Properties

Label 3328.2.b.y.1665.3
Level $3328$
Weight $2$
Character 3328.1665
Analytic conductor $26.574$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3328,2,Mod(1665,3328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3328.1665"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3328, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3328.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,2,0,-6,0,0,0,0,0,-14,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5742137927\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1665.3
Root \(1.56155i\) of defining polynomial
Character \(\chi\) \(=\) 3328.1665
Dual form 3328.2.b.y.1665.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.56155i q^{3} +3.56155i q^{5} -1.56155 q^{7} +0.561553 q^{9} +3.12311i q^{11} -1.00000i q^{13} -5.56155 q^{15} -6.68466 q^{17} +3.12311i q^{19} -2.43845i q^{21} +8.00000 q^{23} -7.68466 q^{25} +5.56155i q^{27} +2.00000i q^{29} +4.00000 q^{31} -4.87689 q^{33} -5.56155i q^{35} -2.68466i q^{37} +1.56155 q^{39} -5.12311 q^{41} +9.56155i q^{43} +2.00000i q^{45} -12.6847 q^{47} -4.56155 q^{49} -10.4384i q^{51} -5.12311i q^{53} -11.1231 q^{55} -4.87689 q^{57} -3.12311i q^{59} -2.87689i q^{61} -0.876894 q^{63} +3.56155 q^{65} -3.12311i q^{67} +12.4924i q^{69} -4.68466 q^{71} +6.00000 q^{73} -12.0000i q^{75} -4.87689i q^{77} +8.00000 q^{79} -7.00000 q^{81} +14.2462i q^{83} -23.8078i q^{85} -3.12311 q^{87} -10.0000 q^{89} +1.56155i q^{91} +6.24621i q^{93} -11.1231 q^{95} +8.24621 q^{97} +1.75379i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{7} - 6 q^{9} - 14 q^{15} - 2 q^{17} + 32 q^{23} - 6 q^{25} + 16 q^{31} - 36 q^{33} - 2 q^{39} - 4 q^{41} - 26 q^{47} - 10 q^{49} - 28 q^{55} - 36 q^{57} - 20 q^{63} + 6 q^{65} + 6 q^{71} + 24 q^{73}+ \cdots - 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3328\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(769\) \(1535\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.56155i 0.901563i 0.892634 + 0.450781i \(0.148855\pi\)
−0.892634 + 0.450781i \(0.851145\pi\)
\(4\) 0 0
\(5\) 3.56155i 1.59277i 0.604787 + 0.796387i \(0.293258\pi\)
−0.604787 + 0.796387i \(0.706742\pi\)
\(6\) 0 0
\(7\) −1.56155 −0.590211 −0.295106 0.955465i \(-0.595355\pi\)
−0.295106 + 0.955465i \(0.595355\pi\)
\(8\) 0 0
\(9\) 0.561553 0.187184
\(10\) 0 0
\(11\) 3.12311i 0.941652i 0.882226 + 0.470826i \(0.156044\pi\)
−0.882226 + 0.470826i \(0.843956\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) −5.56155 −1.43599
\(16\) 0 0
\(17\) −6.68466 −1.62127 −0.810634 0.585553i \(-0.800877\pi\)
−0.810634 + 0.585553i \(0.800877\pi\)
\(18\) 0 0
\(19\) 3.12311i 0.716490i 0.933628 + 0.358245i \(0.116625\pi\)
−0.933628 + 0.358245i \(0.883375\pi\)
\(20\) 0 0
\(21\) − 2.43845i − 0.532113i
\(22\) 0 0
\(23\) 8.00000 1.66812 0.834058 0.551677i \(-0.186012\pi\)
0.834058 + 0.551677i \(0.186012\pi\)
\(24\) 0 0
\(25\) −7.68466 −1.53693
\(26\) 0 0
\(27\) 5.56155i 1.07032i
\(28\) 0 0
\(29\) 2.00000i 0.371391i 0.982607 + 0.185695i \(0.0594537\pi\)
−0.982607 + 0.185695i \(0.940546\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) −4.87689 −0.848958
\(34\) 0 0
\(35\) − 5.56155i − 0.940074i
\(36\) 0 0
\(37\) − 2.68466i − 0.441355i −0.975347 0.220678i \(-0.929173\pi\)
0.975347 0.220678i \(-0.0708268\pi\)
\(38\) 0 0
\(39\) 1.56155 0.250049
\(40\) 0 0
\(41\) −5.12311 −0.800095 −0.400047 0.916494i \(-0.631006\pi\)
−0.400047 + 0.916494i \(0.631006\pi\)
\(42\) 0 0
\(43\) 9.56155i 1.45812i 0.684448 + 0.729062i \(0.260043\pi\)
−0.684448 + 0.729062i \(0.739957\pi\)
\(44\) 0 0
\(45\) 2.00000i 0.298142i
\(46\) 0 0
\(47\) −12.6847 −1.85025 −0.925124 0.379666i \(-0.876039\pi\)
−0.925124 + 0.379666i \(0.876039\pi\)
\(48\) 0 0
\(49\) −4.56155 −0.651650
\(50\) 0 0
\(51\) − 10.4384i − 1.46167i
\(52\) 0 0
\(53\) − 5.12311i − 0.703713i −0.936054 0.351856i \(-0.885551\pi\)
0.936054 0.351856i \(-0.114449\pi\)
\(54\) 0 0
\(55\) −11.1231 −1.49984
\(56\) 0 0
\(57\) −4.87689 −0.645960
\(58\) 0 0
\(59\) − 3.12311i − 0.406594i −0.979117 0.203297i \(-0.934834\pi\)
0.979117 0.203297i \(-0.0651656\pi\)
\(60\) 0 0
\(61\) − 2.87689i − 0.368349i −0.982894 0.184174i \(-0.941039\pi\)
0.982894 0.184174i \(-0.0589611\pi\)
\(62\) 0 0
\(63\) −0.876894 −0.110478
\(64\) 0 0
\(65\) 3.56155 0.441756
\(66\) 0 0
\(67\) − 3.12311i − 0.381548i −0.981634 0.190774i \(-0.938900\pi\)
0.981634 0.190774i \(-0.0610998\pi\)
\(68\) 0 0
\(69\) 12.4924i 1.50391i
\(70\) 0 0
