Properties

Label 3360.2.d.a.2911.6
Level $3360$
Weight $2$
Character 3360.2911
Analytic conductor $26.830$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3360,2,Mod(2911,3360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3360.2911"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-16,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.8297350792\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 24x^{14} + 238x^{12} + 1262x^{10} + 3861x^{8} + 6834x^{6} + 6589x^{4} + 2916x^{2} + 324 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2911.6
Root \(1.22519i\) of defining polynomial
Character \(\chi\) \(=\) 3360.2911
Dual form 3360.2.d.a.2911.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000i q^{5} +(1.22519 + 2.34498i) q^{7} +1.00000 q^{9} -3.01352i q^{11} -6.64828i q^{13} +1.00000i q^{15} +2.48852i q^{17} -7.51485 q^{19} +(-1.22519 - 2.34498i) q^{21} +2.99784i q^{23} -1.00000 q^{25} -1.00000 q^{27} -5.25959 q^{29} +0.732553 q^{31} +3.01352i q^{33} +(2.34498 - 1.22519i) q^{35} +4.92077 q^{37} +6.64828i q^{39} -1.88370i q^{41} +4.97184i q^{43} -1.00000i q^{45} -1.84555 q^{47} +(-3.99784 + 5.74607i) q^{49} -2.48852i q^{51} -9.99214 q^{53} -3.01352 q^{55} +7.51485 q^{57} +3.67590 q^{59} +3.07737i q^{61} +(1.22519 + 2.34498i) q^{63} -6.64828 q^{65} +6.80922i q^{67} -2.99784i q^{69} +9.38640i q^{71} -13.3201i q^{73} +1.00000 q^{75} +(7.06662 - 3.69212i) q^{77} -2.85035i q^{79} +1.00000 q^{81} +2.76948 q^{83} +2.48852 q^{85} +5.25959 q^{87} +10.1510i q^{89} +(15.5901 - 8.14538i) q^{91} -0.732553 q^{93} +7.51485i q^{95} -18.6360i q^{97} -3.01352i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{3} + 16 q^{9} + 16 q^{19} - 16 q^{25} - 16 q^{27} + 8 q^{29} - 8 q^{31} - 8 q^{37} + 16 q^{47} - 16 q^{49} - 48 q^{53} + 8 q^{55} - 16 q^{57} + 16 q^{59} - 8 q^{65} + 16 q^{75} + 16 q^{77}+ \cdots + 8 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times\).

\(n\) \(421\) \(1121\) \(1471\) \(1921\) \(2017\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.22519 + 2.34498i 0.463077 + 0.886318i
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.01352i 0.908609i −0.890846 0.454305i \(-0.849888\pi\)
0.890846 0.454305i \(-0.150112\pi\)
\(12\) 0 0
\(13\) 6.64828i 1.84390i −0.387309 0.921950i \(-0.626595\pi\)
0.387309 0.921950i \(-0.373405\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) 2.48852i 0.603555i 0.953378 + 0.301778i \(0.0975800\pi\)
−0.953378 + 0.301778i \(0.902420\pi\)
\(18\) 0 0
\(19\) −7.51485 −1.72403 −0.862013 0.506887i \(-0.830796\pi\)
−0.862013 + 0.506887i \(0.830796\pi\)
\(20\) 0 0
\(21\) −1.22519 2.34498i −0.267358 0.511716i
\(22\) 0 0
\(23\) 2.99784i 0.625092i 0.949903 + 0.312546i \(0.101182\pi\)
−0.949903 + 0.312546i \(0.898818\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −5.25959 −0.976682 −0.488341 0.872653i \(-0.662398\pi\)
−0.488341 + 0.872653i \(0.662398\pi\)
\(30\) 0 0
\(31\) 0.732553 0.131570 0.0657852 0.997834i \(-0.479045\pi\)
0.0657852 + 0.997834i \(0.479045\pi\)
\(32\) 0 0
\(33\) 3.01352i 0.524586i
\(34\) 0 0
\(35\) 2.34498 1.22519i 0.396374 0.207094i
\(36\) 0 0
\(37\) 4.92077 0.808970 0.404485 0.914545i \(-0.367451\pi\)
0.404485 + 0.914545i \(0.367451\pi\)
\(38\) 0 0
\(39\) 6.64828i 1.06458i
\(40\) 0 0
\(41\) 1.88370i 0.294184i −0.989123 0.147092i \(-0.953009\pi\)
0.989123 0.147092i \(-0.0469914\pi\)
\(42\) 0 0
\(43\) 4.97184i 0.758198i 0.925356 + 0.379099i \(0.123766\pi\)
−0.925356 + 0.379099i \(0.876234\pi\)
\(44\) 0 0
\(45\) 1.00000i 0.149071i
\(46\) 0 0
\(47\) −1.84555 −0.269201 −0.134601 0.990900i \(-0.542975\pi\)
−0.134601 + 0.990900i \(0.542975\pi\)
\(48\) 0 0
\(49\) −3.99784 + 5.74607i −0.571120 + 0.820867i
\(50\) 0 0
\(51\) 2.48852i 0.348463i
\(52\) 0 0
\(53\) −9.99214 −1.37253 −0.686263 0.727353i \(-0.740750\pi\)
−0.686263 + 0.727353i \(0.740750\pi\)
\(54\) 0 0
\(55\) −3.01352 −0.406342
\(56\) 0 0
\(57\) 7.51485 0.995366
\(58\) 0 0
\(59\) 3.67590 0.478561 0.239280 0.970950i \(-0.423088\pi\)
0.239280 + 0.970950i \(0.423088\pi\)
\(60\) 0 0
\(61\) 3.07737i 0.394016i 0.980402 + 0.197008i \(0.0631226\pi\)
−0.980402 + 0.197008i \(0.936877\pi\)
\(62\) 0 0
\(63\) 1.22519 + 2.34498i 0.154359 + 0.295439i
\(64\) 0 0
\(65\) −6.64828 −0.824617
\(66\) 0 0
\(67\) 6.80922i 0.831878i 0.909392 + 0.415939i \(0.136547\pi\)
−0.909392 + 0.415939i \(0.863453\pi\)
\(68\) 0 0
\(69\) 2.99784i 0.360897i
\(70\) 0 0
