Properties

Label 3360.2.d.a.2911.10
Level $3360$
Weight $2$
Character 3360.2911
Analytic conductor $26.830$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3360,2,Mod(2911,3360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3360.2911"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-16,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.8297350792\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 24x^{14} + 238x^{12} + 1262x^{10} + 3861x^{8} + 6834x^{6} + 6589x^{4} + 2916x^{2} + 324 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2911.10
Root \(1.95785i\) of defining polynomial
Character \(\chi\) \(=\) 3360.2911
Dual form 3360.2.d.a.2911.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.00000i q^{5} +(-1.95785 + 1.77956i) q^{7} +1.00000 q^{9} -0.0547787i q^{11} +6.64493i q^{13} -1.00000i q^{15} +7.35292i q^{17} +1.62072 q^{19} +(1.95785 - 1.77956i) q^{21} +1.66636i q^{23} -1.00000 q^{25} -1.00000 q^{27} +3.58889 q^{29} +5.02299 q^{31} +0.0547787i q^{33} +(-1.77956 - 1.95785i) q^{35} -5.91302 q^{37} -6.64493i q^{39} -3.00981i q^{41} -10.1493i q^{43} +1.00000i q^{45} -0.427413 q^{47} +(0.666361 - 6.96821i) q^{49} -7.35292i q^{51} -5.43410 q^{53} +0.0547787 q^{55} -1.62072 q^{57} +7.77369 q^{59} +10.5379i q^{61} +(-1.95785 + 1.77956i) q^{63} -6.64493 q^{65} -4.32681i q^{67} -1.66636i q^{69} +11.0089i q^{71} +10.4414i q^{73} +1.00000 q^{75} +(0.0974818 + 0.107249i) q^{77} +1.40079i q^{79} +1.00000 q^{81} -14.4307 q^{83} -7.35292 q^{85} -3.58889 q^{87} +5.35419i q^{89} +(-11.8250 - 13.0098i) q^{91} -5.02299 q^{93} +1.62072i q^{95} -1.94030i q^{97} -0.0547787i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{3} + 16 q^{9} + 16 q^{19} - 16 q^{25} - 16 q^{27} + 8 q^{29} - 8 q^{31} - 8 q^{37} + 16 q^{47} - 16 q^{49} - 48 q^{53} + 8 q^{55} - 16 q^{57} + 16 q^{59} - 8 q^{65} + 16 q^{75} + 16 q^{77}+ \cdots + 8 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times\).

\(n\) \(421\) \(1121\) \(1471\) \(1921\) \(2017\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) −1.95785 + 1.77956i −0.739998 + 0.672609i
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.0547787i 0.0165164i −0.999966 0.00825820i \(-0.997371\pi\)
0.999966 0.00825820i \(-0.00262870\pi\)
\(12\) 0 0
\(13\) 6.64493i 1.84297i 0.388413 + 0.921486i \(0.373023\pi\)
−0.388413 + 0.921486i \(0.626977\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) 7.35292i 1.78335i 0.452681 + 0.891673i \(0.350468\pi\)
−0.452681 + 0.891673i \(0.649532\pi\)
\(18\) 0 0
\(19\) 1.62072 0.371819 0.185909 0.982567i \(-0.440477\pi\)
0.185909 + 0.982567i \(0.440477\pi\)
\(20\) 0 0
\(21\) 1.95785 1.77956i 0.427238 0.388331i
\(22\) 0 0
\(23\) 1.66636i 0.347460i 0.984793 + 0.173730i \(0.0555820\pi\)
−0.984793 + 0.173730i \(0.944418\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 3.58889 0.666440 0.333220 0.942849i \(-0.391865\pi\)
0.333220 + 0.942849i \(0.391865\pi\)
\(30\) 0 0
\(31\) 5.02299 0.902156 0.451078 0.892485i \(-0.351040\pi\)
0.451078 + 0.892485i \(0.351040\pi\)
\(32\) 0 0
\(33\) 0.0547787i 0.00953575i
\(34\) 0 0
\(35\) −1.77956 1.95785i −0.300800 0.330937i
\(36\) 0 0
\(37\) −5.91302 −0.972095 −0.486048 0.873932i \(-0.661562\pi\)
−0.486048 + 0.873932i \(0.661562\pi\)
\(38\) 0 0
\(39\) 6.64493i 1.06404i
\(40\) 0 0
\(41\) 3.00981i 0.470053i −0.971989 0.235026i \(-0.924482\pi\)
0.971989 0.235026i \(-0.0755176\pi\)
\(42\) 0 0
\(43\) 10.1493i 1.54775i −0.633340 0.773874i \(-0.718316\pi\)
0.633340 0.773874i \(-0.281684\pi\)
\(44\) 0 0
\(45\) 1.00000i 0.149071i
\(46\) 0 0
\(47\) −0.427413 −0.0623447 −0.0311723 0.999514i \(-0.509924\pi\)
−0.0311723 + 0.999514i \(0.509924\pi\)
\(48\) 0 0
\(49\) 0.666361 6.96821i 0.0951944 0.995459i
\(50\) 0 0
\(51\) 7.35292i 1.02961i
\(52\) 0 0
\(53\) −5.43410 −0.746431 −0.373215 0.927745i \(-0.621745\pi\)
−0.373215 + 0.927745i \(0.621745\pi\)
\(54\) 0 0
\(55\) 0.0547787 0.00738636
\(56\) 0 0
\(57\) −1.62072 −0.214670
\(58\) 0 0
\(59\) 7.77369 1.01205 0.506024 0.862519i \(-0.331115\pi\)
0.506024 + 0.862519i \(0.331115\pi\)
\(60\) 0 0
\(61\) 10.5379i 1.34924i 0.738163 + 0.674622i \(0.235694\pi\)
−0.738163 + 0.674622i \(0.764306\pi\)
\(62\) 0 0
\(63\) −1.95785 + 1.77956i −0.246666 + 0.224203i
\(64\) 0 0
\(65\) −6.64493 −0.824202
\(66\) 0 0
\(67\) 4.32681i 0.528604i −0.964440 0.264302i \(-0.914858\pi\)
0.964440 0.264302i \(-0.0851416\pi\)
\(68\) 0 0
\(69\) 1.66636i 0.200606i
\(70\) 0 0