\(71\) −4.68466 −0.555967 −0.277983 0.960586i \(-0.589666\pi\)
−0.277983 + 0.960586i \(0.589666\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) − 12.0000i − 1.38564i
\(76\) 0 0
\(77\) − 4.87689i − 0.555774i
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) 14.2462i 1.56372i 0.623451 + 0.781862i \(0.285730\pi\)
−0.623451 + 0.781862i \(0.714270\pi\)
\(84\) 0 0
\(85\) − 23.8078i − 2.58231i
\(86\) 0 0
\(87\) −3.12311 −0.334832
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 1.56155i 0.163695i
\(92\) 0 0
\(93\) 6.24621i 0.647702i
\(94\) 0 0
\(95\) −11.1231 −1.14121
\(96\) 0 0
\(97\) 8.24621 0.837276 0.418638 0.908153i \(-0.362508\pi\)
0.418638 + 0.908153i \(0.362508\pi\)
\(98\) 0 0
\(99\) 1.75379i 0.176262i
\(100\) 0 0
\(101\) 1.12311i 0.111753i 0.998438 + 0.0558766i \(0.0177953\pi\)
−0.998438 + 0.0558766i \(0.982205\pi\)
\(102\) 0 0
\(103\) 14.2462 1.40372 0.701860 0.712314i \(-0.252353\pi\)
0.701860 + 0.712314i \(0.252353\pi\)
\(104\) 0 0
\(105\) 8.68466 0.847536
\(106\) 0 0
\(107\) 4.00000i 0.386695i 0.981130 + 0.193347i \(0.0619344\pi\)
−0.981130 + 0.193347i \(0.938066\pi\)
\(108\) 0 0
\(109\) − 17.8078i − 1.70567i −0.522177 0.852837i \(-0.674880\pi\)
0.522177 0.852837i \(-0.325120\pi\)
\(110\) 0 0
\(111\) 4.19224 0.397909
\(112\) 0 0
\(113\) 14.4924 1.36333 0.681666 0.731663i \(-0.261256\pi\)
0.681666 + 0.731663i \(0.261256\pi\)
\(114\) 0 0
\(115\) 28.4924i 2.65693i
\(116\) 0 0
\(117\) − 0.561553i − 0.0519156i
\(118\) 0 0
\(119\) 10.4384 0.956891
\(120\) 0 0
\(121\) 1.24621 0.113292
\(122\) 0 0
\(123\) − 8.00000i − 0.721336i
\(124\) 0 0
\(125\) − 9.56155i − 0.855211i
\(126\) 0 0
\(127\) 6.24621 0.554262 0.277131 0.960832i \(-0.410616\pi\)
0.277131 + 0.960832i \(0.410616\pi\)
\(128\) 0 0
\(129\) −14.9309 −1.31459
\(130\) 0 0
\(131\) − 15.8078i − 1.38113i −0.723270 0.690565i \(-0.757362\pi\)
0.723270 0.690565i \(-0.242638\pi\)
\(132\) 0 0
\(133\) − 4.87689i − 0.422880i
\(134\) 0 0
\(135\) −19.8078 −1.70478
\(136\) 0 0
\(137\) −5.12311 −0.437696 −0.218848 0.975759i \(-0.570230\pi\)
−0.218848 + 0.975759i \(0.570230\pi\)
\(138\) 0 0
\(139\) − 4.68466i − 0.397348i −0.980066 0.198674i \(-0.936337\pi\)
0.980066 0.198674i \(-0.0636634\pi\)
\(140\) 0 0
\(141\) − 19.8078i − 1.66811i
\(142\) 0 0
\(143\) 3.12311 0.261167
\(144\) 0 0
\(145\) −7.12311 −0.591542
\(146\) 0 0
\(147\) − 7.12311i − 0.587504i
\(148\) 0 0
\(149\) − 0.246211i − 0.0201704i −0.999949 0.0100852i \(-0.996790\pi\)
0.999949 0.0100852i \(-0.00321028\pi\)
\(150\) 0 0
\(151\) −6.43845 −0.523953 −0.261977 0.965074i \(-0.584374\pi\)
−0.261977 + 0.965074i \(0.584374\pi\)
\(152\) 0 0
\(153\) −3.75379 −0.303476
\(154\) 0 0
\(155\) 14.2462i 1.14428i
\(156\) 0 0
\(157\) − 10.4924i − 0.837386i −0.908128 0.418693i \(-0.862488\pi\)
0.908128 0.418693i \(-0.137512\pi\)
\(158\) 0 0
\(159\) 8.00000 0.634441
\(160\) 0 0
\(161\) −12.4924 −0.984541
\(162\) 0 0
\(163\) − 12.4924i − 0.978482i −0.872149 0.489241i \(-0.837274\pi\)
0.872149 0.489241i \(-0.162726\pi\)
\(164\) 0 0
\(165\) − 17.3693i − 1.35220i
\(166\) 0 0
\(167\) 2.24621 0.173817 0.0869085 0.996216i \(-0.472301\pi\)
0.0869085 + 0.996216i \(0.472301\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 1.75379i 0.134116i
\(172\) 0 0
\(173\) 13.1231i 0.997731i 0.866679 + 0.498866i \(0.166250\pi\)
−0.866679 + 0.498866i \(0.833750\pi\)
\(174\) 0 0
\(175\) 12.0000 0.907115
\(176\) 0 0
\(177\) 4.87689 0.366570
\(178\) 0 0
\(179\) 4.68466i 0.350148i 0.984555 + 0.175074i \(0.0560164\pi\)
−0.984555 + 0.175074i \(0.943984\pi\)
\(180\) 0 0
\(181\) − 14.8769i − 1.10579i −0.833251 0.552895i \(-0.813523\pi\)
0.833251 0.552895i \(-0.186477\pi\)
\(182\) 0 0
\(183\) 4.49242 0.332089
\(184\) 0 0
\(185\) 9.56155 0.702979
\(186\) 0 0
\(187\) − 20.8769i − 1.52667i
\(188\) 0 0
\(189\) − 8.68466i − 0.631716i
\(190\) 0 0
\(191\) −9.36932 −0.677940 −0.338970 0.940797i \(-0.610079\pi\)
−0.338970 + 0.940797i \(0.610079\pi\)
\(192\) 0 0
\(193\) 3.36932 0.242529 0.121264 0.992620i \(-0.461305\pi\)
0.121264 + 0.992620i \(0.461305\pi\)
\(194\) 0 0
\(195\) 5.56155i 0.398271i
\(196\) 0 0
\(197\) 14.6847i 1.04624i 0.852259 + 0.523119i \(0.175232\pi\)
−0.852259 + 0.523119i \(0.824768\pi\)
\(198\) 0 0
\(199\) 3.12311 0.221391 0.110696 0.993854i \(-0.464692\pi\)
0.110696 + 0.993854i \(0.464692\pi\)
\(200\) 0 0
\(201\) 4.87689 0.343990
\(202\) 0 0
\(203\) − 3.12311i − 0.219199i
\(204\) 0 0
\(205\) − 18.2462i − 1.27437i
\(206\) 0 0
\(207\) 4.49242 0.312245
\(208\) 0 0
\(209\) −9.75379 −0.674684
