Properties

Label 3360.2.ba.c.2591.9
Level $3360$
Weight $2$
Character 3360.2591
Analytic conductor $26.830$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3360,2,Mod(2591,3360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3360.2591"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.ba (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,-4,0,0,0,0,0,8,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.8297350792\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} + 8 x^{18} - 20 x^{17} + 50 x^{16} - 92 x^{15} + 144 x^{14} - 244 x^{13} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{15} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2591.9
Root \(1.64300 - 0.548239i\) of defining polynomial
Character \(\chi\) \(=\) 3360.2591
Dual form 3360.2.ba.c.2591.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.774110 - 1.54944i) q^{3} -1.00000i q^{5} +1.00000i q^{7} +(-1.80151 + 2.39887i) q^{9} -0.559419 q^{11} -3.35848 q^{13} +(-1.54944 + 0.774110i) q^{15} -3.44380i q^{17} -1.52129i q^{19} +(1.54944 - 0.774110i) q^{21} -4.13079 q^{23} -1.00000 q^{25} +(5.11146 + 0.934336i) q^{27} -10.0534i q^{29} -0.148209i q^{31} +(0.433052 + 0.866784i) q^{33} +1.00000 q^{35} +10.5011 q^{37} +(2.59983 + 5.20375i) q^{39} +6.79091i q^{41} +11.3827i q^{43} +(2.39887 + 1.80151i) q^{45} -9.99341 q^{47} -1.00000 q^{49} +(-5.33594 + 2.66588i) q^{51} +8.05096i q^{53} +0.559419i q^{55} +(-2.35714 + 1.17764i) q^{57} -4.78044 q^{59} +2.04177 q^{61} +(-2.39887 - 1.80151i) q^{63} +3.35848i q^{65} +2.20738i q^{67} +(3.19768 + 6.40039i) q^{69} -1.64755 q^{71} -9.19346 q^{73} +(0.774110 + 1.54944i) q^{75} -0.559419i q^{77} +15.5490i q^{79} +(-2.50914 - 8.64316i) q^{81} -5.78506 q^{83} -3.44380 q^{85} +(-15.5771 + 7.78241i) q^{87} +1.31868i q^{89} -3.35848i q^{91} +(-0.229640 + 0.114730i) q^{93} -1.52129 q^{95} +17.9337 q^{97} +(1.00780 - 1.34197i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{3} + 8 q^{9} - 8 q^{11} + 8 q^{13} - 4 q^{15} + 4 q^{21} + 8 q^{23} - 20 q^{25} + 20 q^{27} - 40 q^{33} + 20 q^{35} + 16 q^{37} + 4 q^{39} - 20 q^{49} + 4 q^{51} - 16 q^{57} - 64 q^{59} - 64 q^{61}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times\).

\(n\) \(421\) \(1121\) \(1471\) \(1921\) \(2017\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.774110 1.54944i −0.446932 0.894568i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −1.80151 + 2.39887i −0.600503 + 0.799623i
\(10\) 0 0
\(11\) −0.559419 −0.168671 −0.0843356 0.996437i \(-0.526877\pi\)
−0.0843356 + 0.996437i \(0.526877\pi\)
\(12\) 0 0
\(13\) −3.35848 −0.931474 −0.465737 0.884923i \(-0.654211\pi\)
−0.465737 + 0.884923i \(0.654211\pi\)
\(14\) 0 0
\(15\) −1.54944 + 0.774110i −0.400063 + 0.199874i
\(16\) 0 0
\(17\) 3.44380i 0.835243i −0.908621 0.417622i \(-0.862864\pi\)
0.908621 0.417622i \(-0.137136\pi\)
\(18\) 0 0
\(19\) 1.52129i 0.349007i −0.984657 0.174503i \(-0.944168\pi\)
0.984657 0.174503i \(-0.0558320\pi\)
\(20\) 0 0
\(21\) 1.54944 0.774110i 0.338115 0.168925i
\(22\) 0 0
\(23\) −4.13079 −0.861328 −0.430664 0.902512i \(-0.641721\pi\)
−0.430664 + 0.902512i \(0.641721\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 5.11146 + 0.934336i 0.983701 + 0.179813i
\(28\) 0 0
\(29\) 10.0534i 1.86686i −0.358754 0.933432i \(-0.616798\pi\)
0.358754 0.933432i \(-0.383202\pi\)
\(30\) 0 0
\(31\) 0.148209i 0.0266191i −0.999911 0.0133095i \(-0.995763\pi\)
0.999911 0.0133095i \(-0.00423668\pi\)
\(32\) 0 0
\(33\) 0.433052 + 0.866784i 0.0753846 + 0.150888i
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) 10.5011 1.72638 0.863188 0.504882i \(-0.168464\pi\)
0.863188 + 0.504882i \(0.168464\pi\)
\(38\) 0 0
\(39\) 2.59983 + 5.20375i 0.416306 + 0.833267i
\(40\) 0 0
\(41\) 6.79091i 1.06056i 0.847822 + 0.530281i \(0.177914\pi\)
−0.847822 + 0.530281i \(0.822086\pi\)
\(42\) 0 0
\(43\) 11.3827i 1.73584i 0.496704 + 0.867920i \(0.334543\pi\)
−0.496704 + 0.867920i \(0.665457\pi\)
\(44\) 0 0
\(45\) 2.39887 + 1.80151i 0.357602 + 0.268553i
\(46\) 0 0
\(47\) −9.99341 −1.45769 −0.728844 0.684680i \(-0.759942\pi\)
−0.728844 + 0.684680i \(0.759942\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −5.33594 + 2.66588i −0.747182 + 0.373297i
\(52\) 0 0
\(53\) 8.05096i 1.10588i 0.833220 + 0.552942i \(0.186495\pi\)
−0.833220 + 0.552942i \(0.813505\pi\)
\(54\) 0 0
\(55\) 0.559419i 0.0754320i
\(56\) 0 0
\(57\) −2.35714 + 1.17764i −0.312210 + 0.155983i
\(58\) 0 0
\(59\) −4.78044 −0.622360 −0.311180 0.950351i \(-0.600724\pi\)
−0.311180 + 0.950351i \(0.600724\pi\)
\(60\) 0 0
\(61\) 2.04177 0.261421 0.130711 0.991421i \(-0.458274\pi\)
0.130711 + 0.991421i \(0.458274\pi\)
\(62\) 0 0
\(63\) −2.39887 1.80151i −0.302229 0.226969i
\(64\) 0 0
\(65\) 3.35848i 0.416568i