\(71\) 11.0089i 1.30652i 0.757134 + 0.653260i \(0.226599\pi\)
−0.757134 + 0.653260i \(0.773401\pi\)
\(72\) 0 0
\(73\) 10.4414i 1.22207i 0.791602 + 0.611037i \(0.209248\pi\)
−0.791602 + 0.611037i \(0.790752\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 0.0974818 + 0.107249i 0.0111091 + 0.0122221i
\(78\) 0 0
\(79\) 1.40079i 0.157601i 0.996890 + 0.0788007i \(0.0251091\pi\)
−0.996890 + 0.0788007i \(0.974891\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −14.4307 −1.58397 −0.791987 0.610538i \(-0.790953\pi\)
−0.791987 + 0.610538i \(0.790953\pi\)
\(84\) 0 0
\(85\) −7.35292 −0.797536
\(86\) 0 0
\(87\) −3.58889 −0.384770
\(88\) 0 0
\(89\) 5.35419i 0.567543i 0.958892 + 0.283772i \(0.0915858\pi\)
−0.958892 + 0.283772i \(0.908414\pi\)
\(90\) 0 0
\(91\) −11.8250 13.0098i −1.23960 1.36380i
\(92\) 0 0
\(93\) −5.02299 −0.520860
\(94\) 0 0
\(95\) 1.62072i 0.166282i
\(96\) 0 0
\(97\) 1.94030i 0.197007i −0.995137 0.0985036i \(-0.968594\pi\)
0.995137 0.0985036i \(-0.0314056\pi\)
\(98\) 0 0
\(99\) 0.0547787i 0.00550547i
\(100\) 0 0
\(101\) 14.2561i 1.41854i −0.704937 0.709269i \(-0.749025\pi\)
0.704937 0.709269i \(-0.250975\pi\)
\(102\) 0 0
\(103\) −0.0842981 −0.00830614 −0.00415307 0.999991i \(-0.501322\pi\)
−0.00415307 + 0.999991i \(0.501322\pi\)
\(104\) 0 0
\(105\) 1.77956 + 1.95785i 0.173667 + 0.191067i
\(106\) 0 0
\(107\) 6.12527i 0.592153i 0.955164 + 0.296076i \(0.0956783\pi\)
−0.955164 + 0.296076i \(0.904322\pi\)
\(108\) 0 0
\(109\) 4.57858 0.438548 0.219274 0.975663i \(-0.429631\pi\)
0.219274 + 0.975663i \(0.429631\pi\)
\(110\) 0 0
\(111\) 5.91302 0.561239
\(112\) 0 0
\(113\) 8.90168 0.837399 0.418700 0.908125i \(-0.362486\pi\)
0.418700 + 0.908125i \(0.362486\pi\)
\(114\) 0 0
\(115\) −1.66636 −0.155389
\(116\) 0 0
\(117\) 6.64493i 0.614324i
\(118\) 0 0
\(119\) −13.0849 14.3959i −1.19949 1.31967i
\(120\) 0 0
\(121\) 10.9970 0.999727
\(122\) 0 0
\(123\) 3.00981i 0.271385i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 6.98114i 0.619476i −0.950822 0.309738i \(-0.899759\pi\)
0.950822 0.309738i \(-0.100241\pi\)
\(128\) 0 0
\(129\) 10.1493i 0.893593i
\(130\) 0 0
\(131\) −19.5621 −1.70915 −0.854576 0.519326i \(-0.826183\pi\)
−0.854576 + 0.519326i \(0.826183\pi\)
\(132\) 0 0
\(133\) −3.17313 + 2.88416i −0.275145 + 0.250089i
\(134\) 0 0
\(135\) 1.00000i 0.0860663i
\(136\) 0 0
\(137\) −3.50640 −0.299572 −0.149786 0.988718i \(-0.547858\pi\)
−0.149786 + 0.988718i \(0.547858\pi\)
\(138\) 0 0
\(139\) −11.0184 −0.934571 −0.467286 0.884106i \(-0.654768\pi\)
−0.467286 + 0.884106i \(0.654768\pi\)
\(140\) 0 0
\(141\) 0.427413 0.0359947
\(142\) 0 0
\(143\) 0.364001 0.0304393
\(144\) 0 0
\(145\) 3.58889i 0.298041i
\(146\) 0 0
\(147\) −0.666361 + 6.96821i −0.0549605 + 0.574728i
\(148\) 0 0
\(149\) −10.7737 −0.882618 −0.441309 0.897355i \(-0.645486\pi\)
−0.441309 + 0.897355i \(0.645486\pi\)
\(150\) 0 0
\(151\) 10.1954i 0.829690i 0.909892 + 0.414845i \(0.136164\pi\)
−0.909892 + 0.414845i \(0.863836\pi\)
\(152\) 0 0
\(153\) 7.35292i 0.594448i
\(154\) 0 0
\(155\) 5.02299i 0.403456i
\(156\) 0 0
\(157\) 12.1922i 0.973045i −0.873668 0.486523i \(-0.838265\pi\)
0.873668 0.486523i \(-0.161735\pi\)
\(158\) 0 0
\(159\) 5.43410 0.430952
\(160\) 0 0
\(161\) −2.96538 3.26249i −0.233705 0.257120i
\(162\) 0 0
\(163\) 4.84283i 0.379320i 0.981850 + 0.189660i \(0.0607385\pi\)
−0.981850 + 0.189660i \(0.939262\pi\)
\(164\) 0 0
\(165\) −0.0547787 −0.00426452
\(166\) 0 0
\(167\) −1.57068 −0.121543 −0.0607716 0.998152i \(-0.519356\pi\)
−0.0607716 + 0.998152i \(0.519356\pi\)
\(168\) 0 0
\(169\) −31.1550 −2.39654
\(170\) 0 0
\(171\) 1.62072 0.123940
\(172\) 0 0
\(173\) 10.7321i 0.815949i 0.912993 + 0.407974i \(0.133765\pi\)
−0.912993 + 0.407974i \(0.866235\pi\)
\(174\) 0 0
\(175\) 1.95785 1.77956i 0.148000 0.134522i
\(176\) 0 0
\(177\) −7.77369 −0.584306
\(178\) 0 0
\(179\) 25.8788i 1.93428i −0.254253 0.967138i \(-0.581829\pi\)
0.254253 0.967138i \(-0.418171\pi\)
\(180\) 0 0
\(181\) 11.6102i 0.862978i 0.902118 + 0.431489i \(0.142012\pi\)
−0.902118 + 0.431489i \(0.857988\pi\)
\(182\) 0 0
\(183\) 10.5379i 0.778987i
\(184\) 0 0
\(185\) 5.91302i 0.434734i
\(186\) 0 0
\(187\) 0.402784 0.0294545
\(188\) 0 0
\(189\) 1.95785 1.77956i 0.142413 0.129444i
\(190\) 0 0
\(191\) 4.94711i 0.357960i −0.983853 0.178980i \(-0.942720\pi\)
0.983853 0.178980i \(-0.0572798\pi\)
\(192\) 0 0
\(193\) 9.22316 0.663898 0.331949 0.943297i \(-0.392294\pi\)
0.331949 + 0.943297i \(0.392294\pi\)
\(194\) 0 0