\(210\) 0 0
\(211\) − 3.31534i − 0.228238i −0.993467 0.114119i \(-0.963596\pi\)
0.993467 0.114119i \(-0.0364044\pi\)
\(212\) 0 0
\(213\) − 7.31534i − 0.501239i
\(214\) 0 0
\(215\) −34.0540 −2.32246
\(216\) 0 0
\(217\) −6.24621 −0.424020
\(218\) 0 0
\(219\) 9.36932i 0.633120i
\(220\) 0 0
\(221\) 6.68466i 0.449659i
\(222\) 0 0
\(223\) −3.31534 −0.222012 −0.111006 0.993820i \(-0.535407\pi\)
−0.111006 + 0.993820i \(0.535407\pi\)
\(224\) 0 0
\(225\) −4.31534 −0.287689
\(226\) 0 0
\(227\) 8.00000i 0.530979i 0.964114 + 0.265489i \(0.0855335\pi\)
−0.964114 + 0.265489i \(0.914466\pi\)
\(228\) 0 0
\(229\) − 13.8078i − 0.912443i −0.889866 0.456221i \(-0.849203\pi\)
0.889866 0.456221i \(-0.150797\pi\)
\(230\) 0 0
\(231\) 7.61553 0.501065
\(232\) 0 0
\(233\) −13.8078 −0.904577 −0.452288 0.891872i \(-0.649392\pi\)
−0.452288 + 0.891872i \(0.649392\pi\)
\(234\) 0 0
\(235\) − 45.1771i − 2.94703i
\(236\) 0 0
\(237\) 12.4924i 0.811470i
\(238\) 0 0
\(239\) 1.56155 0.101008 0.0505042 0.998724i \(-0.483917\pi\)
0.0505042 + 0.998724i \(0.483917\pi\)
\(240\) 0 0
\(241\) −20.2462 −1.30417 −0.652087 0.758145i \(-0.726106\pi\)
−0.652087 + 0.758145i \(0.726106\pi\)
\(242\) 0 0
\(243\) 5.75379i 0.369106i
\(244\) 0 0
\(245\) − 16.2462i − 1.03793i
\(246\) 0 0
\(247\) 3.12311 0.198718
\(248\) 0 0
\(249\) −22.2462 −1.40980
\(250\) 0 0
\(251\) 5.75379i 0.363176i 0.983375 + 0.181588i \(0.0581237\pi\)
−0.983375 + 0.181588i \(0.941876\pi\)
\(252\) 0 0
\(253\) 24.9848i 1.57078i
\(254\) 0 0
\(255\) 37.1771 2.32812
\(256\) 0 0
\(257\) 15.5616 0.970703 0.485351 0.874319i \(-0.338692\pi\)
0.485351 + 0.874319i \(0.338692\pi\)
\(258\) 0 0
\(259\) 4.19224i 0.260493i
\(260\) 0 0
\(261\) 1.12311i 0.0695185i
\(262\) 0 0
\(263\) 9.75379 0.601444 0.300722 0.953712i \(-0.402772\pi\)
0.300722 + 0.953712i \(0.402772\pi\)
\(264\) 0 0
\(265\) 18.2462 1.12086
\(266\) 0 0
\(267\) − 15.6155i − 0.955655i
\(268\) 0 0
\(269\) 13.1231i 0.800130i 0.916487 + 0.400065i \(0.131012\pi\)
−0.916487 + 0.400065i \(0.868988\pi\)
\(270\) 0 0
\(271\) −0.192236 −0.0116775 −0.00583875 0.999983i \(-0.501859\pi\)
−0.00583875 + 0.999983i \(0.501859\pi\)
\(272\) 0 0
\(273\) −2.43845 −0.147582
\(274\) 0 0
\(275\) − 24.0000i − 1.44725i
\(276\) 0 0
\(277\) 4.63068i 0.278231i 0.990276 + 0.139115i \(0.0444259\pi\)
−0.990276 + 0.139115i \(0.955574\pi\)
\(278\) 0 0
\(279\) 2.24621 0.134477
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 24.4924i 1.45592i 0.685618 + 0.727962i \(0.259532\pi\)
−0.685618 + 0.727962i \(0.740468\pi\)
\(284\) 0 0
\(285\) − 17.3693i − 1.02887i
\(286\) 0 0
\(287\) 8.00000 0.472225
\(288\) 0 0
\(289\) 27.6847 1.62851
\(290\) 0 0
\(291\) 12.8769i 0.754857i
\(292\) 0 0
\(293\) 19.5616i 1.14280i 0.820672 + 0.571399i \(0.193599\pi\)
−0.820672 + 0.571399i \(0.806401\pi\)
\(294\) 0 0
\(295\) 11.1231 0.647612
\(296\) 0 0
\(297\) −17.3693 −1.00787
\(298\) 0 0
\(299\) − 8.00000i − 0.462652i
\(300\) 0 0
\(301\) − 14.9309i − 0.860601i
\(302\) 0 0
\(303\) −1.75379 −0.100753
\(304\) 0 0
\(305\) 10.2462 0.586696
\(306\) 0 0
\(307\) − 4.87689i − 0.278339i −0.990269 0.139170i \(-0.955557\pi\)
0.990269 0.139170i \(-0.0444433\pi\)
\(308\) 0 0
\(309\) 22.2462i 1.26554i
\(310\) 0 0
\(311\) 19.1231 1.08437 0.542186 0.840259i \(-0.317597\pi\)
0.542186 + 0.840259i \(0.317597\pi\)
\(312\) 0 0
\(313\) −6.19224 −0.350006 −0.175003 0.984568i \(-0.555993\pi\)
−0.175003 + 0.984568i \(0.555993\pi\)
\(314\) 0 0
\(315\) − 3.12311i − 0.175967i
\(316\) 0 0
\(317\) − 4.24621i − 0.238491i −0.992865 0.119245i \(-0.961952\pi\)
0.992865 0.119245i \(-0.0380476\pi\)
\(318\) 0 0
\(319\) −6.24621 −0.349721
\(320\) 0 0
\(321\) −6.24621 −0.348630
\(322\) 0 0
\(323\) − 20.8769i − 1.16162i
\(324\) 0 0
\(325\) 7.68466i 0.426268i
\(326\) 0 0
\(327\) 27.8078 1.53777
\(328\) 0 0
\(329\) 19.8078 1.09204
\(330\) 0 0
\(331\) 28.4924i 1.56609i 0.621968 + 0.783043i \(0.286333\pi\)
−0.621968 + 0.783043i \(0.713667\pi\)
\(332\) 0 0
\(333\) − 1.50758i − 0.0826147i
\(334\) 0 0
\(335\) 11.1231 0.607720
\(336\) 0 0
\(337\) −33.8078 −1.84163 −0.920813 0.390004i \(-0.872474\pi\)
−0.920813 + 0.390004i \(0.872474\pi\)
\(338\) 0 0
\(339\) 22.6307i 1.22913i
\(340\) 0 0
\(341\) 12.4924i 0.676503i
\(342\) 0 0
\(343\) 18.0540 0.974823
\(344\) 0 0
\(345\) −44.4924 −2.39539
\(346\) 0 0
\(347\) − 4.68466i − 0.251486i −0.992063 0.125743i \(-0.959869\pi\)
0.992063 0.125743i \(-0.0401314\pi\)
\(348\) 0 0
\(349\) 16.9309i 0.906289i 0.891437 + 0.453144i \(0.149698\pi\)