\(66\) 0 0
\(67\) 2.20738i 0.269675i 0.990868 + 0.134837i \(0.0430512\pi\)
−0.990868 + 0.134837i \(0.956949\pi\)
\(68\) 0 0
\(69\) 3.19768 + 6.40039i 0.384956 + 0.770516i
\(70\) 0 0
\(71\) −1.64755 −0.195528 −0.0977641 0.995210i \(-0.531169\pi\)
−0.0977641 + 0.995210i \(0.531169\pi\)
\(72\) 0 0
\(73\) −9.19346 −1.07601 −0.538007 0.842940i \(-0.680823\pi\)
−0.538007 + 0.842940i \(0.680823\pi\)
\(74\) 0 0
\(75\) 0.774110 + 1.54944i 0.0893865 + 0.178914i
\(76\) 0 0
\(77\) 0.559419i 0.0637517i
\(78\) 0 0
\(79\) 15.5490i 1.74940i 0.484663 + 0.874701i \(0.338942\pi\)
−0.484663 + 0.874701i \(0.661058\pi\)
\(80\) 0 0
\(81\) −2.50914 8.64316i −0.278793 0.960351i
\(82\) 0 0
\(83\) −5.78506 −0.634993 −0.317497 0.948259i \(-0.602842\pi\)
−0.317497 + 0.948259i \(0.602842\pi\)
\(84\) 0 0
\(85\) −3.44380 −0.373532
\(86\) 0 0
\(87\) −15.5771 + 7.78241i −1.67004 + 0.834362i
\(88\) 0 0
\(89\) 1.31868i 0.139780i 0.997555 + 0.0698901i \(0.0222649\pi\)
−0.997555 + 0.0698901i \(0.977735\pi\)
\(90\) 0 0
\(91\) 3.35848i 0.352064i
\(92\) 0 0
\(93\) −0.229640 + 0.114730i −0.0238126 + 0.0118969i
\(94\) 0 0
\(95\) −1.52129 −0.156081
\(96\) 0 0
\(97\) 17.9337 1.82089 0.910444 0.413631i \(-0.135740\pi\)
0.910444 + 0.413631i \(0.135740\pi\)
\(98\) 0 0
\(99\) 1.00780 1.34197i 0.101288 0.134873i
\(100\) 0 0
\(101\) 13.3381i 1.32720i −0.748090 0.663598i \(-0.769029\pi\)
0.748090 0.663598i \(-0.230971\pi\)
\(102\) 0 0
\(103\) 9.59178i 0.945107i 0.881302 + 0.472553i \(0.156668\pi\)
−0.881302 + 0.472553i \(0.843332\pi\)
\(104\) 0 0
\(105\) −0.774110 1.54944i −0.0755454 0.151210i
\(106\) 0 0
\(107\) 1.28937 0.124648 0.0623241 0.998056i \(-0.480149\pi\)
0.0623241 + 0.998056i \(0.480149\pi\)
\(108\) 0 0
\(109\) 13.7624 1.31820 0.659101 0.752054i \(-0.270937\pi\)
0.659101 + 0.752054i \(0.270937\pi\)
\(110\) 0 0
\(111\) −8.12903 16.2708i −0.771574 1.54436i
\(112\) 0 0
\(113\) 17.8453i 1.67874i 0.543559 + 0.839371i \(0.317076\pi\)
−0.543559 + 0.839371i \(0.682924\pi\)
\(114\) 0 0
\(115\) 4.13079i 0.385198i
\(116\) 0 0
\(117\) 6.05033 8.05655i 0.559353 0.744828i
\(118\) 0 0
\(119\) 3.44380 0.315692
\(120\) 0 0
\(121\) −10.6871 −0.971550
\(122\) 0 0
\(123\) 10.5221 5.25691i 0.948744 0.474000i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 8.36158i 0.741970i 0.928639 + 0.370985i \(0.120980\pi\)
−0.928639 + 0.370985i \(0.879020\pi\)
\(128\) 0 0
\(129\) 17.6367 8.81143i 1.55283 0.775803i
\(130\) 0 0
\(131\) 5.67560 0.495879 0.247940 0.968775i \(-0.420246\pi\)
0.247940 + 0.968775i \(0.420246\pi\)
\(132\) 0 0
\(133\) 1.52129 0.131912
\(134\) 0 0
\(135\) 0.934336 5.11146i 0.0804148 0.439924i
\(136\) 0 0
\(137\) 9.53927i 0.814994i 0.913206 + 0.407497i \(0.133598\pi\)
−0.913206 + 0.407497i \(0.866402\pi\)
\(138\) 0 0
\(139\) 17.9076i 1.51890i 0.650565 + 0.759451i \(0.274532\pi\)
−0.650565 + 0.759451i \(0.725468\pi\)
\(140\) 0 0
\(141\) 7.73599 + 15.4842i 0.651488 + 1.30400i
\(142\) 0 0
\(143\) 1.87880 0.157113
\(144\) 0 0
\(145\) −10.0534 −0.834887
\(146\) 0 0
\(147\) 0.774110 + 1.54944i 0.0638475 + 0.127795i
\(148\) 0 0
\(149\) 7.54380i 0.618012i −0.951060 0.309006i \(-0.900004\pi\)
0.951060 0.309006i \(-0.0999964\pi\)
\(150\) 0 0
\(151\) 1.48926i 0.121194i 0.998162 + 0.0605971i \(0.0193005\pi\)
−0.998162 + 0.0605971i \(0.980700\pi\)
\(152\) 0 0
\(153\) 8.26121 + 6.20403i 0.667879 + 0.501566i
\(154\) 0 0
\(155\) −0.148209 −0.0119044
\(156\) 0 0
\(157\) −16.1710 −1.29059 −0.645293 0.763935i \(-0.723265\pi\)
−0.645293 + 0.763935i \(0.723265\pi\)
\(158\) 0 0
\(159\) 12.4745 6.23233i 0.989288 0.494256i
\(160\) 0 0
\(161\) 4.13079i 0.325551i
\(162\) 0 0
\(163\) 17.0063i 1.33204i 0.745935 + 0.666019i \(0.232003\pi\)
−0.745935 + 0.666019i \(0.767997\pi\)
\(164\) 0 0
\(165\) 0.866784 0.433052i 0.0674791 0.0337130i
\(166\) 0 0
\(167\) −6.40209 −0.495408 −0.247704 0.968836i \(-0.579676\pi\)
−0.247704 + 0.968836i \(0.579676\pi\)
\(168\) 0 0
\(169\) −1.72062 −0.132356
\(170\) 0 0
\(171\) 3.64936 + 2.74061i 0.279074 + 0.209580i
\(172\) 0 0
\(173\) 2.70411i 0.205590i 0.994703 + 0.102795i \(0.0327786\pi\)
−0.994703 + 0.102795i \(0.967221\pi\)
\(174\) 0 0
\(175\) 1.00000i 0.0755929i
\(176\) 0 0
\(177\) 3.70059 + 7.40699i 0.278153 + 0.556743i
\(178\) 0 0
\(179\) 6.71305 0.501757 0.250879 0.968019i \(-0.419281\pi\)
0.250879 + 0.968019i \(0.419281\pi\)
\(180\) 0 0
\(181\) 11.4983 0.854659 0.427329 0.904096i \(-0.359454\pi\)
0.427329 + 0.904096i \(0.359454\pi\)
\(182\) 0 0
\(183\) −1.58055 3.16359i −0.116838 0.233859i
\(184\) 0 0
\(185\) 10.5011i 0.772059i
\(186\) 0 0
\(187\) 1.92652i 0.140881i
\(188\) 0 0
\(189\) −0.934336 + 5.11146i −0.0679629 + 0.371804i
\(190\) 0 0
\(191\) −22.3079 −1.61414 −0.807071 0.590454i \(-0.798949\pi\)