\(195\) 6.64493 0.475853
\(196\) 0 0
\(197\) −0.892469 −0.0635858 −0.0317929 0.999494i \(-0.510122\pi\)
−0.0317929 + 0.999494i \(0.510122\pi\)
\(198\) 0 0
\(199\) 1.34704 0.0954894 0.0477447 0.998860i \(-0.484797\pi\)
0.0477447 + 0.998860i \(0.484797\pi\)
\(200\) 0 0
\(201\) 4.32681i 0.305190i
\(202\) 0 0
\(203\) −7.02652 + 6.38663i −0.493165 + 0.448254i
\(204\) 0 0
\(205\) 3.00981 0.210214
\(206\) 0 0
\(207\) 1.66636i 0.115820i
\(208\) 0 0
\(209\) 0.0887810i 0.00614111i
\(210\) 0 0
\(211\) 22.5220i 1.55048i −0.631666 0.775241i \(-0.717628\pi\)
0.631666 0.775241i \(-0.282372\pi\)
\(212\) 0 0
\(213\) 11.0089i 0.754319i
\(214\) 0 0
\(215\) 10.1493 0.692174
\(216\) 0 0
\(217\) −9.83427 + 8.93869i −0.667593 + 0.606798i
\(218\) 0 0
\(219\) 10.4414i 0.705565i
\(220\) 0 0
\(221\) −48.8596 −3.28665
\(222\) 0 0
\(223\) 24.7362 1.65646 0.828228 0.560391i \(-0.189349\pi\)
0.828228 + 0.560391i \(0.189349\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −22.4528 −1.49025 −0.745123 0.666927i \(-0.767609\pi\)
−0.745123 + 0.666927i \(0.767609\pi\)
\(228\) 0 0
\(229\) 1.32608i 0.0876296i 0.999040 + 0.0438148i \(0.0139511\pi\)
−0.999040 + 0.0438148i \(0.986049\pi\)
\(230\) 0 0
\(231\) −0.0974818 0.107249i −0.00641383 0.00705644i
\(232\) 0 0
\(233\) −18.5339 −1.21419 −0.607097 0.794628i \(-0.707666\pi\)
−0.607097 + 0.794628i \(0.707666\pi\)
\(234\) 0 0
\(235\) 0.427413i 0.0278814i
\(236\) 0 0
\(237\) 1.40079i 0.0909912i
\(238\) 0 0
\(239\) 1.18656i 0.0767520i −0.999263 0.0383760i \(-0.987782\pi\)
0.999263 0.0383760i \(-0.0122185\pi\)
\(240\) 0 0
\(241\) 15.6276i 1.00667i 0.864093 + 0.503333i \(0.167893\pi\)
−0.864093 + 0.503333i \(0.832107\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 6.96821 + 0.666361i 0.445183 + 0.0425722i
\(246\) 0 0
\(247\) 10.7696i 0.685251i
\(248\) 0 0
\(249\) 14.4307 0.914508
\(250\) 0 0
\(251\) −6.44794 −0.406990 −0.203495 0.979076i \(-0.565230\pi\)
−0.203495 + 0.979076i \(0.565230\pi\)
\(252\) 0 0
\(253\) 0.0912811 0.00573879
\(254\) 0 0
\(255\) 7.35292 0.460458
\(256\) 0 0
\(257\) 9.67705i 0.603638i −0.953365 0.301819i \(-0.902406\pi\)
0.953365 0.301819i \(-0.0975938\pi\)
\(258\) 0 0
\(259\) 11.5768 10.5226i 0.719349 0.653840i
\(260\) 0 0
\(261\) 3.58889 0.222147
\(262\) 0 0
\(263\) 18.1405i 1.11859i 0.828968 + 0.559296i \(0.188929\pi\)
−0.828968 + 0.559296i \(0.811071\pi\)
\(264\) 0 0
\(265\) 5.43410i 0.333814i
\(266\) 0 0
\(267\) 5.35419i 0.327671i
\(268\) 0 0
\(269\) 20.3092i 1.23827i −0.785284 0.619136i \(-0.787483\pi\)
0.785284 0.619136i \(-0.212517\pi\)
\(270\) 0 0
\(271\) −18.0333 −1.09544 −0.547722 0.836661i \(-0.684505\pi\)
−0.547722 + 0.836661i \(0.684505\pi\)
\(272\) 0 0
\(273\) 11.8250 + 13.0098i 0.715683 + 0.787387i
\(274\) 0 0
\(275\) 0.0547787i 0.00330328i
\(276\) 0 0
\(277\) 24.0475 1.44487 0.722437 0.691437i \(-0.243022\pi\)
0.722437 + 0.691437i \(0.243022\pi\)
\(278\) 0 0
\(279\) 5.02299 0.300719
\(280\) 0 0
\(281\) 21.0356 1.25488 0.627438 0.778667i \(-0.284104\pi\)
0.627438 + 0.778667i \(0.284104\pi\)
\(282\) 0 0
\(283\) −9.42870 −0.560478 −0.280239 0.959930i \(-0.590414\pi\)
−0.280239 + 0.959930i \(0.590414\pi\)
\(284\) 0 0
\(285\) 1.62072i 0.0960032i
\(286\) 0 0
\(287\) 5.35612 + 5.89275i 0.316162 + 0.347838i
\(288\) 0 0
\(289\) −37.0655 −2.18032
\(290\) 0 0
\(291\) 1.94030i 0.113742i
\(292\) 0 0
\(293\) 9.13240i 0.533521i 0.963763 + 0.266760i \(0.0859532\pi\)
−0.963763 + 0.266760i \(0.914047\pi\)
\(294\) 0 0
\(295\) 7.77369i 0.452602i
\(296\) 0 0
\(297\) 0.0547787i 0.00317858i
\(298\) 0 0
\(299\) −11.0728 −0.640359
\(300\) 0 0
\(301\) 18.0612 + 19.8707i 1.04103 + 1.14533i
\(302\) 0 0
\(303\) 14.2561i 0.818994i
\(304\) 0 0
\(305\) −10.5379 −0.603401
\(306\) 0 0
\(307\) 8.81510 0.503105 0.251552 0.967844i \(-0.419059\pi\)
0.251552 + 0.967844i \(0.419059\pi\)
\(308\) 0 0
\(309\) 0.0842981 0.00479555
\(310\) 0 0
\(311\) −23.0061 −1.30456 −0.652279 0.757979i \(-0.726187\pi\)
−0.652279 + 0.757979i \(0.726187\pi\)
\(312\) 0 0
\(313\) 24.7012i 1.39619i 0.716004 + 0.698096i \(0.245969\pi\)
−0.716004 + 0.698096i \(0.754031\pi\)
\(314\) 0 0
\(315\) −1.77956 1.95785i −0.100267 0.110312i
\(316\) 0 0
\(317\) −23.4990 −1.31984 −0.659918 0.751337i \(-0.729409\pi\)
−0.659918 + 0.751337i \(0.729409\pi\)
\(318\) 0 0
\(319\) 0.196595i 0.0110072i
\(320\) 0 0
\(321\) 6.12527i 0.341879i
\(322\) 0 0
\(323\) 11.9170i 0.663081i
\(324\) 0 0
\(325\) 6.64493i 0.368594i
\(326\) 0 0
\(327\) −4.57858 −0.253196