\(71\) 9.38640i 1.11396i 0.830526 + 0.556981i \(0.188040\pi\)
−0.830526 + 0.556981i \(0.811960\pi\)
\(72\) 0 0
\(73\) 13.3201i 1.55900i −0.626402 0.779500i \(-0.715473\pi\)
0.626402 0.779500i \(-0.284527\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 7.06662 3.69212i 0.805317 0.420756i
\(78\) 0 0
\(79\) 2.85035i 0.320690i −0.987061 0.160345i \(-0.948739\pi\)
0.987061 0.160345i \(-0.0512607\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 2.76948 0.303990 0.151995 0.988381i \(-0.451430\pi\)
0.151995 + 0.988381i \(0.451430\pi\)
\(84\) 0 0
\(85\) 2.48852 0.269918
\(86\) 0 0
\(87\) 5.25959 0.563887
\(88\) 0 0
\(89\) 10.1510i 1.07600i 0.842944 + 0.538001i \(0.180820\pi\)
−0.842944 + 0.538001i \(0.819180\pi\)
\(90\) 0 0
\(91\) 15.5901 8.14538i 1.63428 0.853867i
\(92\) 0 0
\(93\) −0.732553 −0.0759622
\(94\) 0 0
\(95\) 7.51485i 0.771007i
\(96\) 0 0
\(97\) 18.6360i 1.89220i −0.323880 0.946098i \(-0.604988\pi\)
0.323880 0.946098i \(-0.395012\pi\)
\(98\) 0 0
\(99\) 3.01352i 0.302870i
\(100\) 0 0
\(101\) 1.52559i 0.151802i −0.997115 0.0759011i \(-0.975817\pi\)
0.997115 0.0759011i \(-0.0241833\pi\)
\(102\) 0 0
\(103\) −6.45037 −0.635574 −0.317787 0.948162i \(-0.602940\pi\)
−0.317787 + 0.948162i \(0.602940\pi\)
\(104\) 0 0
\(105\) −2.34498 + 1.22519i −0.228846 + 0.119566i
\(106\) 0 0
\(107\) 16.7156i 1.61596i 0.589210 + 0.807980i \(0.299439\pi\)
−0.589210 + 0.807980i \(0.700561\pi\)
\(108\) 0 0
\(109\) −11.6688 −1.11767 −0.558836 0.829279i \(-0.688752\pi\)
−0.558836 + 0.829279i \(0.688752\pi\)
\(110\) 0 0
\(111\) −4.92077 −0.467059
\(112\) 0 0
\(113\) −15.0785 −1.41847 −0.709234 0.704973i \(-0.750959\pi\)
−0.709234 + 0.704973i \(0.750959\pi\)
\(114\) 0 0
\(115\) 2.99784 0.279550
\(116\) 0 0
\(117\) 6.64828i 0.614633i
\(118\) 0 0
\(119\) −5.83553 + 3.04890i −0.534942 + 0.279492i
\(120\) 0 0
\(121\) 1.91873 0.174430
\(122\) 0 0
\(123\) 1.88370i 0.169847i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 8.10656i 0.719341i −0.933079 0.359670i \(-0.882889\pi\)
0.933079 0.359670i \(-0.117111\pi\)
\(128\) 0 0
\(129\) 4.97184i 0.437746i
\(130\) 0 0
\(131\) −15.0858 −1.31805 −0.659024 0.752121i \(-0.729031\pi\)
−0.659024 + 0.752121i \(0.729031\pi\)
\(132\) 0 0
\(133\) −9.20709 17.6222i −0.798356 1.52803i
\(134\) 0 0
\(135\) 1.00000i 0.0860663i
\(136\) 0 0
\(137\) −10.9952 −0.939380 −0.469690 0.882831i \(-0.655634\pi\)
−0.469690 + 0.882831i \(0.655634\pi\)
\(138\) 0 0
\(139\) 2.72739 0.231334 0.115667 0.993288i \(-0.463099\pi\)
0.115667 + 0.993288i \(0.463099\pi\)
\(140\) 0 0
\(141\) 1.84555 0.155423
\(142\) 0 0
\(143\) −20.0347 −1.67538
\(144\) 0 0
\(145\) 5.25959i 0.436785i
\(146\) 0 0
\(147\) 3.99784 5.74607i 0.329736 0.473928i
\(148\) 0 0
\(149\) 8.35592 0.684544 0.342272 0.939601i \(-0.388804\pi\)
0.342272 + 0.939601i \(0.388804\pi\)
\(150\) 0 0
\(151\) 22.9354i 1.86646i 0.359282 + 0.933229i \(0.383022\pi\)
−0.359282 + 0.933229i \(0.616978\pi\)
\(152\) 0 0
\(153\) 2.48852i 0.201185i
\(154\) 0 0
\(155\) 0.732553i 0.0588401i
\(156\) 0 0
\(157\) 7.01845i 0.560133i 0.959981 + 0.280067i \(0.0903566\pi\)
−0.959981 + 0.280067i \(0.909643\pi\)
\(158\) 0 0
\(159\) 9.99214 0.792429
\(160\) 0 0
\(161\) −7.02986 + 3.67291i −0.554031 + 0.289466i
\(162\) 0 0
\(163\) 13.2184i 1.03534i −0.855579 0.517672i \(-0.826799\pi\)
0.855579 0.517672i \(-0.173201\pi\)
\(164\) 0 0
\(165\) 3.01352 0.234602
\(166\) 0 0
\(167\) −12.6407 −0.978164 −0.489082 0.872238i \(-0.662668\pi\)
−0.489082 + 0.872238i \(0.662668\pi\)
\(168\) 0 0
\(169\) −31.1996 −2.39997
\(170\) 0 0
\(171\) −7.51485 −0.574675
\(172\) 0 0
\(173\) 4.72615i 0.359323i 0.983729 + 0.179661i \(0.0575002\pi\)
−0.983729 + 0.179661i \(0.942500\pi\)
\(174\) 0 0
\(175\) −1.22519 2.34498i −0.0926154 0.177264i
\(176\) 0 0
\(177\) −3.67590 −0.276297
\(178\) 0 0
\(179\) 13.3705i 0.999356i −0.866211 0.499678i \(-0.833452\pi\)
0.866211 0.499678i \(-0.166548\pi\)
\(180\) 0 0
\(181\) 9.92238i 0.737525i 0.929524 + 0.368762i \(0.120218\pi\)
−0.929524 + 0.368762i \(0.879782\pi\)
\(182\) 0 0
\(183\) 3.07737i 0.227485i
\(184\) 0 0
\(185\) 4.92077i 0.361782i
\(186\) 0 0
\(187\) 7.49920 0.548396
\(188\) 0 0
\(189\) −1.22519 2.34498i −0.0891192 0.170572i
\(190\) 0 0
\(191\) 13.1111i 0.948689i 0.880339 + 0.474344i \(0.157315\pi\)
−0.880339 + 0.474344i \(0.842685\pi\)
\(192\) 0 0
\(193\) 6.03136 0.434146 0.217073 0.976155i \(-0.430349\pi\)
0.217073 + 0.976155i \(0.430349\pi\)
\(194\) 0 0
\(195\) 6.64828 0.476093