−0.807071 + 0.590454i \(0.798949\pi\)
\(192\) 0 0
\(193\) 8.19154 0.589640 0.294820 0.955553i \(-0.404740\pi\)
0.294820 + 0.955553i \(0.404740\pi\)
\(194\) 0 0
\(195\) 5.20375 2.59983i 0.372648 0.186178i
\(196\) 0 0
\(197\) 7.23102i 0.515189i −0.966253 0.257594i \(-0.917070\pi\)
0.966253 0.257594i \(-0.0829298\pi\)
\(198\) 0 0
\(199\) 22.5289i 1.59703i −0.601973 0.798517i \(-0.705618\pi\)
0.601973 0.798517i \(-0.294382\pi\)
\(200\) 0 0
\(201\) 3.42020 1.70876i 0.241243 0.120526i
\(202\) 0 0
\(203\) 10.0534 0.705608
\(204\) 0 0
\(205\) 6.79091 0.474298
\(206\) 0 0
\(207\) 7.44164 9.90921i 0.517230 0.688738i
\(208\) 0 0
\(209\) 0.851036i 0.0588674i
\(210\) 0 0
\(211\) 6.88610i 0.474059i 0.971502 + 0.237029i \(0.0761738\pi\)
−0.971502 + 0.237029i \(0.923826\pi\)
\(212\) 0 0
\(213\) 1.27538 + 2.55277i 0.0873879 + 0.174913i
\(214\) 0 0
\(215\) 11.3827 0.776291
\(216\) 0 0
\(217\) 0.148209 0.0100611
\(218\) 0 0
\(219\) 7.11675 + 14.2447i 0.480905 + 0.962567i
\(220\) 0 0
\(221\) 11.5659i 0.778008i
\(222\) 0 0
\(223\) 14.4511i 0.967718i −0.875146 0.483859i \(-0.839235\pi\)
0.875146 0.483859i \(-0.160765\pi\)
\(224\) 0 0
\(225\) 1.80151 2.39887i 0.120101 0.159925i
\(226\) 0 0
\(227\) 18.6351 1.23686 0.618428 0.785842i \(-0.287770\pi\)
0.618428 + 0.785842i \(0.287770\pi\)
\(228\) 0 0
\(229\) 0.601274 0.0397333 0.0198667 0.999803i \(-0.493676\pi\)
0.0198667 + 0.999803i \(0.493676\pi\)
\(230\) 0 0
\(231\) −0.866784 + 0.433052i −0.0570302 + 0.0284927i
\(232\) 0 0
\(233\) 6.96923i 0.456569i 0.973594 + 0.228285i \(0.0733117\pi\)
−0.973594 + 0.228285i \(0.926688\pi\)
\(234\) 0 0
\(235\) 9.99341i 0.651898i
\(236\) 0 0
\(237\) 24.0922 12.0366i 1.56496 0.781864i
\(238\) 0 0
\(239\) −15.2936 −0.989258 −0.494629 0.869104i \(-0.664696\pi\)
−0.494629 + 0.869104i \(0.664696\pi\)
\(240\) 0 0
\(241\) 18.4312 1.18726 0.593629 0.804739i \(-0.297695\pi\)
0.593629 + 0.804739i \(0.297695\pi\)
\(242\) 0 0
\(243\) −11.4497 + 10.5785i −0.734498 + 0.678611i
\(244\) 0 0
\(245\) 1.00000i 0.0638877i
\(246\) 0 0
\(247\) 5.10921i 0.325091i
\(248\) 0 0
\(249\) 4.47827 + 8.96359i 0.283799 + 0.568044i
\(250\) 0 0
\(251\) 2.46546 0.155618 0.0778091 0.996968i \(-0.475208\pi\)
0.0778091 + 0.996968i \(0.475208\pi\)
\(252\) 0 0
\(253\) 2.31084 0.145281
\(254\) 0 0
\(255\) 2.66588 + 5.33594i 0.166944 + 0.334150i
\(256\) 0 0
\(257\) 3.20727i 0.200064i 0.994984 + 0.100032i \(0.0318945\pi\)
−0.994984 + 0.100032i \(0.968105\pi\)
\(258\) 0 0
\(259\) 10.5011i 0.652509i
\(260\) 0 0
\(261\) 24.1167 + 18.1112i 1.49279 + 1.12106i
\(262\) 0 0
\(263\) 8.38162 0.516833 0.258416 0.966034i \(-0.416799\pi\)
0.258416 + 0.966034i \(0.416799\pi\)
\(264\) 0 0
\(265\) 8.05096 0.494567
\(266\) 0 0
\(267\) 2.04322 1.02081i 0.125043 0.0624723i
\(268\) 0 0
\(269\) 9.30871i 0.567562i 0.958889 + 0.283781i \(0.0915889\pi\)
−0.958889 + 0.283781i \(0.908411\pi\)
\(270\) 0 0
\(271\) 4.72185i 0.286832i 0.989662 + 0.143416i \(0.0458087\pi\)
−0.989662 + 0.143416i \(0.954191\pi\)
\(272\) 0 0
\(273\) −5.20375 + 2.59983i −0.314945 + 0.157349i
\(274\) 0 0
\(275\) 0.559419 0.0337342
\(276\) 0 0
\(277\) −24.7697 −1.48827 −0.744135 0.668030i \(-0.767138\pi\)
−0.744135 + 0.668030i \(0.767138\pi\)
\(278\) 0 0
\(279\) 0.355533 + 0.266999i 0.0212852 + 0.0159848i
\(280\) 0 0
\(281\) 7.70344i 0.459549i 0.973244 + 0.229774i \(0.0737988\pi\)
−0.973244 + 0.229774i \(0.926201\pi\)
\(282\) 0 0
\(283\) 13.4931i 0.802084i 0.916060 + 0.401042i \(0.131352\pi\)
−0.916060 + 0.401042i \(0.868648\pi\)
\(284\) 0 0
\(285\) 1.17764 + 2.35714i 0.0697575 + 0.139625i
\(286\) 0 0
\(287\) −6.79091 −0.400855
\(288\) 0 0
\(289\) 5.14027 0.302369
\(290\) 0 0
\(291\) −13.8826 27.7871i −0.813814 1.62891i
\(292\) 0 0
\(293\) 6.48006i 0.378569i 0.981922 + 0.189285i \(0.0606169\pi\)
−0.981922 + 0.189285i \(0.939383\pi\)
\(294\) 0 0
\(295\) 4.78044i 0.278328i
\(296\) 0 0
\(297\) −2.85945 0.522685i −0.165922 0.0303293i
\(298\) 0 0
\(299\) 13.8732 0.802305
\(300\) 0 0
\(301\) −11.3827 −0.656086
\(302\) 0 0
\(303\) −20.6666 + 10.3252i −1.18727 + 0.593167i
\(304\) 0 0
\(305\) 2.04177i 0.116911i
\(306\) 0 0
\(307\) 27.0199i 1.54211i −0.636771 0.771053i \(-0.719730\pi\)
0.636771 0.771053i \(-0.280270\pi\)
\(308\) 0 0
\(309\) 14.8619 7.42509i 0.845462 0.422399i
\(310\) 0 0
\(311\) −17.3968 −0.986480 −0.493240 0.869893i \(-0.664188\pi\)
−0.493240 + 0.869893i \(0.664188\pi\)
\(312\) 0 0
\(313\) −22.0197 −1.24463 −0.622315 0.782767i \(-0.713808\pi\)
−0.622315 + 0.782767i \(0.713808\pi\)
\(314\) 0 0
\(315\) −1.80151 + 2.39887i −0.101503 + 0.135161i
\(316\) 0 0
\(317\) 22.1799i 1.24575i 0.782322 + 0.622874i \(0.214035\pi\)
−0.782322 + 0.622874i \(0.785965\pi\)
\(318\) 0 0
\(319\) 5.62405i 0.314886i
\(320\) 0 0
\(321\) −0.998115 1.99780i −0.0557094 0.111506i