−0.891437 + 0.453144i \(0.850302\pi\)
\(350\) 0 0
\(351\) 5.56155 0.296854
\(352\) 0 0
\(353\) −15.3693 −0.818026 −0.409013 0.912529i \(-0.634127\pi\)
−0.409013 + 0.912529i \(0.634127\pi\)
\(354\) 0 0
\(355\) − 16.6847i − 0.885530i
\(356\) 0 0
\(357\) 16.3002i 0.862697i
\(358\) 0 0
\(359\) 2.24621 0.118550 0.0592752 0.998242i \(-0.481121\pi\)
0.0592752 + 0.998242i \(0.481121\pi\)
\(360\) 0 0
\(361\) 9.24621 0.486643
\(362\) 0 0
\(363\) 1.94602i 0.102140i
\(364\) 0 0
\(365\) 21.3693i 1.11852i
\(366\) 0 0
\(367\) −31.6155 −1.65032 −0.825159 0.564901i \(-0.808914\pi\)
−0.825159 + 0.564901i \(0.808914\pi\)
\(368\) 0 0
\(369\) −2.87689 −0.149765
\(370\) 0 0
\(371\) 8.00000i 0.415339i
\(372\) 0 0
\(373\) 29.6155i 1.53343i 0.641985 + 0.766717i \(0.278111\pi\)
−0.641985 + 0.766717i \(0.721889\pi\)
\(374\) 0 0
\(375\) 14.9309 0.771027
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) 22.2462i 1.14271i 0.820703 + 0.571356i \(0.193582\pi\)
−0.820703 + 0.571356i \(0.806418\pi\)
\(380\) 0 0
\(381\) 9.75379i 0.499702i
\(382\) 0 0
\(383\) −31.8078 −1.62530 −0.812650 0.582752i \(-0.801976\pi\)
−0.812650 + 0.582752i \(0.801976\pi\)
\(384\) 0 0
\(385\) 17.3693 0.885222
\(386\) 0 0
\(387\) 5.36932i 0.272938i
\(388\) 0 0
\(389\) − 28.7386i − 1.45711i −0.684989 0.728553i \(-0.740193\pi\)
0.684989 0.728553i \(-0.259807\pi\)
\(390\) 0 0
\(391\) −53.4773 −2.70446
\(392\) 0 0
\(393\) 24.6847 1.24518
\(394\) 0 0
\(395\) 28.4924i 1.43361i
\(396\) 0 0
\(397\) 2.00000i 0.100377i 0.998740 + 0.0501886i \(0.0159822\pi\)
−0.998740 + 0.0501886i \(0.984018\pi\)
\(398\) 0 0
\(399\) 7.61553 0.381253
\(400\) 0 0
\(401\) −37.6155 −1.87843 −0.939215 0.343330i \(-0.888445\pi\)
−0.939215 + 0.343330i \(0.888445\pi\)
\(402\) 0 0
\(403\) − 4.00000i − 0.199254i
\(404\) 0 0
\(405\) − 24.9309i − 1.23882i
\(406\) 0 0
\(407\) 8.38447 0.415603
\(408\) 0 0
\(409\) −21.1231 −1.04447 −0.522235 0.852802i \(-0.674902\pi\)
−0.522235 + 0.852802i \(0.674902\pi\)
\(410\) 0 0
\(411\) − 8.00000i − 0.394611i
\(412\) 0 0
\(413\) 4.87689i 0.239976i
\(414\) 0 0
\(415\) −50.7386 −2.49066
\(416\) 0 0
\(417\) 7.31534 0.358234
\(418\) 0 0
\(419\) − 26.9309i − 1.31566i −0.753167 0.657830i \(-0.771475\pi\)
0.753167 0.657830i \(-0.228525\pi\)
\(420\) 0 0
\(421\) − 18.6847i − 0.910635i −0.890329 0.455317i \(-0.849526\pi\)
0.890329 0.455317i \(-0.150474\pi\)
\(422\) 0 0
\(423\) −7.12311 −0.346337
\(424\) 0 0
\(425\) 51.3693 2.49178
\(426\) 0 0
\(427\) 4.49242i 0.217404i
\(428\) 0 0
\(429\) 4.87689i 0.235459i
\(430\) 0 0
\(431\) −14.4384 −0.695476 −0.347738 0.937592i \(-0.613050\pi\)
−0.347738 + 0.937592i \(0.613050\pi\)
\(432\) 0 0
\(433\) 39.1771 1.88273 0.941365 0.337389i \(-0.109544\pi\)
0.941365 + 0.337389i \(0.109544\pi\)
\(434\) 0 0
\(435\) − 11.1231i − 0.533312i
\(436\) 0 0
\(437\) 24.9848i 1.19519i
\(438\) 0 0
\(439\) −12.8769 −0.614581 −0.307290 0.951616i \(-0.599422\pi\)
−0.307290 + 0.951616i \(0.599422\pi\)
\(440\) 0 0
\(441\) −2.56155 −0.121979
\(442\) 0 0
\(443\) 0.192236i 0.00913340i 0.999990 + 0.00456670i \(0.00145363\pi\)
−0.999990 + 0.00456670i \(0.998546\pi\)
\(444\) 0 0
\(445\) − 35.6155i − 1.68834i
\(446\) 0 0
\(447\) 0.384472 0.0181849
\(448\) 0 0
\(449\) −16.7386 −0.789945 −0.394972 0.918693i \(-0.629246\pi\)
−0.394972 + 0.918693i \(0.629246\pi\)
\(450\) 0 0
\(451\) − 16.0000i − 0.753411i
\(452\) 0 0
\(453\) − 10.0540i − 0.472377i
\(454\) 0 0
\(455\) −5.56155 −0.260730
\(456\) 0 0
\(457\) 24.7386 1.15722 0.578612 0.815603i \(-0.303594\pi\)
0.578612 + 0.815603i \(0.303594\pi\)
\(458\) 0 0
\(459\) − 37.1771i − 1.73528i
\(460\) 0 0
\(461\) 14.1922i 0.660998i 0.943806 + 0.330499i \(0.107217\pi\)
−0.943806 + 0.330499i \(0.892783\pi\)
\(462\) 0 0
\(463\) 21.7538 1.01098 0.505492 0.862831i \(-0.331311\pi\)
0.505492 + 0.862831i \(0.331311\pi\)
\(464\) 0 0
\(465\) −22.2462 −1.03164
\(466\) 0 0
\(467\) − 7.50758i − 0.347409i −0.984798 0.173705i \(-0.944426\pi\)
0.984798 0.173705i \(-0.0555738\pi\)
\(468\) 0 0
\(469\) 4.87689i 0.225194i
\(470\) 0 0
\(471\) 16.3845 0.754957
\(472\) 0 0
\(473\) −29.8617 −1.37304
\(474\) 0 0
\(475\) − 24.0000i − 1.10120i
\(476\) 0 0
\(477\) − 2.87689i − 0.131724i
\(478\) 0 0
\(479\) 31.8078 1.45333 0.726667 0.686990i \(-0.241068\pi\)
0.726667 + 0.686990i \(0.241068\pi\)
\(480\) 0 0
\(481\) −2.68466 −0.122410
\(482\) 0 0
\(483\) − 19.5076i − 0.887626i
\(484\) 0 0
\(485\) 29.3693i 1.33359i
\(486\) 0 0
\(487\) −18.2462 −0.826815 −0.413407 0.910546i \(-0.635661\pi\)
