Properties

Label 336.4.u
Level 336336
Weight 44
Character orbit 336.u
Rep. character χ336(139,)\chi_{336}(139,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 192192
Sturm bound 256256

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.u (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 112 112
Character field: Q(i)\Q(i)
Sturm bound: 256256

Dimensions

The following table gives the dimensions of various subspaces of M4(336,[χ])M_{4}(336, [\chi]).

Total New Old
Modular forms 392 192 200
Cusp forms 376 192 184
Eisenstein series 16 0 16

Trace form

192q20q4168q8+40q11+208q1460q16+36q18+268q22656q23416q28400q29456q3516q37660q42808q432964q441400q46+360q99+O(q100) 192 q - 20 q^{4} - 168 q^{8} + 40 q^{11} + 208 q^{14} - 60 q^{16} + 36 q^{18} + 268 q^{22} - 656 q^{23} - 416 q^{28} - 400 q^{29} - 456 q^{35} - 16 q^{37} - 660 q^{42} - 808 q^{43} - 2964 q^{44} - 1400 q^{46}+ \cdots - 360 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(336,[χ])S_{4}^{\mathrm{old}}(336, [\chi]) into lower level spaces

S4old(336,[χ]) S_{4}^{\mathrm{old}}(336, [\chi]) \simeq S4new(112,[χ])S_{4}^{\mathrm{new}}(112, [\chi])2^{\oplus 2}