\(322\) 0 0
\(323\) −5.23900 −0.291506
\(324\) 0 0
\(325\) 3.35848 0.186295
\(326\) 0 0
\(327\) −10.6536 21.3240i −0.589148 1.17922i
\(328\) 0 0
\(329\) 9.99341i 0.550954i
\(330\) 0 0
\(331\) 1.38708i 0.0762409i 0.999273 + 0.0381204i \(0.0121371\pi\)
−0.999273 + 0.0381204i \(0.987863\pi\)
\(332\) 0 0
\(333\) −18.9179 + 25.1908i −1.03669 + 1.38045i
\(334\) 0 0
\(335\) 2.20738 0.120602
\(336\) 0 0
\(337\) 2.33963 0.127448 0.0637240 0.997968i \(-0.479702\pi\)
0.0637240 + 0.997968i \(0.479702\pi\)
\(338\) 0 0
\(339\) 27.6501 13.8142i 1.50175 0.750284i
\(340\) 0 0
\(341\) 0.0829108i 0.00448987i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 6.40039 3.19768i 0.344585 0.172157i
\(346\) 0 0
\(347\) 12.8348 0.689008 0.344504 0.938785i \(-0.388047\pi\)
0.344504 + 0.938785i \(0.388047\pi\)
\(348\) 0 0
\(349\) −4.19892 −0.224763 −0.112382 0.993665i \(-0.535848\pi\)
−0.112382 + 0.993665i \(0.535848\pi\)
\(350\) 0 0
\(351\) −17.1667 3.13795i −0.916292 0.167491i
\(352\) 0 0
\(353\) 23.0939i 1.22916i 0.788854 + 0.614581i \(0.210675\pi\)
−0.788854 + 0.614581i \(0.789325\pi\)
\(354\) 0 0
\(355\) 1.64755i 0.0874428i
\(356\) 0 0
\(357\) −2.66588 5.33594i −0.141093 0.282408i
\(358\) 0 0
\(359\) −13.2600 −0.699838 −0.349919 0.936780i \(-0.613791\pi\)
−0.349919 + 0.936780i \(0.613791\pi\)
\(360\) 0 0
\(361\) 16.6857 0.878194
\(362\) 0 0
\(363\) 8.27295 + 16.5589i 0.434217 + 0.869117i
\(364\) 0 0
\(365\) 9.19346i 0.481208i
\(366\) 0 0
\(367\) 25.6105i 1.33686i −0.743776 0.668429i \(-0.766967\pi\)
0.743776 0.668429i \(-0.233033\pi\)
\(368\) 0 0
\(369\) −16.2905 12.2339i −0.848049 0.636870i
\(370\) 0 0
\(371\) −8.05096 −0.417985
\(372\) 0 0
\(373\) −30.4020 −1.57416 −0.787079 0.616853i \(-0.788407\pi\)
−0.787079 + 0.616853i \(0.788407\pi\)
\(374\) 0 0
\(375\) 1.54944 0.774110i 0.0800126 0.0399749i
\(376\) 0 0
\(377\) 33.7640i 1.73894i
\(378\) 0 0
\(379\) 2.35256i 0.120843i 0.998173 + 0.0604213i \(0.0192444\pi\)
−0.998173 + 0.0604213i \(0.980756\pi\)
\(380\) 0 0
\(381\) 12.9557 6.47278i 0.663743 0.331611i
\(382\) 0 0
\(383\) 7.68362 0.392615 0.196307 0.980542i \(-0.437105\pi\)
0.196307 + 0.980542i \(0.437105\pi\)
\(384\) 0 0
\(385\) −0.559419 −0.0285106
\(386\) 0 0
\(387\) −27.3055 20.5060i −1.38802 1.04238i
\(388\) 0 0
\(389\) 30.6797i 1.55552i −0.628560 0.777761i \(-0.716355\pi\)
0.628560 0.777761i \(-0.283645\pi\)
\(390\) 0 0
\(391\) 14.2256i 0.719419i
\(392\) 0 0
\(393\) −4.39354 8.79398i −0.221625 0.443598i
\(394\) 0 0
\(395\) 15.5490 0.782356
\(396\) 0 0
\(397\) −4.52854 −0.227281 −0.113640 0.993522i \(-0.536251\pi\)
−0.113640 + 0.993522i \(0.536251\pi\)
\(398\) 0 0
\(399\) −1.17764 2.35714i −0.0589559 0.118004i
\(400\) 0 0
\(401\) 23.9410i 1.19555i −0.801662 0.597777i \(-0.796051\pi\)
0.801662 0.597777i \(-0.203949\pi\)
\(402\) 0 0
\(403\) 0.497756i 0.0247950i
\(404\) 0 0
\(405\) −8.64316 + 2.50914i −0.429482 + 0.124680i
\(406\) 0 0
\(407\) −5.87454 −0.291190
\(408\) 0 0
\(409\) 10.9393 0.540915 0.270458 0.962732i \(-0.412825\pi\)
0.270458 + 0.962732i \(0.412825\pi\)
\(410\) 0 0
\(411\) 14.7805 7.38444i 0.729068 0.364247i
\(412\) 0 0
\(413\) 4.78044i 0.235230i
\(414\) 0 0
\(415\) 5.78506i 0.283978i
\(416\) 0 0
\(417\) 27.7467 13.8624i 1.35876 0.678846i
\(418\) 0 0
\(419\) 9.24700 0.451746 0.225873 0.974157i \(-0.427477\pi\)
0.225873 + 0.974157i \(0.427477\pi\)
\(420\) 0 0
\(421\) −14.4097 −0.702284 −0.351142 0.936322i \(-0.614207\pi\)
−0.351142 + 0.936322i \(0.614207\pi\)
\(422\) 0 0
\(423\) 18.0032 23.9729i 0.875346 1.16560i
\(424\) 0 0
\(425\) 3.44380i 0.167049i
\(426\) 0 0
\(427\) 2.04177i 0.0988080i
\(428\) 0 0
\(429\) −1.45439 2.91108i −0.0702188 0.140548i
\(430\) 0 0
\(431\) 10.6564 0.513301 0.256651 0.966504i \(-0.417381\pi\)
0.256651 + 0.966504i \(0.417381\pi\)
\(432\) 0 0
\(433\) 1.74635 0.0839241 0.0419621 0.999119i \(-0.486639\pi\)
0.0419621 + 0.999119i \(0.486639\pi\)
\(434\) 0 0
\(435\) 7.78241 + 15.5771i 0.373138 + 0.746863i
\(436\) 0 0
\(437\) 6.28411i 0.300610i
\(438\) 0 0
\(439\) 36.6430i 1.74887i 0.485140 + 0.874436i \(0.338769\pi\)
−0.485140 + 0.874436i \(0.661231\pi\)
\(440\) 0 0
\(441\) 1.80151 2.39887i 0.0857861 0.114232i
\(442\) 0 0
\(443\) −23.9701 −1.13885 −0.569426 0.822042i \(-0.692835\pi\)
−0.569426 + 0.822042i \(0.692835\pi\)
\(444\) 0 0
\(445\) 1.31868 0.0625116
\(446\) 0 0
\(447\) −11.6886 + 5.83973i −0.552854 + 0.276210i
\(448\) 0 0
\(449\) 28.5921i 1.34934i −0.738117 0.674672i \(-0.764285\pi\)
0.738117 0.674672i \(-0.235715\pi\)
\(450\) 0 0
\(451\) 3.79896i 0.178886i
\(452\) 0 0
\(453\) 2.30751 1.15285i 0.108416 0.0541656i
\(454\) 0 0
\(455\) −3.35848 −0.157448
\(456\) 0 0
\(457\) −10.4416 −0.488436 −0.244218 0.969720i \(-0.578531\pi\)
