960\) 0 0
\(961\) 10.5793 0.341268
\(962\) 0 0
\(963\) −8.07778 + 2.58375i −0.260303 + 0.0832603i
\(964\) 0 0
\(965\) −17.1364 −0.551640
\(966\) 0 0
\(967\) 37.2682i 1.19846i 0.800575 + 0.599232i \(0.204527\pi\)
−0.800575 + 0.599232i \(0.795473\pi\)
\(968\) 0 0
\(969\) 28.3969 38.8972i 0.912241 1.24956i
\(970\) 0 0
\(971\) 43.3878i 1.39238i −0.717857 0.696191i \(-0.754877\pi\)
0.717857 0.696191i \(-0.245123\pi\)
\(972\) 0 0
\(973\) 23.0112i 0.737706i
\(974\) 0 0
\(975\) −3.72132 + 5.09735i −0.119178 + 0.163246i
\(976\) 0 0
\(977\) 48.3279i 1.54615i −0.634318 0.773073i \(-0.718719\pi\)
0.634318 0.773073i \(-0.281281\pi\)
\(978\) 0 0
\(979\) 2.79662 0.0893803
\(980\) 0 0
\(981\) −4.41012 + 1.41062i −0.140804 + 0.0450375i
\(982\) 0 0
\(983\) −6.14477 −0.195988 −0.0979938 0.995187i \(-0.531243\pi\)
−0.0979938 + 0.995187i \(0.531243\pi\)
\(984\) 0 0
\(985\) −9.63654 −0.307046
\(986\) 0 0
\(987\) −13.1697 + 18.0395i −0.419196 + 0.574202i
\(988\) 0 0
\(989\) 2.07674 0.0660365
\(990\) 0 0
\(991\) 10.6251i 0.337518i 0.985657 + 0.168759i \(0.0539759\pi\)
−0.985657 + 0.168759i \(0.946024\pi\)
\(992\) 0 0
\(993\) 31.2766 + 22.8335i 0.992534 + 0.724600i
\(994\) 0 0
\(995\) 6.03091i 0.191193i
\(996\) 0 0
\(997\) 56.9151i 1.80252i 0.433280 + 0.901259i \(0.357356\pi\)
−0.433280 + 0.901259i \(0.642644\pi\)
\(998\) 0 0
\(999\) 2.02446 + 0.673213i 0.0640512 + 0.0212995i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3360.2.e.c.911.11 44
3.2 odd 2 3360.2.e.d.911.12 44
4.3 odd 2 840.2.e.d.491.9 yes 44
8.3 odd 2 3360.2.e.d.911.11 44
8.5 even 2 840.2.e.c.491.35 44
12.11 even 2 840.2.e.c.491.36 yes 44
24.5 odd 2 840.2.e.d.491.10 yes 44
24.11 even 2 inner 3360.2.e.c.911.12 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.e.c.491.35 44 8.5 even 2
840.2.e.c.491.36 yes 44 12.11 even 2
840.2.e.d.491.9 yes 44 4.3 odd 2
840.2.e.d.491.10 yes 44 24.5 odd 2
3360.2.e.c.911.11 44 1.1 even 1 trivial
3360.2.e.c.911.12 44 24.11 even 2 inner
3360.2.e.d.911.11 44 8.3 odd 2
3360.2.e.d.911.12 44 3.2 odd 2