−0.413407 + 0.910546i \(0.635661\pi\)
\(488\) 0 0
\(489\) 19.5076 0.882163
\(490\) 0 0
\(491\) 38.0540i 1.71735i 0.512519 + 0.858676i \(0.328712\pi\)
−0.512519 + 0.858676i \(0.671288\pi\)
\(492\) 0 0
\(493\) − 13.3693i − 0.602124i
\(494\) 0 0
\(495\) −6.24621 −0.280746
\(496\) 0 0
\(497\) 7.31534 0.328138
\(498\) 0 0
\(499\) 4.49242i 0.201108i 0.994932 + 0.100554i \(0.0320616\pi\)
−0.994932 + 0.100554i \(0.967938\pi\)
\(500\) 0 0
\(501\) 3.50758i 0.156707i
\(502\) 0 0
\(503\) −17.3693 −0.774460 −0.387230 0.921983i \(-0.626568\pi\)
−0.387230 + 0.921983i \(0.626568\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) 0 0
\(507\) − 1.56155i − 0.0693510i
\(508\) 0 0
\(509\) 18.0000i 0.797836i 0.916987 + 0.398918i \(0.130614\pi\)
−0.916987 + 0.398918i \(0.869386\pi\)
\(510\) 0 0
\(511\) −9.36932 −0.414474
\(512\) 0 0
\(513\) −17.3693 −0.766874
\(514\) 0 0
\(515\) 50.7386i 2.23581i
\(516\) 0 0
\(517\) − 39.6155i − 1.74229i
\(518\) 0 0
\(519\) −20.4924 −0.899518
\(520\) 0 0
\(521\) −2.68466 −0.117617 −0.0588085 0.998269i \(-0.518730\pi\)
−0.0588085 + 0.998269i \(0.518730\pi\)
\(522\) 0 0
\(523\) 32.4924i 1.42079i 0.703801 + 0.710397i \(0.251485\pi\)
−0.703801 + 0.710397i \(0.748515\pi\)
\(524\) 0 0
\(525\) 18.7386i 0.817821i
\(526\) 0 0
\(527\) −26.7386 −1.16475
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) − 1.75379i − 0.0761079i
\(532\) 0 0
\(533\) 5.12311i 0.221906i
\(534\) 0 0
\(535\) −14.2462 −0.615917
\(536\) 0 0
\(537\) −7.31534 −0.315680
\(538\) 0 0
\(539\) − 14.2462i − 0.613628i
\(540\) 0 0
\(541\) − 6.68466i − 0.287396i −0.989622 0.143698i \(-0.954101\pi\)
0.989622 0.143698i \(-0.0458994\pi\)
\(542\) 0 0
\(543\) 23.2311 0.996940
\(544\) 0 0
\(545\) 63.4233 2.71676
\(546\) 0 0
\(547\) 33.5616i 1.43499i 0.696564 + 0.717494i \(0.254711\pi\)
−0.696564 + 0.717494i \(0.745289\pi\)
\(548\) 0 0
\(549\) − 1.61553i − 0.0689491i
\(550\) 0 0
\(551\) −6.24621 −0.266098
\(552\) 0 0
\(553\) −12.4924 −0.531232
\(554\) 0 0
\(555\) 14.9309i 0.633780i
\(556\) 0 0
\(557\) − 3.17708i − 0.134617i −0.997732 0.0673086i \(-0.978559\pi\)
0.997732 0.0673086i \(-0.0214412\pi\)
\(558\) 0 0
\(559\) 9.56155 0.404411
\(560\) 0 0
\(561\) 32.6004 1.37639
\(562\) 0 0
\(563\) − 30.0540i − 1.26662i −0.773897 0.633312i \(-0.781695\pi\)
0.773897 0.633312i \(-0.218305\pi\)
\(564\) 0 0
\(565\) 51.6155i 2.17148i
\(566\) 0 0
\(567\) 10.9309 0.459053
\(568\) 0 0
\(569\) 29.3153 1.22896 0.614482 0.788931i \(-0.289365\pi\)
0.614482 + 0.788931i \(0.289365\pi\)
\(570\) 0 0
\(571\) 8.19224i 0.342834i 0.985199 + 0.171417i \(0.0548346\pi\)
−0.985199 + 0.171417i \(0.945165\pi\)
\(572\) 0 0
\(573\) − 14.6307i − 0.611206i
\(574\) 0 0
\(575\) −61.4773 −2.56378
\(576\) 0 0
\(577\) −7.75379 −0.322794 −0.161397 0.986890i \(-0.551600\pi\)
−0.161397 + 0.986890i \(0.551600\pi\)
\(578\) 0 0
\(579\) 5.26137i 0.218655i
\(580\) 0 0
\(581\) − 22.2462i − 0.922928i
\(582\) 0 0
\(583\) 16.0000 0.662652
\(584\) 0 0
\(585\) 2.00000 0.0826898
\(586\) 0 0
\(587\) 40.9848i 1.69163i 0.533480 + 0.845813i \(0.320884\pi\)
−0.533480 + 0.845813i \(0.679116\pi\)
\(588\) 0 0
\(589\) 12.4924i 0.514741i
\(590\) 0 0
\(591\) −22.9309 −0.943250
\(592\) 0 0
\(593\) 5.50758 0.226169 0.113085 0.993585i \(-0.463927\pi\)
0.113085 + 0.993585i \(0.463927\pi\)
\(594\) 0 0
\(595\) 37.1771i 1.52411i
\(596\) 0 0
\(597\) 4.87689i 0.199598i
\(598\) 0 0
\(599\) 1.36932 0.0559488 0.0279744 0.999609i \(-0.491094\pi\)
0.0279744 + 0.999609i \(0.491094\pi\)
\(600\) 0 0
\(601\) 11.1771 0.455923 0.227961 0.973670i \(-0.426794\pi\)
0.227961 + 0.973670i \(0.426794\pi\)
\(602\) 0 0
\(603\) − 1.75379i − 0.0714198i
\(604\) 0 0
\(605\) 4.43845i 0.180449i
\(606\) 0 0
\(607\) −9.36932 −0.380289 −0.190144 0.981756i \(-0.560896\pi\)
−0.190144 + 0.981756i \(0.560896\pi\)
\(608\) 0 0
\(609\) 4.87689 0.197622
\(610\) 0 0
\(611\) 12.6847i 0.513166i
\(612\) 0 0
\(613\) 6.00000i 0.242338i 0.992632 + 0.121169i \(0.0386643\pi\)
−0.992632 + 0.121169i \(0.961336\pi\)
\(614\) 0 0
\(615\) 28.4924 1.14893
\(616\) 0 0
\(617\) 35.8617 1.44374 0.721870 0.692029i \(-0.243283\pi\)
0.721870 + 0.692029i \(0.243283\pi\)
\(618\) 0 0
\(619\) − 46.2462i − 1.85879i −0.369084 0.929396i \(-0.620328\pi\)
0.369084 0.929396i \(-0.379672\pi\)
\(620\) 0 0
\(621\) 44.4924i 1.78542i
\(622\) 0 0
\(623\) 15.6155 0.625623
\(624\) 0 0
\(625\) −4.36932 −0.174773
\(626\) 0 0
\(627\) − 15.2311i − 0.608270i
\(628\) 0 0
\(629\) 17.9460i 0.715555i
\(630\) 0 0
\(631\) 35.3153 1.40588 0.702941 0.711248i \(-0.251870\pi\)