−0.244218 + 0.969720i \(0.578531\pi\)
\(458\) 0 0
\(459\) 3.21766 17.6028i 0.150188 0.821629i
\(460\) 0 0
\(461\) 28.9503i 1.34835i 0.738572 + 0.674175i \(0.235501\pi\)
−0.738572 + 0.674175i \(0.764499\pi\)
\(462\) 0 0
\(463\) 29.0619i 1.35062i −0.737534 0.675310i \(-0.764010\pi\)
0.737534 0.675310i \(-0.235990\pi\)
\(464\) 0 0
\(465\) 0.114730 + 0.229640i 0.00532047 + 0.0106493i
\(466\) 0 0
\(467\) −15.0751 −0.697592 −0.348796 0.937199i \(-0.613409\pi\)
−0.348796 + 0.937199i \(0.613409\pi\)
\(468\) 0 0
\(469\) −2.20738 −0.101928
\(470\) 0 0
\(471\) 12.5181 + 25.0559i 0.576805 + 1.15452i
\(472\) 0 0
\(473\) 6.36768i 0.292786i
\(474\) 0 0
\(475\) 1.52129i 0.0698014i
\(476\) 0 0
\(477\) −19.3132 14.5039i −0.884290 0.664087i
\(478\) 0 0
\(479\) 19.6925 0.899773 0.449887 0.893086i \(-0.351464\pi\)
0.449887 + 0.893086i \(0.351464\pi\)
\(480\) 0 0
\(481\) −35.2678 −1.60808
\(482\) 0 0
\(483\) −6.40039 + 3.19768i −0.291228 + 0.145500i
\(484\) 0 0
\(485\) 17.9337i 0.814326i
\(486\) 0 0
\(487\) 33.5499i 1.52029i 0.649754 + 0.760145i \(0.274872\pi\)
−0.649754 + 0.760145i \(0.725128\pi\)
\(488\) 0 0
\(489\) 26.3502 13.1648i 1.19160 0.595331i
\(490\) 0 0
\(491\) −6.95363 −0.313813 −0.156906 0.987613i \(-0.550152\pi\)
−0.156906 + 0.987613i \(0.550152\pi\)
\(492\) 0 0
\(493\) −34.6218 −1.55929
\(494\) 0 0
\(495\) −1.34197 1.00780i −0.0603172 0.0452972i
\(496\) 0 0
\(497\) 1.64755i 0.0739027i
\(498\) 0 0
\(499\) 13.3865i 0.599261i 0.954055 + 0.299631i \(0.0968634\pi\)
−0.954055 + 0.299631i \(0.903137\pi\)
\(500\) 0 0
\(501\) 4.95592 + 9.91963i 0.221414 + 0.443176i
\(502\) 0 0
\(503\) −25.7962 −1.15019 −0.575097 0.818085i \(-0.695036\pi\)
−0.575097 + 0.818085i \(0.695036\pi\)
\(504\) 0 0
\(505\) −13.3381 −0.593540
\(506\) 0 0
\(507\) 1.33195 + 2.66600i 0.0591540 + 0.118401i
\(508\) 0 0
\(509\) 42.6623i 1.89097i −0.325661 0.945487i \(-0.605587\pi\)
0.325661 0.945487i \(-0.394413\pi\)
\(510\) 0 0
\(511\) 9.19346i 0.406695i
\(512\) 0 0
\(513\) 1.42139 7.77599i 0.0627560 0.343318i
\(514\) 0 0
\(515\) 9.59178 0.422665
\(516\) 0 0
\(517\) 5.59050 0.245870
\(518\) 0 0
\(519\) 4.18985 2.09328i 0.183914 0.0918849i
\(520\) 0 0
\(521\) 13.0770i 0.572912i −0.958093 0.286456i \(-0.907523\pi\)
0.958093 0.286456i \(-0.0924772\pi\)
\(522\) 0 0
\(523\) 0.170026i 0.00743473i 0.999993 + 0.00371737i \(0.00118328\pi\)
−0.999993 + 0.00371737i \(0.998817\pi\)
\(524\) 0 0
\(525\) −1.54944 + 0.774110i −0.0676230 + 0.0337849i
\(526\) 0 0
\(527\) −0.510401 −0.0222334
\(528\) 0 0
\(529\) −5.93661 −0.258114
\(530\) 0 0
\(531\) 8.61200 11.4676i 0.373729 0.497653i
\(532\) 0 0
\(533\) 22.8071i 0.987886i
\(534\) 0 0
\(535\) 1.28937i 0.0557444i
\(536\) 0 0
\(537\) −5.19664 10.4015i −0.224252 0.448856i
\(538\) 0 0
\(539\) 0.559419 0.0240959
\(540\) 0 0
\(541\) −16.1798 −0.695622 −0.347811 0.937565i \(-0.613075\pi\)
−0.347811 + 0.937565i \(0.613075\pi\)
\(542\) 0 0
\(543\) −8.90091 17.8158i −0.381975 0.764550i
\(544\) 0 0
\(545\) 13.7624i 0.589518i
\(546\) 0 0
\(547\) 41.6207i 1.77957i 0.456377 + 0.889787i \(0.349147\pi\)
−0.456377 + 0.889787i \(0.650853\pi\)
\(548\) 0 0
\(549\) −3.67826 + 4.89793i −0.156984 + 0.209038i
\(550\) 0 0
\(551\) −15.2941 −0.651549
\(552\) 0 0
\(553\) −15.5490 −0.661212
\(554\) 0 0
\(555\) −16.2708 + 8.12903i −0.690659 + 0.345058i
\(556\) 0 0
\(557\) 15.8996i 0.673687i −0.941561 0.336843i \(-0.890641\pi\)
0.941561 0.336843i \(-0.109359\pi\)
\(558\) 0 0
\(559\) 38.2284i 1.61689i
\(560\) 0 0
\(561\) 2.98503 1.49134i 0.126028 0.0629645i
\(562\) 0 0
\(563\) −18.7579 −0.790549 −0.395275 0.918563i \(-0.629351\pi\)
−0.395275 + 0.918563i \(0.629351\pi\)
\(564\) 0 0
\(565\) 17.8453 0.750756
\(566\) 0 0
\(567\) 8.64316 2.50914i 0.362979 0.105374i
\(568\) 0 0
\(569\) 29.5520i 1.23889i 0.785042 + 0.619443i \(0.212641\pi\)
−0.785042 + 0.619443i \(0.787359\pi\)
\(570\) 0 0
\(571\) 34.9401i 1.46220i −0.682272 0.731098i \(-0.739008\pi\)
0.682272 0.731098i \(-0.260992\pi\)
\(572\) 0 0
\(573\) 17.2688 + 34.5647i 0.721413 + 1.44396i
\(574\) 0 0
\(575\) 4.13079 0.172266
\(576\) 0 0
\(577\) −39.0082 −1.62393 −0.811966 0.583705i \(-0.801602\pi\)
−0.811966 + 0.583705i \(0.801602\pi\)
\(578\) 0 0
\(579\) −6.34115 12.6923i −0.263529 0.527473i
\(580\) 0 0
\(581\) 5.78506i 0.240005i
\(582\) 0 0
\(583\) 4.50386i 0.186531i
\(584\) 0 0
\(585\) −8.05655 6.05033i −0.333097 0.250150i
\(586\) 0 0
\(587\) 28.4743 1.17526 0.587630 0.809130i \(-0.300061\pi\)
0.587630 + 0.809130i \(0.300061\pi\)
\(588\) 0 0
\(589\) −0.225468 −0.00929024
\(590\) 0 0
\(591\) −11.2040 + 5.59760i −0.460871 + 0.230255i
\(592\) 0 0
\(593\) 30.1937i 1.23991i 0.784638 + 0.619954i \(0.212849\pi\)
−0.784638 + 0.619954i \(0.787151\pi\)
\(594\) 0 0
\(595\) 3.44380i 0.141182i
\(596\) 0 0