\(196\) 0 0
\(197\) −21.2078 −1.51099 −0.755497 0.655152i \(-0.772605\pi\)
−0.755497 + 0.655152i \(0.772605\pi\)
\(198\) 0 0
\(199\) −1.91024 −0.135414 −0.0677068 0.997705i \(-0.521568\pi\)
−0.0677068 + 0.997705i \(0.521568\pi\)
\(200\) 0 0
\(201\) 6.80922i 0.480285i
\(202\) 0 0
\(203\) −6.44398 12.3336i −0.452279 0.865651i
\(204\) 0 0
\(205\) −1.88370 −0.131563
\(206\) 0 0
\(207\) 2.99784i 0.208364i
\(208\) 0 0
\(209\) 22.6461i 1.56646i
\(210\) 0 0
\(211\) 11.2462i 0.774218i 0.922034 + 0.387109i \(0.126526\pi\)
−0.922034 + 0.387109i \(0.873474\pi\)
\(212\) 0 0
\(213\) 9.38640i 0.643146i
\(214\) 0 0
\(215\) 4.97184 0.339076
\(216\) 0 0
\(217\) 0.897514 + 1.71782i 0.0609272 + 0.116613i
\(218\) 0 0
\(219\) 13.3201i 0.900089i
\(220\) 0 0
\(221\) 16.5444 1.11290
\(222\) 0 0
\(223\) 5.06340 0.339070 0.169535 0.985524i \(-0.445773\pi\)
0.169535 + 0.985524i \(0.445773\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −19.3059 −1.28138 −0.640688 0.767801i \(-0.721351\pi\)
−0.640688 + 0.767801i \(0.721351\pi\)
\(228\) 0 0
\(229\) 12.6515i 0.836032i 0.908440 + 0.418016i \(0.137274\pi\)
−0.908440 + 0.418016i \(0.862726\pi\)
\(230\) 0 0
\(231\) −7.06662 + 3.69212i −0.464950 + 0.242923i
\(232\) 0 0
\(233\) 19.4858 1.27656 0.638279 0.769805i \(-0.279646\pi\)
0.638279 + 0.769805i \(0.279646\pi\)
\(234\) 0 0
\(235\) 1.84555i 0.120390i
\(236\) 0 0
\(237\) 2.85035i 0.185150i
\(238\) 0 0
\(239\) 15.4526i 0.999546i 0.866156 + 0.499773i \(0.166583\pi\)
−0.866156 + 0.499773i \(0.833417\pi\)
\(240\) 0 0
\(241\) 18.0126i 1.16029i −0.814512 0.580147i \(-0.802995\pi\)
0.814512 0.580147i \(-0.197005\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 5.74607 + 3.99784i 0.367103 + 0.255412i
\(246\) 0 0
\(247\) 49.9608i 3.17893i
\(248\) 0 0
\(249\) −2.76948 −0.175509
\(250\) 0 0
\(251\) −22.1128 −1.39575 −0.697874 0.716221i \(-0.745870\pi\)
−0.697874 + 0.716221i \(0.745870\pi\)
\(252\) 0 0
\(253\) 9.03403 0.567964
\(254\) 0 0
\(255\) −2.48852 −0.155837
\(256\) 0 0
\(257\) 2.14970i 0.134095i −0.997750 0.0670473i \(-0.978642\pi\)
0.997750 0.0670473i \(-0.0213579\pi\)
\(258\) 0 0
\(259\) 6.02886 + 11.5391i 0.374615 + 0.717005i
\(260\) 0 0
\(261\) −5.25959 −0.325561
\(262\) 0 0
\(263\) 23.2694i 1.43485i −0.696633 0.717427i \(-0.745320\pi\)
0.696633 0.717427i \(-0.254680\pi\)
\(264\) 0 0
\(265\) 9.99214i 0.613813i
\(266\) 0 0
\(267\) 10.1510i 0.621230i
\(268\) 0 0
\(269\) 3.36237i 0.205007i 0.994733 + 0.102504i \(0.0326853\pi\)
−0.994733 + 0.102504i \(0.967315\pi\)
\(270\) 0 0
\(271\) −4.88011 −0.296446 −0.148223 0.988954i \(-0.547355\pi\)
−0.148223 + 0.988954i \(0.547355\pi\)
\(272\) 0 0
\(273\) −15.5901 + 8.14538i −0.943553 + 0.492981i
\(274\) 0 0
\(275\) 3.01352i 0.181722i
\(276\) 0 0
\(277\) −26.2978 −1.58008 −0.790039 0.613056i \(-0.789940\pi\)
−0.790039 + 0.613056i \(0.789940\pi\)
\(278\) 0 0
\(279\) 0.732553 0.0438568
\(280\) 0 0
\(281\) −8.18742 −0.488421 −0.244210 0.969722i \(-0.578529\pi\)
−0.244210 + 0.969722i \(0.578529\pi\)
\(282\) 0 0
\(283\) 13.4183 0.797637 0.398818 0.917030i \(-0.369420\pi\)
0.398818 + 0.917030i \(0.369420\pi\)
\(284\) 0 0
\(285\) 7.51485i 0.445141i
\(286\) 0 0
\(287\) 4.41723 2.30788i 0.260741 0.136230i
\(288\) 0 0
\(289\) 10.8073 0.635721
\(290\) 0 0
\(291\) 18.6360i 1.09246i
\(292\) 0 0
\(293\) 23.0697i 1.34775i 0.738847 + 0.673874i \(0.235371\pi\)
−0.738847 + 0.673874i \(0.764629\pi\)
\(294\) 0 0
\(295\) 3.67590i 0.214019i
\(296\) 0 0
\(297\) 3.01352i 0.174862i
\(298\) 0 0
\(299\) 19.9304 1.15261
\(300\) 0 0
\(301\) −11.6588 + 6.09142i −0.672005 + 0.351104i
\(302\) 0 0
\(303\) 1.52559i 0.0876430i
\(304\) 0 0
\(305\) 3.07737 0.176209
\(306\) 0 0
\(307\) −13.4270 −0.766321 −0.383160 0.923682i \(-0.625164\pi\)
−0.383160 + 0.923682i \(0.625164\pi\)
\(308\) 0 0
\(309\) 6.45037 0.366949
\(310\) 0 0
\(311\) −23.9720 −1.35933 −0.679665 0.733523i \(-0.737875\pi\)
−0.679665 + 0.733523i \(0.737875\pi\)
\(312\) 0 0
\(313\) 2.20964i 0.124897i 0.998048 + 0.0624483i \(0.0198908\pi\)
−0.998048 + 0.0624483i \(0.980109\pi\)
\(314\) 0 0
\(315\) 2.34498 1.22519i 0.132125 0.0690314i
\(316\) 0 0
\(317\) −0.251931 −0.0141499 −0.00707494 0.999975i \(-0.502252\pi\)
−0.00707494 + 0.999975i \(0.502252\pi\)
\(318\) 0 0
\(319\) 15.8499i 0.887422i
\(320\) 0 0
\(321\) 16.7156i 0.932975i
\(322\) 0 0
\(323\) 18.7009i 1.04054i
\(324\) 0 0
\(325\) 6.64828i 0.368780i
\(326\) 0 0
\(327\) 11.6688 0.645288
\(328\) 0 0