\(328\) 0 0
\(329\) 0.836812 0.760606i 0.0461349 0.0419336i
\(330\) 0 0
\(331\) 9.44377i 0.519077i 0.965733 + 0.259538i \(0.0835704\pi\)
−0.965733 + 0.259538i \(0.916430\pi\)
\(332\) 0 0
\(333\) −5.91302 −0.324032
\(334\) 0 0
\(335\) 4.32681 0.236399
\(336\) 0 0
\(337\) 31.9066 1.73806 0.869030 0.494759i \(-0.164744\pi\)
0.869030 + 0.494759i \(0.164744\pi\)
\(338\) 0 0
\(339\) −8.90168 −0.483473
\(340\) 0 0
\(341\) 0.275153i 0.0149004i
\(342\) 0 0
\(343\) 11.0957 + 14.8285i 0.599111 + 0.800666i
\(344\) 0 0
\(345\) 1.66636 0.0897138
\(346\) 0 0
\(347\) 17.2632i 0.926737i −0.886166 0.463368i \(-0.846641\pi\)
0.886166 0.463368i \(-0.153359\pi\)
\(348\) 0 0
\(349\) 0.377047i 0.0201829i −0.999949 0.0100914i \(-0.996788\pi\)
0.999949 0.0100914i \(-0.00321226\pi\)
\(350\) 0 0
\(351\) 6.64493i 0.354680i
\(352\) 0 0
\(353\) 27.8904i 1.48446i −0.670148 0.742228i \(-0.733769\pi\)
0.670148 0.742228i \(-0.266231\pi\)
\(354\) 0 0
\(355\) −11.0089 −0.584293
\(356\) 0 0
\(357\) 13.0849 + 14.3959i 0.692528 + 0.761913i
\(358\) 0 0
\(359\) 30.9526i 1.63362i 0.576909 + 0.816809i \(0.304259\pi\)
−0.576909 + 0.816809i \(0.695741\pi\)
\(360\) 0 0
\(361\) −16.3733 −0.861751
\(362\) 0 0
\(363\) −10.9970 −0.577193
\(364\) 0 0
\(365\) −10.4414 −0.546529
\(366\) 0 0
\(367\) 3.65582 0.190832 0.0954162 0.995437i \(-0.469582\pi\)
0.0954162 + 0.995437i \(0.469582\pi\)
\(368\) 0 0
\(369\) 3.00981i 0.156684i
\(370\) 0 0
\(371\) 10.6392 9.67028i 0.552357 0.502056i
\(372\) 0 0
\(373\) 35.2205 1.82365 0.911824 0.410580i \(-0.134674\pi\)
0.911824 + 0.410580i \(0.134674\pi\)
\(374\) 0 0
\(375\) 1.00000i 0.0516398i
\(376\) 0 0
\(377\) 23.8479i 1.22823i
\(378\) 0 0
\(379\) 17.0902i 0.877864i −0.898520 0.438932i \(-0.855357\pi\)
0.898520 0.438932i \(-0.144643\pi\)
\(380\) 0 0
\(381\) 6.98114i 0.357654i
\(382\) 0 0
\(383\) −10.3006 −0.526338 −0.263169 0.964750i \(-0.584768\pi\)
−0.263169 + 0.964750i \(0.584768\pi\)
\(384\) 0 0
\(385\) −0.107249 + 0.0974818i −0.00546589 + 0.00496813i
\(386\) 0 0
\(387\) 10.1493i 0.515916i
\(388\) 0 0
\(389\) −11.0019 −0.557818 −0.278909 0.960318i \(-0.589973\pi\)
−0.278909 + 0.960318i \(0.589973\pi\)
\(390\) 0 0
\(391\) −12.2526 −0.619642
\(392\) 0 0
\(393\) 19.5621 0.986780
\(394\) 0 0
\(395\) −1.40079 −0.0704815
\(396\) 0 0
\(397\) 15.7177i 0.788848i −0.918928 0.394424i \(-0.870944\pi\)
0.918928 0.394424i \(-0.129056\pi\)
\(398\) 0 0
\(399\) 3.17313 2.88416i 0.158855 0.144389i
\(400\) 0 0
\(401\) 18.0169 0.899721 0.449860 0.893099i \(-0.351474\pi\)
0.449860 + 0.893099i \(0.351474\pi\)
\(402\) 0 0
\(403\) 33.3774i 1.66265i
\(404\) 0 0
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) 0.323908i 0.0160555i
\(408\) 0 0
\(409\) 33.9737i 1.67989i −0.542672 0.839944i \(-0.682587\pi\)
0.542672 0.839944i \(-0.317413\pi\)
\(410\) 0 0
\(411\) 3.50640 0.172958
\(412\) 0 0
\(413\) −15.2197 + 13.8337i −0.748914 + 0.680712i
\(414\) 0 0
\(415\) 14.4307i 0.708375i
\(416\) 0 0
\(417\) 11.0184 0.539575
\(418\) 0 0
\(419\) 7.48988 0.365904 0.182952 0.983122i \(-0.441435\pi\)
0.182952 + 0.983122i \(0.441435\pi\)
\(420\) 0 0
\(421\) 37.6198 1.83348 0.916738 0.399488i \(-0.130812\pi\)
0.916738 + 0.399488i \(0.130812\pi\)
\(422\) 0 0
\(423\) −0.427413 −0.0207816
\(424\) 0 0
\(425\) 7.35292i 0.356669i
\(426\) 0 0
\(427\) −18.7529 20.6317i −0.907514 0.998439i
\(428\) 0 0
\(429\) −0.364001 −0.0175741
\(430\) 0 0
\(431\) 28.9124i 1.39266i 0.717722 + 0.696330i \(0.245185\pi\)
−0.717722 + 0.696330i \(0.754815\pi\)
\(432\) 0 0
\(433\) 15.0641i 0.723934i −0.932191 0.361967i \(-0.882105\pi\)
0.932191 0.361967i \(-0.117895\pi\)
\(434\) 0 0
\(435\) 3.58889i 0.172074i
\(436\) 0 0
\(437\) 2.70070i 0.129192i
\(438\) 0 0
\(439\) 36.0767 1.72185 0.860924 0.508734i \(-0.169886\pi\)
0.860924 + 0.508734i \(0.169886\pi\)
\(440\) 0 0
\(441\) 0.666361 6.96821i 0.0317315 0.331820i
\(442\) 0 0
\(443\) 32.6080i 1.54925i 0.632420 + 0.774626i \(0.282062\pi\)
−0.632420 + 0.774626i \(0.717938\pi\)
\(444\) 0 0
\(445\) −5.35419 −0.253813
\(446\) 0 0
\(447\) 10.7737 0.509580
\(448\) 0 0
\(449\) −28.4627 −1.34324 −0.671620 0.740896i \(-0.734401\pi\)
−0.671620 + 0.740896i \(0.734401\pi\)
\(450\) 0 0
\(451\) −0.164873 −0.00776358
\(452\) 0 0
\(453\) 10.1954i 0.479022i
\(454\) 0 0
\(455\) 13.0098 11.8250i 0.609908 0.554365i
\(456\) 0 0
\(457\) −17.5368 −0.820336 −0.410168 0.912010i \(-0.634530\pi\)
−0.410168 + 0.912010i \(0.634530\pi\)
\(458\) 0 0
\(459\) 7.35292i 0.343205i
