Properties

Label 336.4.s
Level 336336
Weight 44
Character orbit 336.s
Rep. character χ336(155,)\chi_{336}(155,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 288288
Sturm bound 256256

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.s (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 48 48
Character field: Q(i)\Q(i)
Sturm bound: 256256

Dimensions

The following table gives the dimensions of various subspaces of M4(336,[χ])M_{4}(336, [\chi]).

Total New Old
Modular forms 392 288 104
Cusp forms 376 288 88
Eisenstein series 16 0 16

Trace form

288q60q6120q10+156q1224q1648q19432q22+736q24+264q27+48q30696q34+1240q361200q39+864q431272q462444q48+14112q49+5312q99+O(q100) 288 q - 60 q^{6} - 120 q^{10} + 156 q^{12} - 24 q^{16} - 48 q^{19} - 432 q^{22} + 736 q^{24} + 264 q^{27} + 48 q^{30} - 696 q^{34} + 1240 q^{36} - 1200 q^{39} + 864 q^{43} - 1272 q^{46} - 2444 q^{48} + 14112 q^{49}+ \cdots - 5312 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(336,[χ])S_{4}^{\mathrm{old}}(336, [\chi]) into lower level spaces

S4old(336,[χ]) S_{4}^{\mathrm{old}}(336, [\chi]) \simeq S4new(48,[χ])S_{4}^{\mathrm{new}}(48, [\chi])2^{\oplus 2}