Properties

Label 336.8.a.r
Level $336$
Weight $8$
Character orbit 336.a
Self dual yes
Analytic conductor $104.961$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,8,Mod(1,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 336.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-81,0,-114] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.961368563\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.2910828.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 303x - 490 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 27 q^{3} + ( - \beta_{2} + \beta_1 - 38) q^{5} - 343 q^{7} + 729 q^{9} + (5 \beta_{2} + 10 \beta_1 - 2912) q^{11} + ( - 26 \beta_{2} - 27 \beta_1 + 4254) q^{13} + (27 \beta_{2} - 27 \beta_1 + 1026) q^{15}+ \cdots + (3645 \beta_{2} + 7290 \beta_1 - 2122848) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 81 q^{3} - 114 q^{5} - 1029 q^{7} + 2187 q^{9} - 8736 q^{11} + 12762 q^{13} + 3078 q^{15} + 5490 q^{17} - 8004 q^{19} + 27783 q^{21} + 101868 q^{23} + 139581 q^{25} - 59049 q^{27} - 255342 q^{29}+ \cdots - 6368544 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 303x - 490 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 16\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} - 4\nu - 404 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 16 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{2} + \beta _1 + 1616 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−16.5337
18.1652
−1.63149
0 −27.0000 0 −511.401 0 −343.000 0 729.000 0
1.2 0 −27.0000 0 69.3548 0 −343.000 0 729.000 0
1.3 0 −27.0000 0 328.047 0 −343.000 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.8.a.r 3
4.b odd 2 1 21.8.a.d 3
12.b even 2 1 63.8.a.g 3
20.d odd 2 1 525.8.a.g 3
28.d even 2 1 147.8.a.e 3
28.f even 6 2 147.8.e.j 6
28.g odd 6 2 147.8.e.i 6
84.h odd 2 1 441.8.a.n 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.8.a.d 3 4.b odd 2 1
63.8.a.g 3 12.b even 2 1
147.8.a.e 3 28.d even 2 1
147.8.e.i 6 28.g odd 6 2
147.8.e.j 6 28.f even 6 2
336.8.a.r 3 1.a even 1 1 trivial
441.8.a.n 3 84.h odd 2 1
525.8.a.g 3 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} + 114T_{5}^{2} - 180480T_{5} + 11635200 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(336))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T + 27)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 114 T^{2} + \cdots + 11635200 \) Copy content Toggle raw display
$7$ \( (T + 343)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots - 21104274672 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots + 755769903784 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 12467114860032 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 5437419408320 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 102906745004448 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 208394349111720 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 24\!\cdots\!64 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 14\!\cdots\!08 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 24\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 30\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 22\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 56\!\cdots\!32 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 37\!\cdots\!52 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 42\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 56\!\cdots\!08 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 28\!\cdots\!52 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 35\!\cdots\!60 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 79\!\cdots\!52 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 26\!\cdots\!20 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 70\!\cdots\!88 \) Copy content Toggle raw display
show more
show less