\(597\) −34.9071 + 17.4399i −1.42865 + 0.713766i
\(598\) 0 0
\(599\) 41.0384 1.67678 0.838392 0.545068i \(-0.183496\pi\)
0.838392 + 0.545068i \(0.183496\pi\)
\(600\) 0 0
\(601\) −3.92391 −0.160060 −0.0800298 0.996792i \(-0.525502\pi\)
−0.0800298 + 0.996792i \(0.525502\pi\)
\(602\) 0 0
\(603\) −5.29522 3.97662i −0.215638 0.161941i
\(604\) 0 0
\(605\) 10.6871i 0.434490i
\(606\) 0 0
\(607\) 0.710992i 0.0288583i 0.999896 + 0.0144291i \(0.00459310\pi\)
−0.999896 + 0.0144291i \(0.995407\pi\)
\(608\) 0 0
\(609\) −7.78241 15.5771i −0.315359 0.631214i
\(610\) 0 0
\(611\) 33.5626 1.35780
\(612\) 0 0
\(613\) 11.1958 0.452192 0.226096 0.974105i \(-0.427404\pi\)
0.226096 + 0.974105i \(0.427404\pi\)
\(614\) 0 0
\(615\) −5.25691 10.5221i −0.211979 0.424291i
\(616\) 0 0
\(617\) 24.8681i 1.00115i 0.865693 + 0.500576i \(0.166878\pi\)
−0.865693 + 0.500576i \(0.833122\pi\)
\(618\) 0 0
\(619\) 5.77627i 0.232168i 0.993239 + 0.116084i \(0.0370342\pi\)
−0.993239 + 0.116084i \(0.962966\pi\)
\(620\) 0 0
\(621\) −21.1143 3.85954i −0.847289 0.154878i
\(622\) 0 0
\(623\) −1.31868 −0.0528320
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 1.31863 0.658796i 0.0526609 0.0263098i
\(628\) 0 0
\(629\) 36.1638i 1.44194i
\(630\) 0 0
\(631\) 4.45353i 0.177292i 0.996063 + 0.0886462i \(0.0282541\pi\)
−0.996063 + 0.0886462i \(0.971746\pi\)
\(632\) 0 0
\(633\) 10.6696 5.33060i 0.424078 0.211872i
\(634\) 0 0
\(635\) 8.36158 0.331819
\(636\) 0 0
\(637\) 3.35848 0.133068
\(638\) 0 0
\(639\) 2.96807 3.95225i 0.117415 0.156349i
\(640\) 0 0
\(641\) 22.6239i 0.893592i −0.894636 0.446796i \(-0.852565\pi\)
0.894636 0.446796i \(-0.147435\pi\)
\(642\) 0 0
\(643\) 7.80291i 0.307717i −0.988093 0.153858i \(-0.950830\pi\)
0.988093 0.153858i \(-0.0491700\pi\)
\(644\) 0 0
\(645\) −8.81143 17.6367i −0.346950 0.694445i
\(646\) 0 0
\(647\) 5.78288 0.227349 0.113674 0.993518i \(-0.463738\pi\)
0.113674 + 0.993518i \(0.463738\pi\)
\(648\) 0 0
\(649\) 2.67427 0.104974
\(650\) 0 0
\(651\) −0.114730 0.229640i −0.00449662 0.00900030i
\(652\) 0 0
\(653\) 17.7631i 0.695123i 0.937657 + 0.347561i \(0.112990\pi\)
−0.937657 + 0.347561i \(0.887010\pi\)
\(654\) 0 0
\(655\) 5.67560i 0.221764i
\(656\) 0 0
\(657\) 16.5621 22.0539i 0.646149 0.860405i
\(658\) 0 0
\(659\) 38.1448 1.48591 0.742956 0.669340i \(-0.233423\pi\)
0.742956 + 0.669340i \(0.233423\pi\)
\(660\) 0 0
\(661\) 6.85707 0.266709 0.133354 0.991068i \(-0.457425\pi\)
0.133354 + 0.991068i \(0.457425\pi\)
\(662\) 0 0
\(663\) 17.9207 8.95329i 0.695980 0.347717i
\(664\) 0 0
\(665\) 1.52129i 0.0589929i
\(666\) 0 0
\(667\) 41.5283i 1.60798i
\(668\) 0 0
\(669\) −22.3911 + 11.1868i −0.865690 + 0.432505i
\(670\) 0 0
\(671\) −1.14220 −0.0440942
\(672\) 0 0
\(673\) −10.2067 −0.393441 −0.196721 0.980460i \(-0.563029\pi\)
−0.196721 + 0.980460i \(0.563029\pi\)
\(674\) 0 0
\(675\) −5.11146 0.934336i −0.196740 0.0359626i
\(676\) 0 0
\(677\) 50.6791i 1.94776i −0.227070 0.973879i \(-0.572914\pi\)
0.227070 0.973879i \(-0.427086\pi\)
\(678\) 0 0
\(679\) 17.9337i 0.688231i
\(680\) 0 0
\(681\) −14.4256 28.8739i −0.552791 1.10645i
\(682\) 0 0
\(683\) −35.8473 −1.37166 −0.685830 0.727762i \(-0.740561\pi\)
−0.685830 + 0.727762i \(0.740561\pi\)
\(684\) 0 0
\(685\) 9.53927 0.364477
\(686\) 0 0
\(687\) −0.465452 0.931636i −0.0177581 0.0355441i
\(688\) 0 0
\(689\) 27.0390i 1.03010i
\(690\) 0 0
\(691\) 0.581892i 0.0221362i −0.999939 0.0110681i \(-0.996477\pi\)
0.999939 0.0110681i \(-0.00352316\pi\)
\(692\) 0 0
\(693\) 1.34197 + 1.00780i 0.0509773 + 0.0382831i
\(694\) 0 0
\(695\) 17.9076 0.679273
\(696\) 0 0
\(697\) 23.3865 0.885827
\(698\) 0 0
\(699\) 10.7984 5.39495i 0.408432 0.204056i
\(700\) 0 0
\(701\) 17.7229i 0.669384i −0.942328 0.334692i \(-0.891368\pi\)
0.942328 0.334692i \(-0.108632\pi\)
\(702\) 0 0
\(703\) 15.9752i 0.602517i
\(704\) 0 0
\(705\) 15.4842 7.73599i 0.583167 0.291354i
\(706\) 0 0
\(707\) 13.3381 0.501633
\(708\) 0 0
\(709\) −20.7870 −0.780672 −0.390336 0.920672i \(-0.627641\pi\)
−0.390336 + 0.920672i \(0.627641\pi\)
\(710\) 0 0
\(711\) −37.3001 28.0117i −1.39886 1.05052i
\(712\) 0 0
\(713\) 0.612219i 0.0229278i
\(714\) 0 0
\(715\) 1.87880i 0.0702630i
\(716\) 0 0
\(717\) 11.8389 + 23.6964i 0.442132 + 0.884959i
\(718\) 0 0
\(719\) −50.0506 −1.86657 −0.933286 0.359134i \(-0.883072\pi\)
−0.933286 + 0.359134i \(0.883072\pi\)
\(720\) 0 0
\(721\) −9.59178 −0.357217
\(722\) 0 0
\(723\) −14.2678 28.5580i −0.530624 1.06208i
\(724\) 0 0
\(725\) 10.0534i 0.373373i
\(726\) 0 0
\(727\) 26.8190i 0.994661i −0.867561 0.497331i \(-0.834314\pi\)
0.867561 0.497331i \(-0.165686\pi\)
\(728\) 0 0
\(729\) 25.2540 + 9.55164i 0.935335 + 0.353764i
\(730\) 0 0
\(731\) 39.1996 1.44985
\(732\) 0 0
\(733\) −33.7399 −1.24621 −0.623106 0.782137i \(-0.714130\pi\)