\(329\) −2.26114 4.32777i −0.124661 0.238598i
\(330\) 0 0
\(331\) 23.2542i 1.27817i −0.769138 0.639083i \(-0.779314\pi\)
0.769138 0.639083i \(-0.220686\pi\)
\(332\) 0 0
\(333\) 4.92077 0.269657
\(334\) 0 0
\(335\) 6.80922 0.372027
\(336\) 0 0
\(337\) 33.7237 1.83705 0.918523 0.395368i \(-0.129383\pi\)
0.918523 + 0.395368i \(0.129383\pi\)
\(338\) 0 0
\(339\) 15.0785 0.818953
\(340\) 0 0
\(341\) 2.20756i 0.119546i
\(342\) 0 0
\(343\) −18.3725 2.33483i −0.992021 0.126069i
\(344\) 0 0
\(345\) −2.99784 −0.161398
\(346\) 0 0
\(347\) 34.8813i 1.87253i −0.351298 0.936264i \(-0.614260\pi\)
0.351298 0.936264i \(-0.385740\pi\)
\(348\) 0 0
\(349\) 7.45624i 0.399123i −0.979885 0.199562i \(-0.936048\pi\)
0.979885 0.199562i \(-0.0639518\pi\)
\(350\) 0 0
\(351\) 6.64828i 0.354859i
\(352\) 0 0
\(353\) 30.8563i 1.64232i −0.570701 0.821158i \(-0.693329\pi\)
0.570701 0.821158i \(-0.306671\pi\)
\(354\) 0 0
\(355\) 9.38640 0.498179
\(356\) 0 0
\(357\) 5.83553 3.04890i 0.308849 0.161365i
\(358\) 0 0
\(359\) 0.961413i 0.0507414i 0.999678 + 0.0253707i \(0.00807662\pi\)
−0.999678 + 0.0253707i \(0.991923\pi\)
\(360\) 0 0
\(361\) 37.4730 1.97226
\(362\) 0 0
\(363\) −1.91873 −0.100707
\(364\) 0 0
\(365\) −13.3201 −0.697206
\(366\) 0 0
\(367\) −24.3851 −1.27289 −0.636447 0.771320i \(-0.719597\pi\)
−0.636447 + 0.771320i \(0.719597\pi\)
\(368\) 0 0
\(369\) 1.88370i 0.0980615i
\(370\) 0 0
\(371\) −12.2422 23.4314i −0.635585 1.21650i
\(372\) 0 0
\(373\) 0.0929709 0.00481385 0.00240693 0.999997i \(-0.499234\pi\)
0.00240693 + 0.999997i \(0.499234\pi\)
\(374\) 0 0
\(375\) 1.00000i 0.0516398i
\(376\) 0 0
\(377\) 34.9672i 1.80090i
\(378\) 0 0
\(379\) 4.61620i 0.237118i −0.992947 0.118559i \(-0.962173\pi\)
0.992947 0.118559i \(-0.0378275\pi\)
\(380\) 0 0
\(381\) 8.10656i 0.415312i
\(382\) 0 0
\(383\) −30.2544 −1.54593 −0.772964 0.634450i \(-0.781227\pi\)
−0.772964 + 0.634450i \(0.781227\pi\)
\(384\) 0 0
\(385\) −3.69212 7.06662i −0.188168 0.360149i
\(386\) 0 0
\(387\) 4.97184i 0.252733i
\(388\) 0 0
\(389\) −3.40555 −0.172668 −0.0863341 0.996266i \(-0.527515\pi\)
−0.0863341 + 0.996266i \(0.527515\pi\)
\(390\) 0 0
\(391\) −7.46018 −0.377278
\(392\) 0 0
\(393\) 15.0858 0.760976
\(394\) 0 0
\(395\) −2.85035 −0.143417
\(396\) 0 0
\(397\) 12.2638i 0.615502i −0.951467 0.307751i \(-0.900424\pi\)
0.951467 0.307751i \(-0.0995764\pi\)
\(398\) 0 0
\(399\) 9.20709 + 17.6222i 0.460931 + 0.882211i
\(400\) 0 0
\(401\) −34.6619 −1.73093 −0.865466 0.500967i \(-0.832978\pi\)
−0.865466 + 0.500967i \(0.832978\pi\)
\(402\) 0 0
\(403\) 4.87021i 0.242603i
\(404\) 0 0
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) 14.8288i 0.735037i
\(408\) 0 0
\(409\) 2.77424i 0.137177i −0.997645 0.0685887i \(-0.978150\pi\)
0.997645 0.0685887i \(-0.0218496\pi\)
\(410\) 0 0
\(411\) 10.9952 0.542351
\(412\) 0 0
\(413\) 4.50366 + 8.61989i 0.221610 + 0.424157i
\(414\) 0 0
\(415\) 2.76948i 0.135949i
\(416\) 0 0
\(417\) −2.72739 −0.133561
\(418\) 0 0
\(419\) 7.36977 0.360037 0.180018 0.983663i \(-0.442384\pi\)
0.180018 + 0.983663i \(0.442384\pi\)
\(420\) 0 0
\(421\) −8.01423 −0.390590 −0.195295 0.980745i \(-0.562566\pi\)
−0.195295 + 0.980745i \(0.562566\pi\)
\(422\) 0 0
\(423\) −1.84555 −0.0897337
\(424\) 0 0
\(425\) 2.48852i 0.120711i
\(426\) 0 0
\(427\) −7.21635 + 3.77035i −0.349224 + 0.182460i
\(428\) 0 0
\(429\) 20.0347 0.967283
\(430\) 0 0
\(431\) 7.91884i 0.381437i −0.981645 0.190719i \(-0.938918\pi\)
0.981645 0.190719i \(-0.0610818\pi\)
\(432\) 0 0
\(433\) 29.5651i 1.42081i −0.703795 0.710404i \(-0.748512\pi\)
0.703795 0.710404i \(-0.251488\pi\)
\(434\) 0 0
\(435\) 5.25959i 0.252178i
\(436\) 0 0
\(437\) 22.5283i 1.07767i
\(438\) 0 0
\(439\) 25.6701 1.22517 0.612584 0.790405i \(-0.290130\pi\)
0.612584 + 0.790405i \(0.290130\pi\)
\(440\) 0 0
\(441\) −3.99784 + 5.74607i −0.190373 + 0.273622i
\(442\) 0 0
\(443\) 3.16301i 0.150279i 0.997173 + 0.0751396i \(0.0239403\pi\)
−0.997173 + 0.0751396i \(0.976060\pi\)
\(444\) 0 0
\(445\) 10.1510 0.481203
\(446\) 0 0
\(447\) −8.35592 −0.395222
\(448\) 0 0
\(449\) −14.1823 −0.669305 −0.334652 0.942342i \(-0.608619\pi\)
−0.334652 + 0.942342i \(0.608619\pi\)
\(450\) 0 0
\(451\) −5.67656 −0.267299
\(452\) 0 0
\(453\) 22.9354i 1.07760i
\(454\) 0 0
\(455\) −8.14538 15.5901i −0.381861 0.730873i
\(456\) 0 0
\(457\) 26.4174 1.23575 0.617877 0.786275i \(-0.287993\pi\)
0.617877 + 0.786275i \(0.287993\pi\)
\(458\) 0 0