\(460\) 0 0
\(461\) 11.5411i 0.537520i 0.963207 + 0.268760i \(0.0866139\pi\)
−0.963207 + 0.268760i \(0.913386\pi\)
\(462\) 0 0
\(463\) 15.2442i 0.708460i −0.935158 0.354230i \(-0.884743\pi\)
0.935158 0.354230i \(-0.115257\pi\)
\(464\) 0 0
\(465\) 5.02299i 0.232936i
\(466\) 0 0
\(467\) −18.9478 −0.876799 −0.438400 0.898780i \(-0.644455\pi\)
−0.438400 + 0.898780i \(0.644455\pi\)
\(468\) 0 0
\(469\) 7.69980 + 8.47125i 0.355544 + 0.391166i
\(470\) 0 0
\(471\) 12.1922i 0.561788i
\(472\) 0 0
\(473\) −0.555963 −0.0255632
\(474\) 0 0
\(475\) −1.62072 −0.0743637
\(476\) 0 0
\(477\) −5.43410 −0.248810
\(478\) 0 0
\(479\) 35.9630 1.64319 0.821596 0.570070i \(-0.193084\pi\)
0.821596 + 0.570070i \(0.193084\pi\)
\(480\) 0 0
\(481\) 39.2916i 1.79154i
\(482\) 0 0
\(483\) 2.96538 + 3.26249i 0.134930 + 0.148448i
\(484\) 0 0
\(485\) 1.94030 0.0881043
\(486\) 0 0
\(487\) 27.1574i 1.23062i −0.788286 0.615309i \(-0.789031\pi\)
0.788286 0.615309i \(-0.210969\pi\)
\(488\) 0 0
\(489\) 4.84283i 0.219000i
\(490\) 0 0
\(491\) 7.18909i 0.324439i 0.986755 + 0.162220i \(0.0518653\pi\)
−0.986755 + 0.162220i \(0.948135\pi\)
\(492\) 0 0
\(493\) 26.3888i 1.18849i
\(494\) 0 0
\(495\) 0.0547787 0.00246212
\(496\) 0 0
\(497\) −19.5910 21.5538i −0.878777 0.966822i
\(498\) 0 0
\(499\) 12.2704i 0.549298i 0.961544 + 0.274649i \(0.0885617\pi\)
−0.961544 + 0.274649i \(0.911438\pi\)
\(500\) 0 0
\(501\) 1.57068 0.0701730
\(502\) 0 0
\(503\) −1.52736 −0.0681018 −0.0340509 0.999420i \(-0.510841\pi\)
−0.0340509 + 0.999420i \(0.510841\pi\)
\(504\) 0 0
\(505\) 14.2561 0.634390
\(506\) 0 0
\(507\) 31.1550 1.38364
\(508\) 0 0
\(509\) 34.5490i 1.53136i −0.643223 0.765679i \(-0.722403\pi\)
0.643223 0.765679i \(-0.277597\pi\)
\(510\) 0 0
\(511\) −18.5811 20.4427i −0.821979 0.904333i
\(512\) 0 0
\(513\) −1.62072 −0.0715565
\(514\) 0 0
\(515\) 0.0842981i 0.00371462i
\(516\) 0 0
\(517\) 0.0234132i 0.00102971i
\(518\) 0 0
\(519\) 10.7321i 0.471088i
\(520\) 0 0
\(521\) 0.668573i 0.0292907i −0.999893 0.0146454i \(-0.995338\pi\)
0.999893 0.0146454i \(-0.00466193\pi\)
\(522\) 0 0
\(523\) −28.4949 −1.24599 −0.622997 0.782224i \(-0.714085\pi\)
−0.622997 + 0.782224i \(0.714085\pi\)
\(524\) 0 0
\(525\) −1.95785 + 1.77956i −0.0854476 + 0.0776662i
\(526\) 0 0
\(527\) 36.9336i 1.60885i
\(528\) 0 0
\(529\) 20.2232 0.879271
\(530\) 0 0
\(531\) 7.77369 0.337349
\(532\) 0 0
\(533\) 19.9999 0.866294
\(534\) 0 0
\(535\) −6.12527 −0.264819
\(536\) 0 0
\(537\) 25.8788i 1.11675i
\(538\) 0 0
\(539\) −0.381710 0.0365024i −0.0164414 0.00157227i
\(540\) 0 0
\(541\) −21.7710 −0.936007 −0.468004 0.883727i \(-0.655027\pi\)
−0.468004 + 0.883727i \(0.655027\pi\)
\(542\) 0 0
\(543\) 11.6102i 0.498241i
\(544\) 0 0
\(545\) 4.57858i 0.196125i
\(546\) 0 0
\(547\) 40.8185i 1.74527i −0.488369 0.872637i \(-0.662408\pi\)
0.488369 0.872637i \(-0.337592\pi\)
\(548\) 0 0
\(549\) 10.5379i 0.449748i
\(550\) 0 0
\(551\) 5.81659 0.247795
\(552\) 0 0
\(553\) −2.49279 2.74254i −0.106004 0.116625i
\(554\) 0 0
\(555\) 5.91302i 0.250994i
\(556\) 0 0
\(557\) 13.0790 0.554175 0.277087 0.960845i \(-0.410631\pi\)
0.277087 + 0.960845i \(0.410631\pi\)
\(558\) 0 0
\(559\) 67.4411 2.85245
\(560\) 0 0
\(561\) −0.402784 −0.0170055
\(562\) 0 0
\(563\) −10.5812 −0.445945 −0.222972 0.974825i \(-0.571576\pi\)
−0.222972 + 0.974825i \(0.571576\pi\)
\(564\) 0 0
\(565\) 8.90168i 0.374496i
\(566\) 0 0
\(567\) −1.95785 + 1.77956i −0.0822220 + 0.0747343i
\(568\) 0 0
\(569\) −37.1235 −1.55630 −0.778149 0.628079i \(-0.783841\pi\)
−0.778149 + 0.628079i \(0.783841\pi\)
\(570\) 0 0
\(571\) 39.1766i 1.63949i 0.572730 + 0.819744i \(0.305884\pi\)
−0.572730 + 0.819744i \(0.694116\pi\)
\(572\) 0 0
\(573\) 4.94711i 0.206668i
\(574\) 0 0
\(575\) 1.66636i 0.0694920i
\(576\) 0 0
\(577\) 38.0773i 1.58518i −0.609757 0.792589i \(-0.708733\pi\)
0.609757 0.792589i \(-0.291267\pi\)
\(578\) 0 0
\(579\) −9.22316 −0.383302
\(580\) 0 0
\(581\) 28.2531 25.6802i 1.17214 1.06540i
\(582\) 0 0
\(583\) 0.297673i 0.0123284i
\(584\) 0 0
\(585\) −6.64493 −0.274734
\(586\) 0 0
\(587\) −21.0591 −0.869204 −0.434602 0.900623i \(-0.643111\pi\)
−0.434602 + 0.900623i \(0.643111\pi\)
\(588\) 0 0
\(589\) 8.14086 0.335438
\(590\) 0 0
\(591\) 0.892469 0.0367113
\(592\) 0 0
\(593\) 18.6425i 0.765555i 0.923841 + 0.382777i \(0.125032\pi\)
−0.923841 + 0.382777i \(0.874968\pi\)
\(594\) 0 0
\(595\) 14.3959 13.0849i 0.590175 0.536430i
\(596\) 0 0
\(597\) −1.34704 −0.0551309