−0.623106 + 0.782137i \(0.714130\pi\)
\(734\) 0 0
\(735\) 1.54944 0.774110i 0.0571518 0.0285535i
\(736\) 0 0
\(737\) 1.23485i 0.0454864i
\(738\) 0 0
\(739\) 0.473982i 0.0174357i −0.999962 0.00871785i \(-0.997225\pi\)
0.999962 0.00871785i \(-0.00277501\pi\)
\(740\) 0 0
\(741\) 7.91639 3.95509i 0.290816 0.145294i
\(742\) 0 0
\(743\) −45.8108 −1.68063 −0.840317 0.542095i \(-0.817631\pi\)
−0.840317 + 0.542095i \(0.817631\pi\)
\(744\) 0 0
\(745\) −7.54380 −0.276384
\(746\) 0 0
\(747\) 10.4218 13.8776i 0.381315 0.507755i
\(748\) 0 0
\(749\) 1.28937i 0.0471126i
\(750\) 0 0
\(751\) 30.2865i 1.10517i 0.833456 + 0.552586i \(0.186359\pi\)
−0.833456 + 0.552586i \(0.813641\pi\)
\(752\) 0 0
\(753\) −1.90853 3.82007i −0.0695508 0.139211i
\(754\) 0 0
\(755\) 1.48926 0.0541997
\(756\) 0 0
\(757\) −44.6109 −1.62141 −0.810705 0.585455i \(-0.800916\pi\)
−0.810705 + 0.585455i \(0.800916\pi\)
\(758\) 0 0
\(759\) −1.78884 3.58050i −0.0649309 0.129964i
\(760\) 0 0
\(761\) 17.4006i 0.630770i 0.948964 + 0.315385i \(0.102134\pi\)
−0.948964 + 0.315385i \(0.897866\pi\)
\(762\) 0 0
\(763\) 13.7624i 0.498234i
\(764\) 0 0
\(765\) 6.20403 8.26121i 0.224307 0.298685i
\(766\) 0 0
\(767\) 16.0550 0.579713
\(768\) 0 0
\(769\) −12.6539 −0.456311 −0.228156 0.973625i \(-0.573269\pi\)
−0.228156 + 0.973625i \(0.573269\pi\)
\(770\) 0 0
\(771\) 4.96946 2.48278i 0.178971 0.0894151i
\(772\) 0 0
\(773\) 13.0718i 0.470161i −0.971976 0.235081i \(-0.924465\pi\)
0.971976 0.235081i \(-0.0755354\pi\)
\(774\) 0 0
\(775\) 0.148209i 0.00532382i
\(776\) 0 0
\(777\) 16.2708 8.12903i 0.583713 0.291627i
\(778\) 0 0
\(779\) 10.3309 0.370144
\(780\) 0 0
\(781\) 0.921671 0.0329800
\(782\) 0 0
\(783\) 9.39323 51.3874i 0.335687 1.83644i
\(784\) 0 0
\(785\) 16.1710i 0.577168i
\(786\) 0 0
\(787\) 39.9700i 1.42478i −0.701786 0.712388i \(-0.747614\pi\)
0.701786 0.712388i \(-0.252386\pi\)
\(788\) 0 0
\(789\) −6.48829 12.9868i −0.230989 0.462342i
\(790\) 0 0
\(791\) −17.8453 −0.634505
\(792\) 0 0
\(793\) −6.85722 −0.243507
\(794\) 0 0
\(795\) −6.23233 12.4745i −0.221038 0.442423i
\(796\) 0 0
\(797\) 5.21911i 0.184870i 0.995719 + 0.0924351i \(0.0294651\pi\)
−0.995719 + 0.0924351i \(0.970535\pi\)
\(798\) 0 0
\(799\) 34.4153i 1.21752i
\(800\) 0 0
\(801\) −3.16335 2.37562i −0.111771 0.0839384i
\(802\) 0 0
\(803\) 5.14300 0.181492
\(804\) 0 0
\(805\) −4.13079 −0.145591
\(806\) 0 0
\(807\) 14.4233 7.20596i 0.507723 0.253662i
\(808\) 0 0
\(809\) 39.7500i 1.39753i −0.715349 0.698767i \(-0.753732\pi\)
0.715349 0.698767i \(-0.246268\pi\)
\(810\) 0 0
\(811\) 38.4127i 1.34885i −0.738343 0.674426i \(-0.764391\pi\)
0.738343 0.674426i \(-0.235609\pi\)
\(812\) 0 0
\(813\) 7.31621 3.65523i 0.256591 0.128195i
\(814\) 0 0
\(815\) 17.0063 0.595705
\(816\) 0 0
\(817\) 17.3163 0.605820
\(818\) 0 0
\(819\) 8.05655 + 6.05033i 0.281519 + 0.211416i
\(820\) 0 0
\(821\) 43.8482i 1.53031i 0.643845 + 0.765156i \(0.277338\pi\)
−0.643845 + 0.765156i \(0.722662\pi\)
\(822\) 0 0
\(823\) 1.83409i 0.0639323i 0.999489 + 0.0319661i \(0.0101769\pi\)
−0.999489 + 0.0319661i \(0.989823\pi\)
\(824\) 0 0
\(825\) −0.433052 0.866784i −0.0150769 0.0301776i
\(826\) 0 0
\(827\) −25.8626 −0.899329 −0.449665 0.893197i \(-0.648456\pi\)
−0.449665 + 0.893197i \(0.648456\pi\)
\(828\) 0 0
\(829\) −13.5228 −0.469667 −0.234833 0.972036i \(-0.575454\pi\)
−0.234833 + 0.972036i \(0.575454\pi\)
\(830\) 0 0
\(831\) 19.1745 + 38.3791i 0.665156 + 1.33136i
\(832\) 0 0
\(833\) 3.44380i 0.119320i
\(834\) 0 0
\(835\) 6.40209i 0.221553i
\(836\) 0 0
\(837\) 0.138477 0.757563i 0.00478646 0.0261852i
\(838\) 0 0
\(839\) 37.8234 1.30581 0.652904 0.757441i \(-0.273550\pi\)
0.652904 + 0.757441i \(0.273550\pi\)
\(840\) 0 0
\(841\) −72.0703 −2.48518
\(842\) 0 0
\(843\) 11.9360 5.96331i 0.411097 0.205387i
\(844\) 0 0
\(845\) 1.72062i 0.0591912i
\(846\) 0 0
\(847\) 10.6871i 0.367211i
\(848\) 0 0
\(849\) 20.9068 10.4452i 0.717518 0.358477i
\(850\) 0 0
\(851\) −43.3779 −1.48698
\(852\) 0 0
\(853\) 14.2364 0.487445 0.243723 0.969845i \(-0.421631\pi\)
0.243723 + 0.969845i \(0.421631\pi\)
\(854\) 0 0
\(855\) 2.74061 3.64936i 0.0937269 0.124806i
\(856\) 0 0
\(857\) 25.0750i 0.856547i 0.903649 + 0.428274i \(0.140878\pi\)
−0.903649 + 0.428274i \(0.859122\pi\)
\(858\) 0 0
\(859\) 15.6236i 0.533071i 0.963825 + 0.266535i \(0.0858789\pi\)
−0.963825 + 0.266535i \(0.914121\pi\)
\(860\) 0 0
\(861\) 5.25691 + 10.5221i 0.179155 + 0.358592i
\(862\) 0 0
\(863\) −4.70737 −0.160241 −0.0801204 0.996785i \(-0.525530\pi\)
−0.0801204 + 0.996785i \(0.525530\pi\)
\(864\) 0 0
\(865\) 2.70411 0.0919427
\(866\) 0 0
\(867\) −3.97913 7.96452i −0.135138 0.270489i
\(868\) 0 0
\(869\) 8.69842i 0.295074i
\(870\) 0 0
\(871\) 7.41345i 0.251195i