0.702941 + 0.711248i \(0.251870\pi\)
\(632\) 0 0
\(633\) 5.17708 0.205770
\(634\) 0 0
\(635\) 22.2462i 0.882814i
\(636\) 0 0
\(637\) 4.56155i 0.180735i
\(638\) 0 0
\(639\) −2.63068 −0.104068
\(640\) 0 0
\(641\) 8.24621 0.325706 0.162853 0.986650i \(-0.447930\pi\)
0.162853 + 0.986650i \(0.447930\pi\)
\(642\) 0 0
\(643\) 21.8617i 0.862143i 0.902318 + 0.431071i \(0.141864\pi\)
−0.902318 + 0.431071i \(0.858136\pi\)
\(644\) 0 0
\(645\) − 53.1771i − 2.09385i
\(646\) 0 0
\(647\) 3.12311 0.122782 0.0613910 0.998114i \(-0.480446\pi\)
0.0613910 + 0.998114i \(0.480446\pi\)
\(648\) 0 0
\(649\) 9.75379 0.382870
\(650\) 0 0
\(651\) − 9.75379i − 0.382281i
\(652\) 0 0
\(653\) 13.1231i 0.513547i 0.966472 + 0.256773i \(0.0826594\pi\)
−0.966472 + 0.256773i \(0.917341\pi\)
\(654\) 0 0
\(655\) 56.3002 2.19983
\(656\) 0 0
\(657\) 3.36932 0.131450
\(658\) 0 0
\(659\) 16.4924i 0.642454i 0.947002 + 0.321227i \(0.104095\pi\)
−0.947002 + 0.321227i \(0.895905\pi\)
\(660\) 0 0
\(661\) 8.73863i 0.339893i 0.985453 + 0.169947i \(0.0543596\pi\)
−0.985453 + 0.169947i \(0.945640\pi\)
\(662\) 0 0
\(663\) −10.4384 −0.405396
\(664\) 0 0
\(665\) 17.3693 0.673553
\(666\) 0 0
\(667\) 16.0000i 0.619522i
\(668\) 0 0
\(669\) − 5.17708i − 0.200158i
\(670\) 0 0
\(671\) 8.98485 0.346856
\(672\) 0 0
\(673\) 34.3002 1.32218 0.661088 0.750309i \(-0.270095\pi\)
0.661088 + 0.750309i \(0.270095\pi\)
\(674\) 0 0
\(675\) − 42.7386i − 1.64501i
\(676\) 0 0
\(677\) 23.3693i 0.898156i 0.893493 + 0.449078i \(0.148247\pi\)
−0.893493 + 0.449078i \(0.851753\pi\)
\(678\) 0 0
\(679\) −12.8769 −0.494170
\(680\) 0 0
\(681\) −12.4924 −0.478711
\(682\) 0 0
\(683\) − 24.0000i − 0.918334i −0.888350 0.459167i \(-0.848148\pi\)
0.888350 0.459167i \(-0.151852\pi\)
\(684\) 0 0
\(685\) − 18.2462i − 0.697152i
\(686\) 0 0
\(687\) 21.5616 0.822625
\(688\) 0 0
\(689\) −5.12311 −0.195175
\(690\) 0 0
\(691\) 48.9848i 1.86347i 0.363137 + 0.931736i \(0.381706\pi\)
−0.363137 + 0.931736i \(0.618294\pi\)
\(692\) 0 0
\(693\) − 2.73863i − 0.104032i
\(694\) 0 0
\(695\) 16.6847 0.632885
\(696\) 0 0
\(697\) 34.2462 1.29717
\(698\) 0 0
\(699\) − 21.5616i − 0.815533i
\(700\) 0 0
\(701\) − 47.3693i − 1.78911i −0.446953 0.894557i \(-0.647491\pi\)
0.446953 0.894557i \(-0.352509\pi\)
\(702\) 0 0
\(703\) 8.38447 0.316226
\(704\) 0 0
\(705\) 70.5464 2.65693
\(706\) 0 0
\(707\) − 1.75379i − 0.0659580i
\(708\) 0 0
\(709\) 24.7386i 0.929079i 0.885552 + 0.464539i \(0.153780\pi\)
−0.885552 + 0.464539i \(0.846220\pi\)
\(710\) 0 0
\(711\) 4.49242 0.168479
\(712\) 0 0
\(713\) 32.0000 1.19841
\(714\) 0 0
\(715\) 11.1231i 0.415981i
\(716\) 0 0
\(717\) 2.43845i 0.0910655i
\(718\) 0 0
\(719\) −4.87689 −0.181877 −0.0909387 0.995856i \(-0.528987\pi\)
−0.0909387 + 0.995856i \(0.528987\pi\)
\(720\) 0 0
\(721\) −22.2462 −0.828492
\(722\) 0 0
\(723\) − 31.6155i − 1.17579i
\(724\) 0 0
\(725\) − 15.3693i − 0.570802i
\(726\) 0 0
\(727\) −28.1080 −1.04247 −0.521233 0.853414i \(-0.674528\pi\)
−0.521233 + 0.853414i \(0.674528\pi\)
\(728\) 0 0
\(729\) −29.9848 −1.11055
\(730\) 0 0
\(731\) − 63.9157i − 2.36401i
\(732\) 0 0
\(733\) 31.5616i 1.16575i 0.812561 + 0.582876i \(0.198073\pi\)
−0.812561 + 0.582876i \(0.801927\pi\)
\(734\) 0 0
\(735\) 25.3693 0.935761
\(736\) 0 0
\(737\) 9.75379 0.359285
\(738\) 0 0
\(739\) − 6.24621i − 0.229771i −0.993379 0.114885i \(-0.963350\pi\)
0.993379 0.114885i \(-0.0366501\pi\)
\(740\) 0 0
\(741\) 4.87689i 0.179157i
\(742\) 0 0
\(743\) 43.9157 1.61111 0.805556 0.592520i \(-0.201867\pi\)
0.805556 + 0.592520i \(0.201867\pi\)
\(744\) 0 0
\(745\) 0.876894 0.0321269
\(746\) 0 0
\(747\) 8.00000i 0.292705i
\(748\) 0 0
\(749\) − 6.24621i − 0.228232i
\(750\) 0 0
\(751\) −40.9848 −1.49556 −0.747779 0.663948i \(-0.768880\pi\)
−0.747779 + 0.663948i \(0.768880\pi\)
\(752\) 0 0
\(753\) −8.98485 −0.327426
\(754\) 0 0
\(755\) − 22.9309i − 0.834540i
\(756\) 0 0
\(757\) − 5.12311i − 0.186202i −0.995657 0.0931012i \(-0.970322\pi\)
0.995657 0.0931012i \(-0.0296780\pi\)
\(758\) 0 0
\(759\) −39.0152 −1.41616
\(760\) 0 0
\(761\) −13.5076 −0.489649 −0.244825 0.969567i \(-0.578730\pi\)
−0.244825 + 0.969567i \(0.578730\pi\)
\(762\) 0 0
\(763\) 27.8078i 1.00671i
\(764\) 0 0
\(765\) − 13.3693i − 0.483369i
\(766\) 0 0
\(767\) −3.12311 −0.112769
\(768\) 0 0
\(769\) −43.8617 −1.58169 −0.790847 0.612013i \(-0.790360\pi\)
−0.790847 + 0.612013i \(0.790360\pi\)
\(770\) 0 0
\(771\) 24.3002i 0.875150i
\(772\) 0 0
\(773\) 0.822919i 0.0295983i 0.999890 + 0.0147992i \(0.00471089\pi\)