\(598\) 0 0
\(599\) 6.32820i 0.258563i 0.991608 + 0.129282i \(0.0412671\pi\)
−0.991608 + 0.129282i \(0.958733\pi\)
\(600\) 0 0
\(601\) 1.87173i 0.0763493i 0.999271 + 0.0381746i \(0.0121543\pi\)
−0.999271 + 0.0381746i \(0.987846\pi\)
\(602\) 0 0
\(603\) 4.32681i 0.176201i
\(604\) 0 0
\(605\) 10.9970i 0.447092i
\(606\) 0 0
\(607\) −13.8087 −0.560476 −0.280238 0.959931i \(-0.590413\pi\)
−0.280238 + 0.959931i \(0.590413\pi\)
\(608\) 0 0
\(609\) 7.02652 6.38663i 0.284729 0.258799i
\(610\) 0 0
\(611\) 2.84013i 0.114899i
\(612\) 0 0
\(613\) −6.46613 −0.261164 −0.130582 0.991437i \(-0.541685\pi\)
−0.130582 + 0.991437i \(0.541685\pi\)
\(614\) 0 0
\(615\) −3.00981 −0.121367
\(616\) 0 0
\(617\) 14.5896 0.587356 0.293678 0.955904i \(-0.405121\pi\)
0.293678 + 0.955904i \(0.405121\pi\)
\(618\) 0 0
\(619\) 27.2821 1.09656 0.548280 0.836295i \(-0.315283\pi\)
0.548280 + 0.836295i \(0.315283\pi\)
\(620\) 0 0
\(621\) 1.66636i 0.0668687i
\(622\) 0 0
\(623\) −9.52809 10.4827i −0.381735 0.419981i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0.0887810i 0.00354557i
\(628\) 0 0
\(629\) 43.4780i 1.73358i
\(630\) 0 0
\(631\) 33.6743i 1.34055i 0.742112 + 0.670276i \(0.233824\pi\)
−0.742112 + 0.670276i \(0.766176\pi\)
\(632\) 0 0
\(633\) 22.5220i 0.895171i
\(634\) 0 0
\(635\) 6.98114 0.277038
\(636\) 0 0
\(637\) 46.3032 + 4.42792i 1.83460 + 0.175440i
\(638\) 0 0
\(639\) 11.0089i 0.435506i
\(640\) 0 0
\(641\) 31.3470 1.23813 0.619066 0.785339i \(-0.287511\pi\)
0.619066 + 0.785339i \(0.287511\pi\)
\(642\) 0 0
\(643\) 2.88031 0.113588 0.0567942 0.998386i \(-0.481912\pi\)
0.0567942 + 0.998386i \(0.481912\pi\)
\(644\) 0 0
\(645\) −10.1493 −0.399627
\(646\) 0 0
\(647\) 25.5739 1.00542 0.502708 0.864456i \(-0.332337\pi\)
0.502708 + 0.864456i \(0.332337\pi\)
\(648\) 0 0
\(649\) 0.425833i 0.0167154i
\(650\) 0 0
\(651\) 9.83427 8.93869i 0.385435 0.350335i
\(652\) 0 0
\(653\) 20.4799 0.801442 0.400721 0.916200i \(-0.368760\pi\)
0.400721 + 0.916200i \(0.368760\pi\)
\(654\) 0 0
\(655\) 19.5621i 0.764356i
\(656\) 0 0
\(657\) 10.4414i 0.407358i
\(658\) 0 0
\(659\) 3.35843i 0.130826i 0.997858 + 0.0654129i \(0.0208365\pi\)
−0.997858 + 0.0654129i \(0.979164\pi\)
\(660\) 0 0
\(661\) 28.4284i 1.10574i 0.833269 + 0.552868i \(0.186467\pi\)
−0.833269 + 0.552868i \(0.813533\pi\)
\(662\) 0 0
\(663\) 48.8596 1.89755
\(664\) 0 0
\(665\) −2.88416 3.17313i −0.111843 0.123049i
\(666\) 0 0
\(667\) 5.98039i 0.231562i
\(668\) 0 0
\(669\) −24.7362 −0.956355
\(670\) 0 0
\(671\) 0.577255 0.0222847
\(672\) 0 0
\(673\) 23.6111 0.910141 0.455071 0.890455i \(-0.349614\pi\)
0.455071 + 0.890455i \(0.349614\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) 22.5289i 0.865856i −0.901429 0.432928i \(-0.857480\pi\)
0.901429 0.432928i \(-0.142520\pi\)
\(678\) 0 0
\(679\) 3.45287 + 3.79881i 0.132509 + 0.145785i
\(680\) 0 0
\(681\) 22.4528 0.860394
\(682\) 0 0
\(683\) 14.9074i 0.570416i 0.958466 + 0.285208i \(0.0920627\pi\)
−0.958466 + 0.285208i \(0.907937\pi\)
\(684\) 0 0
\(685\) 3.50640i 0.133973i
\(686\) 0 0
\(687\) 1.32608i 0.0505930i
\(688\) 0 0
\(689\) 36.1092i 1.37565i
\(690\) 0 0
\(691\) 51.0222 1.94098 0.970488 0.241150i \(-0.0775247\pi\)
0.970488 + 0.241150i \(0.0775247\pi\)
\(692\) 0 0
\(693\) 0.0974818 + 0.107249i 0.00370303 + 0.00407404i
\(694\) 0 0
\(695\) 11.0184i 0.417953i
\(696\) 0 0
\(697\) 22.1309 0.838266
\(698\) 0 0
\(699\) 18.5339 0.701015
\(700\) 0 0
\(701\) 18.4947 0.698536 0.349268 0.937023i \(-0.386430\pi\)
0.349268 + 0.937023i \(0.386430\pi\)
\(702\) 0 0
\(703\) −9.58336 −0.361443
\(704\) 0 0
\(705\) 0.427413i 0.0160973i
\(706\) 0 0
\(707\) 25.3696 + 27.9114i 0.954122 + 1.04972i
\(708\) 0 0
\(709\) −21.8260 −0.819692 −0.409846 0.912155i \(-0.634418\pi\)
−0.409846 + 0.912155i \(0.634418\pi\)
\(710\) 0 0
\(711\) 1.40079i 0.0525338i
\(712\) 0 0
\(713\) 8.37011i 0.313463i
\(714\) 0 0
\(715\) 0.364001i 0.0136129i
\(716\) 0 0
\(717\) 1.18656i 0.0443128i
\(718\) 0 0
\(719\) −30.1254 −1.12349 −0.561744 0.827311i \(-0.689869\pi\)
−0.561744 + 0.827311i \(0.689869\pi\)
\(720\) 0 0
\(721\) 0.165043 0.150013i 0.00614653 0.00558678i
\(722\) 0 0
\(723\) 15.6276i 0.581198i
\(724\) 0 0
\(725\) −3.58889 −0.133288
\(726\) 0 0
\(727\) 2.30337 0.0854272 0.0427136 0.999087i \(-0.486400\pi\)
0.0427136 + 0.999087i \(0.486400\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 74.6267 2.76017
\(732\) 0 0
\(733\) 50.7568i 1.87475i 0.348326 + 0.937373i \(0.386750\pi\)