\(872\) 0 0
\(873\) −32.3077 + 43.0205i −1.09345 + 1.45602i
\(874\) 0 0
\(875\) −1.00000 −0.0338062
\(876\) 0 0
\(877\) −20.6365 −0.696844 −0.348422 0.937338i \(-0.613282\pi\)
−0.348422 + 0.937338i \(0.613282\pi\)
\(878\) 0 0
\(879\) 10.0404 5.01628i 0.338656 0.169195i
\(880\) 0 0
\(881\) 45.3459i 1.52774i 0.645370 + 0.763870i \(0.276703\pi\)
−0.645370 + 0.763870i \(0.723297\pi\)
\(882\) 0 0
\(883\) 5.49234i 0.184832i −0.995720 0.0924160i \(-0.970541\pi\)
0.995720 0.0924160i \(-0.0294590\pi\)
\(884\) 0 0
\(885\) 7.40699 3.70059i 0.248983 0.124394i
\(886\) 0 0
\(887\) 43.5975 1.46386 0.731931 0.681379i \(-0.238619\pi\)
0.731931 + 0.681379i \(0.238619\pi\)
\(888\) 0 0
\(889\) −8.36158 −0.280438
\(890\) 0 0
\(891\) 1.40366 + 4.83515i 0.0470243 + 0.161984i
\(892\) 0 0
\(893\) 15.2028i 0.508743i
\(894\) 0 0
\(895\) 6.71305i 0.224393i
\(896\) 0 0
\(897\) −10.7393 21.4956i −0.358576 0.717716i
\(898\) 0 0
\(899\) −1.49000 −0.0496942
\(900\) 0 0
\(901\) 27.7259 0.923682
\(902\) 0 0
\(903\) 8.81143 + 17.6367i 0.293226 + 0.586913i
\(904\) 0 0
\(905\) 11.4983i 0.382215i
\(906\) 0 0
\(907\) 53.5801i 1.77910i −0.456839 0.889549i \(-0.651019\pi\)
0.456839 0.889549i \(-0.348981\pi\)
\(908\) 0 0
\(909\) 31.9965 + 24.0288i 1.06126 + 0.796984i
\(910\) 0 0
\(911\) −20.9339 −0.693572 −0.346786 0.937944i \(-0.612727\pi\)
−0.346786 + 0.937944i \(0.612727\pi\)
\(912\) 0 0
\(913\) 3.23627 0.107105
\(914\) 0 0
\(915\) −3.16359 + 1.58055i −0.104585 + 0.0522514i
\(916\) 0 0
\(917\) 5.67560i 0.187425i
\(918\) 0 0
\(919\) 12.5797i 0.414966i −0.978239 0.207483i \(-0.933473\pi\)
0.978239 0.207483i \(-0.0665272\pi\)
\(920\) 0 0
\(921\) −41.8656 + 20.9163i −1.37952 + 0.689217i
\(922\) 0 0
\(923\) 5.53326 0.182129
\(924\) 0 0
\(925\) −10.5011 −0.345275
\(926\) 0 0
\(927\) −23.0094 17.2797i −0.755729 0.567539i
\(928\) 0 0
\(929\) 15.9869i 0.524513i 0.964998 + 0.262257i \(0.0844667\pi\)
−0.964998 + 0.262257i \(0.915533\pi\)
\(930\) 0 0
\(931\) 1.52129i 0.0498581i
\(932\) 0 0
\(933\) 13.4670 + 26.9552i 0.440890 + 0.882473i
\(934\) 0 0
\(935\) 1.92652 0.0630041
\(936\) 0 0
\(937\) −24.2675 −0.792786 −0.396393 0.918081i \(-0.629738\pi\)
−0.396393 + 0.918081i \(0.629738\pi\)
\(938\) 0 0
\(939\) 17.0457 + 34.1182i 0.556265 + 1.11341i
\(940\) 0 0
\(941\) 12.5947i 0.410575i −0.978702 0.205288i \(-0.934187\pi\)
0.978702 0.205288i \(-0.0658130\pi\)
\(942\) 0 0
\(943\) 28.0518i 0.913492i
\(944\) 0 0
\(945\) 5.11146 + 0.934336i 0.166276 + 0.0303939i
\(946\) 0 0
\(947\) −6.75087 −0.219374 −0.109687 0.993966i \(-0.534985\pi\)
−0.109687 + 0.993966i \(0.534985\pi\)
\(948\) 0 0
\(949\) 30.8761 1.00228
\(950\) 0 0
\(951\) 34.3664 17.1697i 1.11441 0.556765i
\(952\) 0 0
\(953\) 5.76167i 0.186639i 0.995636 + 0.0933194i \(0.0297478\pi\)
−0.995636 + 0.0933194i \(0.970252\pi\)
\(954\) 0 0
\(955\) 22.3079i 0.721867i
\(956\) 0 0
\(957\) 8.71411 4.35363i 0.281687 0.140733i
\(958\) 0 0
\(959\) −9.53927 −0.308039
\(960\) 0 0
\(961\) 30.9780 0.999291
\(962\) 0 0
\(963\) −2.32281 + 3.09303i −0.0748516 + 0.0996716i
\(964\) 0 0
\(965\) 8.19154i 0.263695i
\(966\) 0 0
\(967\) 59.3405i 1.90826i 0.299391 + 0.954131i \(0.403217\pi\)
−0.299391 + 0.954131i \(0.596783\pi\)
\(968\) 0 0
\(969\) 4.05556 + 8.11750i 0.130283 + 0.260772i
\(970\) 0 0
\(971\) −32.8405 −1.05390 −0.526950 0.849896i \(-0.676665\pi\)
−0.526950 + 0.849896i \(0.676665\pi\)
\(972\) 0 0
\(973\) −17.9076 −0.574091
\(974\) 0 0
\(975\) −2.59983 5.20375i −0.0832612 0.166653i
\(976\) 0 0
\(977\) 35.5664i 1.13787i 0.822382 + 0.568935i \(0.192644\pi\)
−0.822382 + 0.568935i \(0.807356\pi\)
\(978\) 0 0
\(979\) 0.737697i 0.0235769i
\(980\) 0 0
\(981\) −24.7931 + 33.0143i −0.791584 + 1.05406i
\(982\) 0 0
\(983\) −18.8755 −0.602036 −0.301018 0.953618i \(-0.597326\pi\)
−0.301018 + 0.953618i \(0.597326\pi\)
\(984\) 0 0
\(985\) −7.23102 −0.230399
\(986\) 0 0
\(987\) −15.4842 + 7.73599i −0.492866 + 0.246239i
\(988\) 0 0
\(989\) 47.0193i 1.49513i
\(990\) 0 0
\(991\) 23.3269i 0.741004i 0.928832 + 0.370502i \(0.120814\pi\)
−0.928832 + 0.370502i \(0.879186\pi\)
\(992\) 0 0
\(993\) 2.14919 1.07375i 0.0682026 0.0340745i
\(994\) 0 0
\(995\) −22.5289 −0.714215
\(996\) 0 0
\(997\) 22.5693 0.714777 0.357389 0.933956i \(-0.383667\pi\)
0.357389 + 0.933956i \(0.383667\pi\)
\(998\) 0 0
\(999\) 53.6761 + 9.81159i 1.69824 + 0.310425i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3360.2.ba.c.2591.9 20
3.2 odd 2 3360.2.ba.d.2591.11 yes 20
4.3 odd 2 3360.2.ba.d.2591.12 yes 20
12.11 even 2 inner 3360.2.ba.c.2591.10 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3360.2.ba.c.2591.9 20 1.1 even 1 trivial
3360.2.ba.c.2591.10 yes 20 12.11 even 2 inner
3360.2.ba.d.2591.11 yes 20 3.2 odd 2
3360.2.ba.d.2591.12 yes 20 4.3 odd 2