Properties

Label 336.4.bq
Level 336336
Weight 44
Character orbit 336.bq
Rep. character χ336(37,)\chi_{336}(37,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 384384
Sturm bound 256256

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.bq (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 112 112
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 256256

Dimensions

The following table gives the dimensions of various subspaces of M4(336,[χ])M_{4}(336, [\chi]).

Total New Old
Modular forms 784 384 400
Cusp forms 752 384 368
Eisenstein series 32 0 32

Trace form

384q+20q4168q8+12q10+40q11416q14+60q16+36q18160q2032q22+344q28+800q29+1488q31288q34+456q3516q37440q38+720q99+O(q100) 384 q + 20 q^{4} - 168 q^{8} + 12 q^{10} + 40 q^{11} - 416 q^{14} + 60 q^{16} + 36 q^{18} - 160 q^{20} - 32 q^{22} + 344 q^{28} + 800 q^{29} + 1488 q^{31} - 288 q^{34} + 456 q^{35} - 16 q^{37} - 440 q^{38}+ \cdots - 720 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(336,[χ])S_{4}^{\mathrm{old}}(336, [\chi]) into lower level spaces

S4old(336,[χ]) S_{4}^{\mathrm{old}}(336, [\chi]) \simeq S4new(112,[χ])S_{4}^{\mathrm{new}}(112, [\chi])2^{\oplus 2}