−0.348326 + 0.937373i \(0.613250\pi\)
\(734\) 0 0
\(735\) −6.96821 0.666361i −0.257026 0.0245791i
\(736\) 0 0
\(737\) −0.237017 −0.00873064
\(738\) 0 0
\(739\) 23.5081i 0.864759i −0.901692 0.432379i \(-0.857674\pi\)
0.901692 0.432379i \(-0.142326\pi\)
\(740\) 0 0
\(741\) 10.7696i 0.395630i
\(742\) 0 0
\(743\) 12.2540i 0.449555i −0.974410 0.224777i \(-0.927835\pi\)
0.974410 0.224777i \(-0.0721654\pi\)
\(744\) 0 0
\(745\) 10.7737i 0.394719i
\(746\) 0 0
\(747\) −14.4307 −0.527991
\(748\) 0 0
\(749\) −10.9003 11.9924i −0.398287 0.438192i
\(750\) 0 0
\(751\) 24.9341i 0.909860i 0.890527 + 0.454930i \(0.150336\pi\)
−0.890527 + 0.454930i \(0.849664\pi\)
\(752\) 0 0
\(753\) 6.44794 0.234976
\(754\) 0 0
\(755\) −10.1954 −0.371049
\(756\) 0 0
\(757\) 27.0418 0.982852 0.491426 0.870919i \(-0.336476\pi\)
0.491426 + 0.870919i \(0.336476\pi\)
\(758\) 0 0
\(759\) −0.0912811 −0.00331329
\(760\) 0 0
\(761\) 26.9591i 0.977268i 0.872489 + 0.488634i \(0.162505\pi\)
−0.872489 + 0.488634i \(0.837495\pi\)
\(762\) 0 0
\(763\) −8.96417 + 8.14783i −0.324525 + 0.294971i
\(764\) 0 0
\(765\) −7.35292 −0.265845
\(766\) 0 0
\(767\) 51.6556i 1.86517i
\(768\) 0 0
\(769\) 4.20598i 0.151671i −0.997120 0.0758357i \(-0.975838\pi\)
0.997120 0.0758357i \(-0.0241625\pi\)
\(770\) 0 0
\(771\) 9.67705i 0.348511i
\(772\) 0 0
\(773\) 32.2738i 1.16081i −0.814328 0.580404i \(-0.802895\pi\)
0.814328 0.580404i \(-0.197105\pi\)
\(774\) 0 0
\(775\) −5.02299 −0.180431
\(776\) 0 0
\(777\) −11.5768 + 10.5226i −0.415316 + 0.377495i
\(778\) 0 0
\(779\) 4.87805i 0.174774i
\(780\) 0 0
\(781\) 0.603055 0.0215790
\(782\) 0 0
\(783\) −3.58889 −0.128257
\(784\) 0 0
\(785\) 12.1922 0.435159
\(786\) 0 0
\(787\) 51.9732 1.85265 0.926323 0.376731i \(-0.122952\pi\)
0.926323 + 0.376731i \(0.122952\pi\)
\(788\) 0 0
\(789\) 18.1405i 0.645820i
\(790\) 0 0
\(791\) −17.4282 + 15.8410i −0.619674 + 0.563242i
\(792\) 0 0
\(793\) −70.0238 −2.48662
\(794\) 0 0
\(795\) 5.43410i 0.192728i
\(796\) 0 0
\(797\) 4.95467i 0.175504i −0.996142 0.0877518i \(-0.972032\pi\)
0.996142 0.0877518i \(-0.0279682\pi\)
\(798\) 0 0
\(799\) 3.14274i 0.111182i
\(800\) 0 0
\(801\) 5.35419i 0.189181i
\(802\) 0 0
\(803\) 0.571967 0.0201843
\(804\) 0 0
\(805\) 3.26249 2.96538i 0.114988 0.104516i
\(806\) 0 0
\(807\) 20.3092i 0.714917i
\(808\) 0 0
\(809\) 12.9559 0.455504 0.227752 0.973719i \(-0.426862\pi\)
0.227752 + 0.973719i \(0.426862\pi\)
\(810\) 0 0
\(811\) −25.2095 −0.885226 −0.442613 0.896713i \(-0.645948\pi\)
−0.442613 + 0.896713i \(0.645948\pi\)
\(812\) 0 0
\(813\) 18.0333 0.632455
\(814\) 0 0
\(815\) −4.84283 −0.169637
\(816\) 0 0
\(817\) 16.4491i 0.575481i
\(818\) 0 0
\(819\) −11.8250 13.0098i −0.413200 0.454598i
\(820\) 0 0
\(821\) −12.6458 −0.441340 −0.220670 0.975349i \(-0.570824\pi\)
−0.220670 + 0.975349i \(0.570824\pi\)
\(822\) 0 0
\(823\) 16.5072i 0.575406i 0.957720 + 0.287703i \(0.0928916\pi\)
−0.957720 + 0.287703i \(0.907108\pi\)
\(824\) 0 0
\(825\) 0.0547787i 0.00190715i
\(826\) 0 0
\(827\) 36.5249i 1.27010i −0.772473 0.635048i \(-0.780980\pi\)
0.772473 0.635048i \(-0.219020\pi\)
\(828\) 0 0
\(829\) 56.6040i 1.96594i 0.183768 + 0.982970i \(0.441171\pi\)
−0.183768 + 0.982970i \(0.558829\pi\)
\(830\) 0 0
\(831\) −24.0475 −0.834198
\(832\) 0 0
\(833\) 51.2367 + 4.89970i 1.77525 + 0.169764i
\(834\) 0 0
\(835\) 1.57068i 0.0543558i
\(836\) 0 0
\(837\) −5.02299 −0.173620
\(838\) 0 0
\(839\) −44.9455 −1.55169 −0.775846 0.630922i \(-0.782677\pi\)
−0.775846 + 0.630922i \(0.782677\pi\)
\(840\) 0 0
\(841\) −16.1199 −0.555857
\(842\) 0 0
\(843\) −21.0356 −0.724503
\(844\) 0 0
\(845\) 31.1550i 1.07177i
\(846\) 0 0
\(847\) −21.5305 + 19.5698i −0.739796 + 0.672425i
\(848\) 0 0
\(849\) 9.42870 0.323592
\(850\) 0 0
\(851\) 9.85323i 0.337764i
\(852\) 0 0
\(853\) 35.5340i 1.21666i −0.793683 0.608331i \(-0.791839\pi\)
0.793683 0.608331i \(-0.208161\pi\)
\(854\) 0 0
\(855\) 1.62072i 0.0554275i
\(856\) 0 0
\(857\) 24.9839i 0.853433i 0.904385 + 0.426716i \(0.140330\pi\)
−0.904385 + 0.426716i \(0.859670\pi\)
\(858\) 0 0
\(859\) 55.6512 1.89879 0.949397 0.314079i \(-0.101696\pi\)
0.949397 + 0.314079i \(0.101696\pi\)
\(860\) 0 0
\(861\) −5.35612 5.89275i −0.182536 0.200824i
\(862\) 0 0
\(863\) 32.4473i 1.10452i 0.833673 + 0.552259i \(0.186234\pi\)
−0.833673 + 0.552259i \(0.813766\pi\)
\(864\) 0 0
\(865\) −10.7321 −0.364903
\(866\) 0 0
\(867\) 37.0655 1.25881
\(868\) 0 0
\(869\) 0.0767336 0.00260301
\(870\) 0 0
\(871\) 28.7513 0.974202