\(459\) 2.48852i 0.116154i
\(460\) 0 0
\(461\) 22.4308i 1.04470i −0.852730 0.522352i \(-0.825055\pi\)
0.852730 0.522352i \(-0.174945\pi\)
\(462\) 0 0
\(463\) 15.6005i 0.725018i −0.931980 0.362509i \(-0.881920\pi\)
0.931980 0.362509i \(-0.118080\pi\)
\(464\) 0 0
\(465\) 0.732553i 0.0339713i
\(466\) 0 0
\(467\) 30.2072 1.39782 0.698912 0.715208i \(-0.253668\pi\)
0.698912 + 0.715208i \(0.253668\pi\)
\(468\) 0 0
\(469\) −15.9675 + 8.34256i −0.737309 + 0.385224i
\(470\) 0 0
\(471\) 7.01845i 0.323393i
\(472\) 0 0
\(473\) 14.9827 0.688905
\(474\) 0 0
\(475\) 7.51485 0.344805
\(476\) 0 0
\(477\) −9.99214 −0.457509
\(478\) 0 0
\(479\) −1.37576 −0.0628602 −0.0314301 0.999506i \(-0.510006\pi\)
−0.0314301 + 0.999506i \(0.510006\pi\)
\(480\) 0 0
\(481\) 32.7146i 1.49166i
\(482\) 0 0
\(483\) 7.02986 3.67291i 0.319870 0.167123i
\(484\) 0 0
\(485\) −18.6360 −0.846216
\(486\) 0 0
\(487\) 11.0089i 0.498860i 0.968393 + 0.249430i \(0.0802432\pi\)
−0.968393 + 0.249430i \(0.919757\pi\)
\(488\) 0 0
\(489\) 13.2184i 0.597757i
\(490\) 0 0
\(491\) 18.8450i 0.850461i −0.905085 0.425231i \(-0.860193\pi\)
0.905085 0.425231i \(-0.139807\pi\)
\(492\) 0 0
\(493\) 13.0886i 0.589481i
\(494\) 0 0
\(495\) −3.01352 −0.135447
\(496\) 0 0
\(497\) −22.0109 + 11.5001i −0.987324 + 0.515850i
\(498\) 0 0
\(499\) 22.2338i 0.995321i 0.867372 + 0.497661i \(0.165807\pi\)
−0.867372 + 0.497661i \(0.834193\pi\)
\(500\) 0 0
\(501\) 12.6407 0.564743
\(502\) 0 0
\(503\) −9.58715 −0.427470 −0.213735 0.976892i \(-0.568563\pi\)
−0.213735 + 0.976892i \(0.568563\pi\)
\(504\) 0 0
\(505\) −1.52559 −0.0678880
\(506\) 0 0
\(507\) 31.1996 1.38562
\(508\) 0 0
\(509\) 18.9857i 0.841525i 0.907171 + 0.420762i \(0.138237\pi\)
−0.907171 + 0.420762i \(0.861763\pi\)
\(510\) 0 0
\(511\) 31.2353 16.3196i 1.38177 0.721937i
\(512\) 0 0
\(513\) 7.51485 0.331789
\(514\) 0 0
\(515\) 6.45037i 0.284237i
\(516\) 0 0
\(517\) 5.56159i 0.244599i
\(518\) 0 0
\(519\) 4.72615i 0.207455i
\(520\) 0 0
\(521\) 31.3876i 1.37512i 0.726129 + 0.687559i \(0.241318\pi\)
−0.726129 + 0.687559i \(0.758682\pi\)
\(522\) 0 0
\(523\) 39.3671 1.72140 0.860701 0.509111i \(-0.170026\pi\)
0.860701 + 0.509111i \(0.170026\pi\)
\(524\) 0 0
\(525\) 1.22519 + 2.34498i 0.0534715 + 0.102343i
\(526\) 0 0
\(527\) 1.82297i 0.0794100i
\(528\) 0 0
\(529\) 14.0130 0.609260
\(530\) 0 0
\(531\) 3.67590 0.159520
\(532\) 0 0
\(533\) −12.5234 −0.542447
\(534\) 0 0
\(535\) 16.7156 0.722679
\(536\) 0 0
\(537\) 13.3705i 0.576978i
\(538\) 0 0
\(539\) 17.3159 + 12.0475i 0.745847 + 0.518924i
\(540\) 0 0
\(541\) 45.7683 1.96773 0.983866 0.178909i \(-0.0572567\pi\)
0.983866 + 0.178909i \(0.0572567\pi\)
\(542\) 0 0
\(543\) 9.92238i 0.425810i
\(544\) 0 0
\(545\) 11.6688i 0.499838i
\(546\) 0 0
\(547\) 33.1241i 1.41628i −0.706070 0.708142i \(-0.749534\pi\)
0.706070 0.708142i \(-0.250466\pi\)
\(548\) 0 0
\(549\) 3.07737i 0.131339i
\(550\) 0 0
\(551\) 39.5250 1.68382
\(552\) 0 0
\(553\) 6.68402 3.49222i 0.284233 0.148504i
\(554\) 0 0
\(555\) 4.92077i 0.208875i
\(556\) 0 0
\(557\) 2.31738 0.0981905 0.0490952 0.998794i \(-0.484366\pi\)
0.0490952 + 0.998794i \(0.484366\pi\)
\(558\) 0 0
\(559\) 33.0541 1.39804
\(560\) 0 0
\(561\) −7.49920 −0.316616
\(562\) 0 0
\(563\) 9.60252 0.404698 0.202349 0.979313i \(-0.435142\pi\)
0.202349 + 0.979313i \(0.435142\pi\)
\(564\) 0 0
\(565\) 15.0785i 0.634358i
\(566\) 0 0
\(567\) 1.22519 + 2.34498i 0.0514530 + 0.0984798i
\(568\) 0 0
\(569\) 2.96246 0.124193 0.0620965 0.998070i \(-0.480221\pi\)
0.0620965 + 0.998070i \(0.480221\pi\)
\(570\) 0 0
\(571\) 7.86321i 0.329065i −0.986372 0.164533i \(-0.947388\pi\)
0.986372 0.164533i \(-0.0526116\pi\)
\(572\) 0 0
\(573\) 13.1111i 0.547726i
\(574\) 0 0
\(575\) 2.99784i 0.125018i
\(576\) 0 0
\(577\) 1.82981i 0.0761759i 0.999274 + 0.0380880i \(0.0121267\pi\)
−0.999274 + 0.0380880i \(0.987873\pi\)
\(578\) 0 0
\(579\) −6.03136 −0.250655
\(580\) 0 0
\(581\) 3.39313 + 6.49438i 0.140771 + 0.269432i
\(582\) 0 0
\(583\) 30.1115i 1.24709i
\(584\) 0 0
\(585\) −6.64828 −0.274872
\(586\) 0 0
\(587\) −40.4704 −1.67039 −0.835196 0.549952i \(-0.814646\pi\)
−0.835196 + 0.549952i \(0.814646\pi\)
\(588\) 0 0
\(589\) −5.50503 −0.226831
\(590\) 0 0
\(591\) 21.2078 0.872373
\(592\) 0 0
\(593\) 12.3851i 0.508594i −0.967126 0.254297i \(-0.918156\pi\)
0.967126 0.254297i \(-0.0818441\pi\)
\(594\) 0 0
\(595\) 3.04890 + 5.83553i 0.124993 + 0.239233i
\(596\) 0 0
\(597\) 1.91024 0.0781810
\(598\) 0 0