−0.999890 + 0.0147992i \(0.995289\pi\)
\(774\) 0 0
\(775\) −30.7386 −1.10416
\(776\) 0 0
\(777\) −6.54640 −0.234851
\(778\) 0 0
\(779\) − 16.0000i − 0.573259i
\(780\) 0 0
\(781\) − 14.6307i − 0.523527i
\(782\) 0 0
\(783\) −11.1231 −0.397507
\(784\) 0 0
\(785\) 37.3693 1.33377
\(786\) 0 0
\(787\) 16.0000i 0.570338i 0.958477 + 0.285169i \(0.0920498\pi\)
−0.958477 + 0.285169i \(0.907950\pi\)
\(788\) 0 0
\(789\) 15.2311i 0.542240i
\(790\) 0 0
\(791\) −22.6307 −0.804654
\(792\) 0 0
\(793\) −2.87689 −0.102162
\(794\) 0 0
\(795\) 28.4924i 1.01052i
\(796\) 0 0
\(797\) 46.4924i 1.64685i 0.567428 + 0.823423i \(0.307939\pi\)
−0.567428 + 0.823423i \(0.692061\pi\)
\(798\) 0 0
\(799\) 84.7926 2.99975
\(800\) 0 0
\(801\) −5.61553 −0.198415
\(802\) 0 0
\(803\) 18.7386i 0.661272i
\(804\) 0 0
\(805\) − 44.4924i − 1.56815i
\(806\) 0 0
\(807\) −20.4924 −0.721367
\(808\) 0 0
\(809\) −15.1771 −0.533598 −0.266799 0.963752i \(-0.585966\pi\)
−0.266799 + 0.963752i \(0.585966\pi\)
\(810\) 0 0
\(811\) 2.73863i 0.0961664i 0.998843 + 0.0480832i \(0.0153113\pi\)
−0.998843 + 0.0480832i \(0.984689\pi\)
\(812\) 0 0
\(813\) − 0.300187i − 0.0105280i
\(814\) 0 0
\(815\) 44.4924 1.55850
\(816\) 0 0
\(817\) −29.8617 −1.04473
\(818\) 0 0
\(819\) 0.876894i 0.0306412i
\(820\) 0 0
\(821\) 19.5616i 0.682703i 0.939936 + 0.341351i \(0.110885\pi\)
−0.939936 + 0.341351i \(0.889115\pi\)
\(822\) 0 0
\(823\) −31.6155 −1.10205 −0.551024 0.834489i \(-0.685763\pi\)
−0.551024 + 0.834489i \(0.685763\pi\)
\(824\) 0 0
\(825\) 37.4773 1.30479
\(826\) 0 0
\(827\) 21.8617i 0.760207i 0.924944 + 0.380104i \(0.124112\pi\)
−0.924944 + 0.380104i \(0.875888\pi\)
\(828\) 0 0
\(829\) 14.4924i 0.503343i 0.967813 + 0.251671i \(0.0809802\pi\)
−0.967813 + 0.251671i \(0.919020\pi\)
\(830\) 0 0
\(831\) −7.23106 −0.250843
\(832\) 0 0
\(833\) 30.4924 1.05650
\(834\) 0 0
\(835\) 8.00000i 0.276851i
\(836\) 0 0
\(837\) 22.2462i 0.768942i
\(838\) 0 0
\(839\) −38.7386 −1.33741 −0.668703 0.743530i \(-0.733150\pi\)
−0.668703 + 0.743530i \(0.733150\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) − 15.6155i − 0.537827i
\(844\) 0 0
\(845\) − 3.56155i − 0.122521i
\(846\) 0 0
\(847\) −1.94602 −0.0668662
\(848\) 0 0
\(849\) −38.2462 −1.31261
\(850\) 0 0
\(851\) − 21.4773i − 0.736231i
\(852\) 0 0
\(853\) − 17.3153i − 0.592866i −0.955054 0.296433i \(-0.904203\pi\)
0.955054 0.296433i \(-0.0957971\pi\)
\(854\) 0 0
\(855\) −6.24621 −0.213616
\(856\) 0 0
\(857\) 8.73863 0.298506 0.149253 0.988799i \(-0.452313\pi\)
0.149253 + 0.988799i \(0.452313\pi\)
\(858\) 0 0
\(859\) − 52.9848i − 1.80782i −0.427723 0.903910i \(-0.640684\pi\)
0.427723 0.903910i \(-0.359316\pi\)
\(860\) 0 0
\(861\) 12.4924i 0.425741i
\(862\) 0 0
\(863\) 4.30019 0.146380 0.0731900 0.997318i \(-0.476682\pi\)
0.0731900 + 0.997318i \(0.476682\pi\)
\(864\) 0 0
\(865\) −46.7386 −1.58916
\(866\) 0 0
\(867\) 43.2311i 1.46820i
\(868\) 0 0
\(869\) 24.9848i 0.847553i
\(870\) 0 0
\(871\) −3.12311 −0.105822
\(872\) 0 0
\(873\) 4.63068 0.156725
\(874\) 0 0
\(875\) 14.9309i 0.504756i
\(876\) 0 0
\(877\) 25.3153i 0.854838i 0.904054 + 0.427419i \(0.140577\pi\)
−0.904054 + 0.427419i \(0.859423\pi\)
\(878\) 0 0
\(879\) −30.5464 −1.03030
\(880\) 0 0
\(881\) −10.1922 −0.343385 −0.171693 0.985151i \(-0.554924\pi\)
−0.171693 + 0.985151i \(0.554924\pi\)
\(882\) 0 0
\(883\) − 12.6847i − 0.426873i −0.976957 0.213436i \(-0.931534\pi\)
0.976957 0.213436i \(-0.0684656\pi\)
\(884\) 0 0
\(885\) 17.3693i 0.583863i
\(886\) 0 0
\(887\) −53.4773 −1.79559 −0.897795 0.440413i \(-0.854832\pi\)
−0.897795 + 0.440413i \(0.854832\pi\)
\(888\) 0 0
\(889\) −9.75379 −0.327132
\(890\) 0 0
\(891\) − 21.8617i − 0.732396i
\(892\) 0 0
\(893\) − 39.6155i − 1.32568i
\(894\) 0 0
\(895\) −16.6847 −0.557707
\(896\) 0 0
\(897\) 12.4924 0.417110
\(898\) 0 0
\(899\) 8.00000i 0.266815i
\(900\) 0 0
\(901\) 34.2462i 1.14091i
\(902\) 0 0
\(903\) 23.3153 0.775886
\(904\) 0 0
\(905\) 52.9848 1.76128
\(906\) 0 0
\(907\) − 0.192236i − 0.00638309i −0.999995 0.00319154i \(-0.998984\pi\)
0.999995 0.00319154i \(-0.00101590\pi\)
\(908\) 0 0
\(909\) 0.630683i 0.0209184i
\(910\) 0 0
\(911\) −9.36932 −0.310419 −0.155210 0.987882i \(-0.549605\pi\)
−0.155210 + 0.987882i \(0.549605\pi\)
\(912\) 0 0
\(913\) −44.4924 −1.47248
\(914\) 0 0
\(915\) 16.0000i 0.528944i
\(916\) 0 0
\(917\) 24.6847i 0.815159i
\(918\) 0 0
\(919\) 40.9848 1.35197 0.675983 0.736918i \(-0.263719\pi\)
0.675983 + 0.736918i \(0.263719\pi\)