\(872\) 0 0
\(873\) 1.94030i 0.0656691i
\(874\) 0 0
\(875\) 1.77956 + 1.95785i 0.0601600 + 0.0661874i
\(876\) 0 0
\(877\) 7.53109 0.254307 0.127153 0.991883i \(-0.459416\pi\)
0.127153 + 0.991883i \(0.459416\pi\)
\(878\) 0 0
\(879\) 9.13240i 0.308028i
\(880\) 0 0
\(881\) 32.1091i 1.08178i −0.841092 0.540892i \(-0.818087\pi\)
0.841092 0.540892i \(-0.181913\pi\)
\(882\) 0 0
\(883\) 56.8788i 1.91413i 0.289881 + 0.957063i \(0.406384\pi\)
−0.289881 + 0.957063i \(0.593616\pi\)
\(884\) 0 0
\(885\) 7.77369i 0.261310i
\(886\) 0 0
\(887\) 6.14903 0.206464 0.103232 0.994657i \(-0.467082\pi\)
0.103232 + 0.994657i \(0.467082\pi\)
\(888\) 0 0
\(889\) 12.4233 + 13.6680i 0.416665 + 0.458411i
\(890\) 0 0
\(891\) 0.0547787i 0.00183516i
\(892\) 0 0
\(893\) −0.692718 −0.0231809
\(894\) 0 0
\(895\) 25.8788 0.865034
\(896\) 0 0
\(897\) 11.0728 0.369711
\(898\) 0 0
\(899\) 18.0270 0.601233
\(900\) 0 0
\(901\) 39.9565i 1.33114i
\(902\) 0 0
\(903\) −18.0612 19.8707i −0.601038 0.661257i
\(904\) 0 0
\(905\) −11.6102 −0.385936
\(906\) 0 0
\(907\) 10.1426i 0.336778i 0.985721 + 0.168389i \(0.0538565\pi\)
−0.985721 + 0.168389i \(0.946144\pi\)
\(908\) 0 0
\(909\) 14.2561i 0.472846i
\(910\) 0 0
\(911\) 6.33583i 0.209916i −0.994477 0.104958i \(-0.966529\pi\)
0.994477 0.104958i \(-0.0334707\pi\)
\(912\) 0 0
\(913\) 0.790495i 0.0261616i
\(914\) 0 0
\(915\) 10.5379 0.348373
\(916\) 0 0
\(917\) 38.2998 34.8119i 1.26477 1.14959i
\(918\) 0 0
\(919\) 43.0635i 1.42054i −0.703932 0.710268i \(-0.748574\pi\)
0.703932 0.710268i \(-0.251426\pi\)
\(920\) 0 0
\(921\) −8.81510 −0.290468
\(922\) 0 0
\(923\) −73.1535 −2.40788
\(924\) 0 0
\(925\) 5.91302 0.194419
\(926\) 0 0
\(927\) −0.0842981 −0.00276871
\(928\) 0 0
\(929\) 22.9113i 0.751696i 0.926681 + 0.375848i \(0.122649\pi\)
−0.926681 + 0.375848i \(0.877351\pi\)
\(930\) 0 0
\(931\) 1.07998 11.2935i 0.0353950 0.370130i
\(932\) 0 0
\(933\) 23.0061 0.753187
\(934\) 0 0
\(935\) 0.402784i 0.0131724i
\(936\) 0 0
\(937\) 20.3954i 0.666288i −0.942876 0.333144i \(-0.891891\pi\)
0.942876 0.333144i \(-0.108109\pi\)
\(938\) 0 0
\(939\) 24.7012i 0.806092i
\(940\) 0 0
\(941\) 16.7464i 0.545917i 0.962026 + 0.272958i \(0.0880021\pi\)
−0.962026 + 0.272958i \(0.911998\pi\)
\(942\) 0 0
\(943\) 5.01542 0.163325
\(944\) 0 0
\(945\) 1.77956 + 1.95785i 0.0578890 + 0.0636889i
\(946\) 0 0
\(947\) 50.9723i 1.65638i 0.560450 + 0.828188i \(0.310628\pi\)
−0.560450 + 0.828188i \(0.689372\pi\)
\(948\) 0 0
\(949\) −69.3824 −2.25225
\(950\) 0 0
\(951\) 23.4990 0.762008
\(952\) 0 0
\(953\) 27.2791 0.883658 0.441829 0.897099i \(-0.354330\pi\)
0.441829 + 0.897099i \(0.354330\pi\)
\(954\) 0 0
\(955\) 4.94711 0.160085
\(956\) 0 0
\(957\) 0.196595i 0.00635501i
\(958\) 0 0
\(959\) 6.86501 6.23983i 0.221683 0.201495i
\(960\) 0 0
\(961\) −5.76957 −0.186115
\(962\) 0 0
\(963\) 6.12527i 0.197384i
\(964\) 0 0
\(965\) 9.22316i 0.296904i
\(966\) 0 0
\(967\) 12.7562i 0.410212i 0.978740 + 0.205106i \(0.0657539\pi\)
−0.978740 + 0.205106i \(0.934246\pi\)
\(968\) 0 0
\(969\) 11.9170i 0.382830i
\(970\) 0 0
\(971\) −36.4726 −1.17046 −0.585231 0.810867i \(-0.698996\pi\)
−0.585231 + 0.810867i \(0.698996\pi\)
\(972\) 0 0
\(973\) 21.5725 19.6079i 0.691581 0.628601i
\(974\) 0 0
\(975\) 6.64493i 0.212808i
\(976\) 0 0
\(977\) −3.13940 −0.100438 −0.0502191 0.998738i \(-0.515992\pi\)
−0.0502191 + 0.998738i \(0.515992\pi\)
\(978\) 0 0
\(979\) 0.293296 0.00937378
\(980\) 0 0
\(981\) 4.57858 0.146183
\(982\) 0 0
\(983\) 1.37231 0.0437699 0.0218850 0.999760i \(-0.493033\pi\)
0.0218850 + 0.999760i \(0.493033\pi\)
\(984\) 0 0
\(985\) 0.892469i 0.0284364i
\(986\) 0 0
\(987\) −0.836812 + 0.760606i −0.0266360 + 0.0242104i
\(988\) 0 0
\(989\) 16.9123 0.537781
\(990\) 0 0
\(991\) 13.9694i 0.443753i 0.975075 + 0.221876i \(0.0712182\pi\)
−0.975075 + 0.221876i \(0.928782\pi\)
\(992\) 0 0
\(993\) 9.44377i 0.299689i
\(994\) 0 0
\(995\) 1.34704i 0.0427042i
\(996\) 0 0
\(997\) 19.4384i 0.615621i 0.951448 + 0.307811i \(0.0995963\pi\)
−0.951448 + 0.307811i \(0.900404\pi\)
\(998\) 0 0
\(999\) 5.91302 0.187080
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3360.2.d.a.2911.10 yes 16
4.3 odd 2 3360.2.d.d.2911.15 yes 16
7.6 odd 2 3360.2.d.d.2911.7 yes 16
28.27 even 2 inner 3360.2.d.a.2911.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3360.2.d.a.2911.2 16 28.27 even 2 inner
3360.2.d.a.2911.10 yes 16 1.1 even 1 trivial
3360.2.d.d.2911.7 yes 16 7.6 odd 2
3360.2.d.d.2911.15 yes 16 4.3 odd 2