\(599\) 48.6164i 1.98641i 0.116362 + 0.993207i \(0.462877\pi\)
−0.116362 + 0.993207i \(0.537123\pi\)
\(600\) 0 0
\(601\) 8.86805i 0.361735i 0.983507 + 0.180868i \(0.0578906\pi\)
−0.983507 + 0.180868i \(0.942109\pi\)
\(602\) 0 0
\(603\) 6.80922i 0.277293i
\(604\) 0 0
\(605\) 1.91873i 0.0780073i
\(606\) 0 0
\(607\) −37.4194 −1.51881 −0.759404 0.650620i \(-0.774509\pi\)
−0.759404 + 0.650620i \(0.774509\pi\)
\(608\) 0 0
\(609\) 6.44398 + 12.3336i 0.261123 + 0.499784i
\(610\) 0 0
\(611\) 12.2697i 0.496380i
\(612\) 0 0
\(613\) −30.5402 −1.23351 −0.616754 0.787156i \(-0.711553\pi\)
−0.616754 + 0.787156i \(0.711553\pi\)
\(614\) 0 0
\(615\) 1.88370 0.0759581
\(616\) 0 0
\(617\) 18.2966 0.736595 0.368297 0.929708i \(-0.379941\pi\)
0.368297 + 0.929708i \(0.379941\pi\)
\(618\) 0 0
\(619\) 25.5761 1.02799 0.513994 0.857794i \(-0.328165\pi\)
0.513994 + 0.857794i \(0.328165\pi\)
\(620\) 0 0
\(621\) 2.99784i 0.120299i
\(622\) 0 0
\(623\) −23.8038 + 12.4368i −0.953680 + 0.498271i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 22.6461i 0.904399i
\(628\) 0 0
\(629\) 12.2454i 0.488258i
\(630\) 0 0
\(631\) 26.9779i 1.07397i −0.843591 0.536987i \(-0.819562\pi\)
0.843591 0.536987i \(-0.180438\pi\)
\(632\) 0 0
\(633\) 11.2462i 0.446995i
\(634\) 0 0
\(635\) −8.10656 −0.321699
\(636\) 0 0
\(637\) 38.2014 + 26.5787i 1.51360 + 1.05309i
\(638\) 0 0
\(639\) 9.38640i 0.371320i
\(640\) 0 0
\(641\) 32.6905 1.29120 0.645599 0.763676i \(-0.276608\pi\)
0.645599 + 0.763676i \(0.276608\pi\)
\(642\) 0 0
\(643\) −15.2025 −0.599530 −0.299765 0.954013i \(-0.596908\pi\)
−0.299765 + 0.954013i \(0.596908\pi\)
\(644\) 0 0
\(645\) −4.97184 −0.195766
\(646\) 0 0
\(647\) 23.9264 0.940643 0.470322 0.882495i \(-0.344138\pi\)
0.470322 + 0.882495i \(0.344138\pi\)
\(648\) 0 0
\(649\) 11.0774i 0.434825i
\(650\) 0 0
\(651\) −0.897514 1.71782i −0.0351763 0.0673267i
\(652\) 0 0
\(653\) 51.0823 1.99901 0.999503 0.0315391i \(-0.0100409\pi\)
0.999503 + 0.0315391i \(0.0100409\pi\)
\(654\) 0 0
\(655\) 15.0858i 0.589449i
\(656\) 0 0
\(657\) 13.3201i 0.519667i
\(658\) 0 0
\(659\) 34.1652i 1.33089i −0.746447 0.665444i \(-0.768242\pi\)
0.746447 0.665444i \(-0.231758\pi\)
\(660\) 0 0
\(661\) 14.5921i 0.567566i 0.958889 + 0.283783i \(0.0915895\pi\)
−0.958889 + 0.283783i \(0.908410\pi\)
\(662\) 0 0
\(663\) −16.5444 −0.642530
\(664\) 0 0
\(665\) −17.6222 + 9.20709i −0.683358 + 0.357036i
\(666\) 0 0
\(667\) 15.7674i 0.610516i
\(668\) 0 0
\(669\) −5.06340 −0.195762
\(670\) 0 0
\(671\) 9.27369 0.358007
\(672\) 0 0
\(673\) −15.2224 −0.586779 −0.293389 0.955993i \(-0.594783\pi\)
−0.293389 + 0.955993i \(0.594783\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) 49.4639i 1.90105i 0.310647 + 0.950525i \(0.399454\pi\)
−0.310647 + 0.950525i \(0.600546\pi\)
\(678\) 0 0
\(679\) 43.7009 22.8325i 1.67709 0.876232i
\(680\) 0 0
\(681\) 19.3059 0.739803
\(682\) 0 0
\(683\) 28.3295i 1.08400i 0.840379 + 0.542000i \(0.182333\pi\)
−0.840379 + 0.542000i \(0.817667\pi\)
\(684\) 0 0
\(685\) 10.9952i 0.420104i
\(686\) 0 0
\(687\) 12.6515i 0.482683i
\(688\) 0 0
\(689\) 66.4305i 2.53080i
\(690\) 0 0
\(691\) −39.8336 −1.51534 −0.757670 0.652638i \(-0.773662\pi\)
−0.757670 + 0.652638i \(0.773662\pi\)
\(692\) 0 0
\(693\) 7.06662 3.69212i 0.268439 0.140252i
\(694\) 0 0
\(695\) 2.72739i 0.103456i
\(696\) 0 0
\(697\) 4.68763 0.177557
\(698\) 0 0
\(699\) −19.4858 −0.737022
\(700\) 0 0
\(701\) 22.1877 0.838019 0.419010 0.907982i \(-0.362377\pi\)
0.419010 + 0.907982i \(0.362377\pi\)
\(702\) 0 0
\(703\) −36.9789 −1.39468
\(704\) 0 0
\(705\) 1.84555i 0.0695075i
\(706\) 0 0
\(707\) 3.57748 1.86914i 0.134545 0.0702961i
\(708\) 0 0
\(709\) 32.3649 1.21549 0.607745 0.794133i \(-0.292074\pi\)
0.607745 + 0.794133i \(0.292074\pi\)
\(710\) 0 0
\(711\) 2.85035i 0.106897i
\(712\) 0 0
\(713\) 2.19607i 0.0822436i
\(714\) 0 0
\(715\) 20.0347i 0.749254i
\(716\) 0 0
\(717\) 15.4526i 0.577088i
\(718\) 0 0
\(719\) −23.4628 −0.875016 −0.437508 0.899214i \(-0.644139\pi\)
−0.437508 + 0.899214i \(0.644139\pi\)
\(720\) 0 0
\(721\) −7.90291 15.1260i −0.294320 0.563321i
\(722\) 0 0
\(723\) 18.0126i 0.669896i
\(724\) 0 0
\(725\) 5.25959 0.195336
\(726\) 0 0
\(727\) 51.1744 1.89795 0.948977 0.315346i \(-0.102121\pi\)
0.948977 + 0.315346i \(0.102121\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.3725 −0.457614
\(732\) 0 0
\(733\) 50.4754i 1.86435i 0.362007 + 0.932175i \(0.382092\pi\)
−0.362007 + 0.932175i \(0.617908\pi\)