\(920\) 0 0
\(921\) 7.61553 0.250940
\(922\) 0 0
\(923\) 4.68466i 0.154197i
\(924\) 0 0
\(925\) 20.6307i 0.678333i
\(926\) 0 0
\(927\) 8.00000 0.262754
\(928\) 0 0
\(929\) 47.8617 1.57029 0.785146 0.619310i \(-0.212588\pi\)
0.785146 + 0.619310i \(0.212588\pi\)
\(930\) 0 0
\(931\) − 14.2462i − 0.466901i
\(932\) 0 0
\(933\) 29.8617i 0.977629i
\(934\) 0 0
\(935\) 74.3542 2.43164
\(936\) 0 0
\(937\) −12.7386 −0.416153 −0.208077 0.978113i \(-0.566720\pi\)
−0.208077 + 0.978113i \(0.566720\pi\)
\(938\) 0 0
\(939\) − 9.66950i − 0.315552i
\(940\) 0 0
\(941\) 30.7926i 1.00381i 0.864923 + 0.501905i \(0.167367\pi\)
−0.864923 + 0.501905i \(0.832633\pi\)
\(942\) 0 0
\(943\) −40.9848 −1.33465
\(944\) 0 0
\(945\) 30.9309 1.00618
\(946\) 0 0
\(947\) 17.3693i 0.564427i 0.959352 + 0.282213i \(0.0910686\pi\)
−0.959352 + 0.282213i \(0.908931\pi\)
\(948\) 0 0
\(949\) − 6.00000i − 0.194768i
\(950\) 0 0
\(951\) 6.63068 0.215015
\(952\) 0 0
\(953\) −59.6695 −1.93288 −0.966442 0.256883i \(-0.917304\pi\)
−0.966442 + 0.256883i \(0.917304\pi\)
\(954\) 0 0
\(955\) − 33.3693i − 1.07981i
\(956\) 0 0
\(957\) − 9.75379i − 0.315295i
\(958\) 0 0
\(959\) 8.00000 0.258333
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 2.24621i 0.0723831i
\(964\) 0 0
\(965\) 12.0000i 0.386294i
\(966\) 0 0
\(967\) 1.56155 0.0502162 0.0251081 0.999685i \(-0.492007\pi\)
0.0251081 + 0.999685i \(0.492007\pi\)
\(968\) 0 0
\(969\) 32.6004 1.04727
\(970\) 0 0
\(971\) − 19.3153i − 0.619859i −0.950760 0.309929i \(-0.899695\pi\)
0.950760 0.309929i \(-0.100305\pi\)
\(972\) 0 0
\(973\) 7.31534i 0.234519i
\(974\) 0 0
\(975\) −12.0000 −0.384308
\(976\) 0 0
\(977\) 21.5076 0.688088 0.344044 0.938953i \(-0.388203\pi\)
0.344044 + 0.938953i \(0.388203\pi\)
\(978\) 0 0
\(979\) − 31.2311i − 0.998149i
\(980\) 0 0
\(981\) − 10.0000i − 0.319275i
\(982\) 0 0
\(983\) 10.9309 0.348641 0.174320 0.984689i \(-0.444227\pi\)
0.174320 + 0.984689i \(0.444227\pi\)
\(984\) 0 0
\(985\) −52.3002 −1.66642
\(986\) 0 0
\(987\) 30.9309i 0.984540i
\(988\) 0 0
\(989\) 76.4924i 2.43232i
\(990\) 0 0
\(991\) 21.8617 0.694461 0.347231 0.937780i \(-0.387122\pi\)
0.347231 + 0.937780i \(0.387122\pi\)
\(992\) 0 0
\(993\) −44.4924 −1.41192
\(994\) 0 0
\(995\) 11.1231i 0.352626i
\(996\) 0 0
\(997\) − 16.2462i − 0.514523i −0.966342 0.257261i \(-0.917180\pi\)
0.966342 0.257261i \(-0.0828201\pi\)
\(998\) 0 0
\(999\) 14.9309 0.472392
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3328.2.b.y.1665.3 4
4.3 odd 2 3328.2.b.w.1665.2 4
8.3 odd 2 3328.2.b.w.1665.3 4
8.5 even 2 inner 3328.2.b.y.1665.2 4
16.3 odd 4 208.2.a.e.1.2 2
16.5 even 4 832.2.a.k.1.2 2
16.11 odd 4 832.2.a.n.1.1 2
16.13 even 4 104.2.a.b.1.1 2
48.5 odd 4 7488.2.a.cu.1.2 2
48.11 even 4 7488.2.a.cv.1.2 2
48.29 odd 4 936.2.a.j.1.1 2
48.35 even 4 1872.2.a.u.1.1 2
80.13 odd 4 2600.2.d.k.1249.2 4
80.19 odd 4 5200.2.a.bw.1.1 2
80.29 even 4 2600.2.a.p.1.2 2
80.77 odd 4 2600.2.d.k.1249.3 4
112.13 odd 4 5096.2.a.m.1.2 2
208.29 even 12 1352.2.i.f.529.2 4
208.45 odd 12 1352.2.o.d.361.3 8
208.51 odd 4 2704.2.a.p.1.2 2
208.61 even 12 1352.2.i.f.1329.2 4
208.77 even 4 1352.2.a.g.1.1 2
208.83 even 4 2704.2.f.k.337.3 4
208.93 odd 12 1352.2.o.d.1161.3 8
208.99 even 4 2704.2.f.k.337.4 4
208.109 odd 4 1352.2.f.c.337.1 4
208.125 odd 4 1352.2.f.c.337.2 4
208.141 odd 12 1352.2.o.d.1161.4 8
208.173 even 12 1352.2.i.d.1329.2 4
208.189 odd 12 1352.2.o.d.361.4 8
208.205 even 12 1352.2.i.d.529.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.a.b.1.1 2 16.13 even 4
208.2.a.e.1.2 2 16.3 odd 4
832.2.a.k.1.2 2 16.5 even 4
832.2.a.n.1.1 2 16.11 odd 4
936.2.a.j.1.1 2 48.29 odd 4
1352.2.a.g.1.1 2 208.77 even 4
1352.2.f.c.337.1 4 208.109 odd 4
1352.2.f.c.337.2 4 208.125 odd 4
1352.2.i.d.529.2 4 208.205 even 12
1352.2.i.d.1329.2 4 208.173 even 12
1352.2.i.f.529.2 4 208.29 even 12
1352.2.i.f.1329.2 4 208.61 even 12
1352.2.o.d.361.3 8 208.45 odd 12
1352.2.o.d.361.4 8 208.189 odd 12
1352.2.o.d.1161.3 8 208.93 odd 12
1352.2.o.d.1161.4 8 208.141 odd 12
1872.2.a.u.1.1 2 48.35 even 4
2600.2.a.p.1.2 2 80.29 even 4
2600.2.d.k.1249.2 4 80.13 odd 4
2600.2.d.k.1249.3 4 80.77 odd 4
2704.2.a.p.1.2 2 208.51 odd 4
2704.2.f.k.337.3 4 208.83 even 4
2704.2.f.k.337.4 4 208.99 even 4
3328.2.b.w.1665.2 4 4.3 odd 2
3328.2.b.w.1665.3 4 8.3 odd 2
3328.2.b.y.1665.2 4 8.5 even 2 inner
3328.2.b.y.1665.3 4 1.1 even 1 trivial
5096.2.a.m.1.2 2 112.13 odd 4
5200.2.a.bw.1.1 2 80.19 odd 4
7488.2.a.cu.1.2 2 48.5 odd 4
7488.2.a.cv.1.2 2 48.11 even 4