\(734\) 0 0
\(735\) −5.74607 3.99784i −0.211947 0.147462i
\(736\) 0 0
\(737\) 20.5197 0.755852
\(738\) 0 0
\(739\) 39.2426i 1.44356i −0.692122 0.721781i \(-0.743324\pi\)
0.692122 0.721781i \(-0.256676\pi\)
\(740\) 0 0
\(741\) 49.9608i 1.83536i
\(742\) 0 0
\(743\) 16.7484i 0.614440i −0.951639 0.307220i \(-0.900601\pi\)
0.951639 0.307220i \(-0.0993987\pi\)
\(744\) 0 0
\(745\) 8.35592i 0.306137i
\(746\) 0 0
\(747\) 2.76948 0.101330
\(748\) 0 0
\(749\) −39.1978 + 20.4798i −1.43225 + 0.748314i
\(750\) 0 0
\(751\) 28.5845i 1.04306i 0.853232 + 0.521531i \(0.174639\pi\)
−0.853232 + 0.521531i \(0.825361\pi\)
\(752\) 0 0
\(753\) 22.1128 0.805835
\(754\) 0 0
\(755\) 22.9354 0.834706
\(756\) 0 0
\(757\) −33.8836 −1.23152 −0.615760 0.787933i \(-0.711151\pi\)
−0.615760 + 0.787933i \(0.711151\pi\)
\(758\) 0 0
\(759\) −9.03403 −0.327914
\(760\) 0 0
\(761\) 12.4539i 0.451452i 0.974191 + 0.225726i \(0.0724755\pi\)
−0.974191 + 0.225726i \(0.927525\pi\)
\(762\) 0 0
\(763\) −14.2965 27.3631i −0.517568 0.990612i
\(764\) 0 0
\(765\) 2.48852 0.0899727
\(766\) 0 0
\(767\) 24.4384i 0.882418i
\(768\) 0 0
\(769\) 32.4983i 1.17192i −0.810340 0.585960i \(-0.800717\pi\)
0.810340 0.585960i \(-0.199283\pi\)
\(770\) 0 0
\(771\) 2.14970i 0.0774196i
\(772\) 0 0
\(773\) 48.4978i 1.74434i −0.489199 0.872172i \(-0.662711\pi\)
0.489199 0.872172i \(-0.337289\pi\)
\(774\) 0 0
\(775\) −0.732553 −0.0263141
\(776\) 0 0
\(777\) −6.02886 11.5391i −0.216284 0.413963i
\(778\) 0 0
\(779\) 14.1557i 0.507181i
\(780\) 0 0
\(781\) 28.2861 1.01216
\(782\) 0 0
\(783\) 5.25959 0.187962
\(784\) 0 0
\(785\) 7.01845 0.250499
\(786\) 0 0
\(787\) −10.4860 −0.373785 −0.186893 0.982380i \(-0.559842\pi\)
−0.186893 + 0.982380i \(0.559842\pi\)
\(788\) 0 0
\(789\) 23.2694i 0.828414i
\(790\) 0 0
\(791\) −18.4740 35.3588i −0.656860 1.25721i
\(792\) 0 0
\(793\) 20.4592 0.726527
\(794\) 0 0
\(795\) 9.99214i 0.354385i
\(796\) 0 0
\(797\) 16.1299i 0.571351i −0.958326 0.285676i \(-0.907782\pi\)
0.958326 0.285676i \(-0.0922180\pi\)
\(798\) 0 0
\(799\) 4.59269i 0.162478i
\(800\) 0 0
\(801\) 10.1510i 0.358667i
\(802\) 0 0
\(803\) −40.1403 −1.41652
\(804\) 0 0
\(805\) 3.67291 + 7.02986i 0.129453 + 0.247770i
\(806\) 0 0
\(807\) 3.36237i 0.118361i
\(808\) 0 0
\(809\) 53.0829 1.86630 0.933148 0.359492i \(-0.117050\pi\)
0.933148 + 0.359492i \(0.117050\pi\)
\(810\) 0 0
\(811\) −49.3864 −1.73419 −0.867096 0.498141i \(-0.834016\pi\)
−0.867096 + 0.498141i \(0.834016\pi\)
\(812\) 0 0
\(813\) 4.88011 0.171153
\(814\) 0 0
\(815\) −13.2184 −0.463020
\(816\) 0 0
\(817\) 37.3626i 1.30715i
\(818\) 0 0
\(819\) 15.5901 8.14538i 0.544761 0.284622i
\(820\) 0 0
\(821\) 36.7324 1.28197 0.640984 0.767554i \(-0.278526\pi\)
0.640984 + 0.767554i \(0.278526\pi\)
\(822\) 0 0
\(823\) 29.2450i 1.01942i −0.860347 0.509709i \(-0.829753\pi\)
0.860347 0.509709i \(-0.170247\pi\)
\(824\) 0 0
\(825\) 3.01352i 0.104917i
\(826\) 0 0
\(827\) 30.0895i 1.04632i −0.852236 0.523158i \(-0.824754\pi\)
0.852236 0.523158i \(-0.175246\pi\)
\(828\) 0 0
\(829\) 33.7433i 1.17195i 0.810327 + 0.585977i \(0.199289\pi\)
−0.810327 + 0.585977i \(0.800711\pi\)
\(830\) 0 0
\(831\) 26.2978 0.912259
\(832\) 0 0
\(833\) −14.2992 9.94870i −0.495438 0.344702i
\(834\) 0 0
\(835\) 12.6407i 0.437448i
\(836\) 0 0
\(837\) −0.732553 −0.0253207
\(838\) 0 0
\(839\) 20.4511 0.706052 0.353026 0.935614i \(-0.385153\pi\)
0.353026 + 0.935614i \(0.385153\pi\)
\(840\) 0 0
\(841\) −1.33670 −0.0460931
\(842\) 0 0
\(843\) 8.18742 0.281990
\(844\) 0 0
\(845\) 31.1996i 1.07330i
\(846\) 0 0
\(847\) 2.35080 + 4.49937i 0.0807743 + 0.154600i
\(848\) 0 0
\(849\) −13.4183 −0.460516
\(850\) 0 0
\(851\) 14.7517i 0.505681i
\(852\) 0 0
\(853\) 27.5322i 0.942685i −0.881950 0.471342i \(-0.843770\pi\)
0.881950 0.471342i \(-0.156230\pi\)
\(854\) 0 0
\(855\) 7.51485i 0.257002i
\(856\) 0 0
\(857\) 2.62457i 0.0896537i 0.998995 + 0.0448269i \(0.0142736\pi\)
−0.998995 + 0.0448269i \(0.985726\pi\)
\(858\) 0 0
\(859\) 40.7537 1.39050 0.695249 0.718769i \(-0.255294\pi\)
0.695249 + 0.718769i \(0.255294\pi\)
\(860\) 0 0
\(861\) −4.41723 + 2.30788i −0.150539 + 0.0786524i
\(862\) 0 0
\(863\) 25.6679i 0.873746i −0.899523 0.436873i \(-0.856086\pi\)
0.899523 0.436873i \(-0.143914\pi\)
\(864\) 0 0
\(865\) 4.72615 0.160694
\(866\) 0 0
\(867\) −10.8073 −0.367034
\(868\) 0 0
\(869\) −8.58959 −0.291382
\(870\) 0 0
\(871\) 45.2696 1.53390
\(872\) 0 0
\(873\) 18.6360i 0.630732i
\(874\) 0 0
\(875\) −2.34498 + 1.22519i −0.0792747 + 0.0414189i
\(876\) 0 0
\(877\) 30.8851 1.04292 0.521458 0.853277i \(-0.325388\pi\)
0.521458 + 0.853277i \(0.325388\pi\)
\(878\) 0 0
\(879\) 23.0697i 0.778122i
\(880\) 0 0
\(881\) 24.6362i 0.830013i 0.909818 + 0.415007i \(0.136221\pi\)
−0.909818 + 0.415007i \(0.863779\pi\)
\(882\) 0 0
\(883\) 17.5506i 0.590624i −0.955401 0.295312i \(-0.904576\pi\)
0.955401 0.295312i \(-0.0954237\pi\)
\(884\) 0 0
\(885\) 3.67590i 0.123564i
\(886\) 0 0
\(887\) 17.4618 0.586311 0.293155 0.956065i \(-0.405295\pi\)
0.293155 + 0.956065i \(0.405295\pi\)
\(888\) 0 0
\(889\) 19.0097 9.93205i 0.637565 0.333110i
\(890\) 0 0
\(891\) 3.01352i 0.100957i
\(892\) 0 0
\(893\) 13.8690 0.464110
\(894\) 0 0
\(895\) −13.3705 −0.446925
\(896\) 0 0
\(897\) −19.9304 −0.665458
\(898\) 0 0
\(899\) −3.85293 −0.128502
\(900\) 0 0
\(901\) 24.8657i 0.828395i
\(902\) 0 0
\(903\) 11.6588 6.09142i 0.387982 0.202710i
\(904\) 0 0
\(905\) 9.92238 0.329831
\(906\) 0 0
\(907\) 46.7175i 1.55123i 0.631207 + 0.775614i \(0.282560\pi\)
−0.631207 + 0.775614i \(0.717440\pi\)
\(908\) 0 0
\(909\) 1.52559i 0.0506007i
\(910\) 0 0
\(911\) 20.2675i 0.671493i 0.941952 + 0.335747i \(0.108989\pi\)
−0.941952 + 0.335747i \(0.891011\pi\)
\(912\) 0 0
\(913\) 8.34588i 0.276208i
\(914\) 0 0
\(915\) −3.07737 −0.101735
\(916\) 0 0
\(917\) −18.4829 35.3758i −0.610358 1.16821i
\(918\) 0 0
\(919\) 11.5972i 0.382557i −0.981536 0.191278i \(-0.938737\pi\)
0.981536 0.191278i \(-0.0612633\pi\)
\(920\) 0 0
\(921\) 13.4270 0.442435
\(922\) 0 0
\(923\) 62.4034 2.05403
\(924\) 0 0
\(925\) −4.92077 −0.161794
\(926\) 0 0
\(927\) −6.45037 −0.211858
\(928\) 0 0
\(929\) 57.8656i 1.89851i 0.314511 + 0.949254i \(0.398159\pi\)
−0.314511 + 0.949254i \(0.601841\pi\)
\(930\) 0 0
\(931\) 30.0432 43.1808i 0.984625 1.41520i
\(932\) 0 0
\(933\) 23.9720 0.784809
\(934\) 0 0
\(935\) 7.49920i 0.245250i
\(936\) 0 0
\(937\) 0.668351i 0.0218341i −0.999940 0.0109170i \(-0.996525\pi\)
0.999940 0.0109170i \(-0.00347507\pi\)
\(938\) 0 0
\(939\) 2.20964i 0.0721090i
\(940\) 0 0
\(941\) 17.4343i 0.568344i 0.958773 + 0.284172i \(0.0917186\pi\)
−0.958773 + 0.284172i \(0.908281\pi\)
\(942\) 0 0
\(943\) 5.64702 0.183892
\(944\) 0 0
\(945\) −2.34498 + 1.22519i −0.0762821 + 0.0398553i
\(946\) 0 0
\(947\) 34.7083i 1.12787i −0.825819 0.563935i \(-0.809287\pi\)
0.825819 0.563935i \(-0.190713\pi\)
\(948\) 0 0
\(949\) −88.5557 −2.87464
\(950\) 0 0
\(951\) 0.251931 0.00816943
\(952\) 0 0
\(953\) −1.76769 −0.0572612 −0.0286306 0.999590i \(-0.509115\pi\)
−0.0286306 + 0.999590i \(0.509115\pi\)
\(954\) 0 0
\(955\) 13.1111 0.424267
\(956\) 0 0
\(957\) 15.8499i 0.512353i
\(958\) 0 0
\(959\) −13.4711 25.7834i −0.435005 0.832590i
\(960\) 0 0
\(961\) −30.4634 −0.982689
\(962\) 0 0
\(963\) 16.7156i 0.538653i
\(964\) 0 0
\(965\) 6.03136i 0.194156i
\(966\) 0 0
\(967\) 3.46815i 0.111528i 0.998444 + 0.0557642i \(0.0177595\pi\)
−0.998444 + 0.0557642i \(0.982241\pi\)
\(968\) 0 0
\(969\) 18.7009i 0.600758i
\(970\) 0 0
\(971\) −26.9721 −0.865575 −0.432787 0.901496i \(-0.642470\pi\)
−0.432787 + 0.901496i \(0.642470\pi\)
\(972\) 0 0
\(973\) 3.34156 + 6.39566i 0.107125 + 0.205035i
\(974\) 0 0
\(975\) 6.64828i 0.212915i
\(976\) 0 0
\(977\) −21.9486 −0.702197 −0.351098 0.936339i \(-0.614192\pi\)
−0.351098 + 0.936339i \(0.614192\pi\)
\(978\) 0 0
\(979\) 30.5901 0.977665
\(980\) 0 0
\(981\) −11.6688 −0.372557
\(982\) 0 0
\(983\) −28.6929 −0.915161 −0.457580 0.889168i \(-0.651284\pi\)
−0.457580 + 0.889168i \(0.651284\pi\)
\(984\) 0 0
\(985\) 21.2078i 0.675737i
\(986\) 0 0
\(987\) 2.26114 + 4.32777i 0.0719730 + 0.137755i
\(988\) 0 0
\(989\) −14.9048 −0.473944
\(990\) 0 0
\(991\) 20.0886i 0.638136i −0.947732 0.319068i \(-0.896630\pi\)
0.947732 0.319068i \(-0.103370\pi\)
\(992\) 0 0
\(993\) 23.2542i 0.737950i
\(994\) 0 0
\(995\) 1.91024i 0.0605588i
\(996\) 0 0
\(997\) 36.9212i 1.16930i 0.811284 + 0.584652i \(0.198769\pi\)
−0.811284 + 0.584652i \(0.801231\pi\)
\(998\) 0 0
\(999\) −4.92077 −0.155686
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3360.2.d.a.2911.6 16
4.3 odd 2 3360.2.d.d.2911.3 yes 16
7.6 odd 2 3360.2.d.d.2911.11 yes 16
28.27 even 2 inner 3360.2.d.a.2911.14 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3360.2.d.a.2911.6 16 1.1 even 1 trivial
3360.2.d.a.2911.14 yes 16 28.27 even 2 inner
3360.2.d.d.2911.3 yes 16 4.3 odd 2
3360.2.d.d.2911.11 yes 16 7.6 odd 2