Properties

Label 3325.2.a.y.1.3
Level $3325$
Weight $2$
Character 3325.1
Self dual yes
Analytic conductor $26.550$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3325,2,Mod(1,3325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3325 = 5^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,3,12,0,9,-8,0,7,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5502586721\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 12x^{6} + 24x^{5} + 36x^{4} - 70x^{3} - 20x^{2} + 32x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 665)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.84638\) of defining polynomial
Character \(\chi\) \(=\) 3325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.84638 q^{2} -1.55242 q^{3} +1.40913 q^{4} +2.86637 q^{6} -1.00000 q^{7} +1.09097 q^{8} -0.589984 q^{9} -0.635141 q^{11} -2.18756 q^{12} -5.57250 q^{13} +1.84638 q^{14} -4.83261 q^{16} -2.22744 q^{17} +1.08934 q^{18} +1.00000 q^{19} +1.55242 q^{21} +1.17271 q^{22} -6.31775 q^{23} -1.69365 q^{24} +10.2890 q^{26} +5.57317 q^{27} -1.40913 q^{28} -7.00533 q^{29} -7.19570 q^{31} +6.74091 q^{32} +0.986008 q^{33} +4.11270 q^{34} -0.831364 q^{36} +5.78472 q^{37} -1.84638 q^{38} +8.65087 q^{39} -7.94318 q^{41} -2.86637 q^{42} -3.12028 q^{43} -0.894996 q^{44} +11.6650 q^{46} +6.01342 q^{47} +7.50226 q^{48} +1.00000 q^{49} +3.45792 q^{51} -7.85237 q^{52} +3.72017 q^{53} -10.2902 q^{54} -1.09097 q^{56} -1.55242 q^{57} +12.9345 q^{58} -12.0350 q^{59} +2.35446 q^{61} +13.2860 q^{62} +0.589984 q^{63} -2.78107 q^{64} -1.82055 q^{66} -13.3961 q^{67} -3.13875 q^{68} +9.80782 q^{69} +5.20182 q^{71} -0.643657 q^{72} -1.04516 q^{73} -10.6808 q^{74} +1.40913 q^{76} +0.635141 q^{77} -15.9728 q^{78} -1.52502 q^{79} -6.88197 q^{81} +14.6661 q^{82} -14.9418 q^{83} +2.18756 q^{84} +5.76123 q^{86} +10.8752 q^{87} -0.692923 q^{88} +6.46580 q^{89} +5.57250 q^{91} -8.90253 q^{92} +11.1708 q^{93} -11.1031 q^{94} -10.4647 q^{96} +0.286485 q^{97} -1.84638 q^{98} +0.374723 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 3 q^{3} + 12 q^{4} + 9 q^{6} - 8 q^{7} + 7 q^{9} + 16 q^{11} + 19 q^{12} - 2 q^{13} + 2 q^{14} + 24 q^{16} + 7 q^{17} + 5 q^{18} + 8 q^{19} - 3 q^{21} + 10 q^{22} - 7 q^{23} + q^{24} - 6 q^{26}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.84638 −1.30559 −0.652795 0.757535i \(-0.726404\pi\)
−0.652795 + 0.757535i \(0.726404\pi\)
\(3\) −1.55242 −0.896292 −0.448146 0.893960i \(-0.647915\pi\)
−0.448146 + 0.893960i \(0.647915\pi\)
\(4\) 1.40913 0.704565
\(5\) 0 0
\(6\) 2.86637 1.17019
\(7\) −1.00000 −0.377964
\(8\) 1.09097 0.385717
\(9\) −0.589984 −0.196661
\(10\) 0 0
\(11\) −0.635141 −0.191502 −0.0957512 0.995405i \(-0.530525\pi\)
−0.0957512 + 0.995405i \(0.530525\pi\)
\(12\) −2.18756 −0.631495
\(13\) −5.57250 −1.54553 −0.772766 0.634691i \(-0.781128\pi\)
−0.772766 + 0.634691i \(0.781128\pi\)
\(14\) 1.84638 0.493467
\(15\) 0 0
\(16\) −4.83261 −1.20815
\(17\) −2.22744 −0.540233 −0.270116 0.962828i \(-0.587062\pi\)
−0.270116 + 0.962828i \(0.587062\pi\)
\(18\) 1.08934 0.256759
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 1.55242 0.338766
\(22\) 1.17271 0.250023
\(23\) −6.31775 −1.31734 −0.658671 0.752431i \(-0.728881\pi\)
−0.658671 + 0.752431i \(0.728881\pi\)
\(24\) −1.69365 −0.345715
\(25\) 0 0
\(26\) 10.2890 2.01783
\(27\) 5.57317 1.07256
\(28\) −1.40913 −0.266300
\(29\) −7.00533 −1.30086 −0.650428 0.759568i \(-0.725411\pi\)
−0.650428 + 0.759568i \(0.725411\pi\)
\(30\) 0 0
\(31\) −7.19570 −1.29239 −0.646193 0.763174i \(-0.723640\pi\)
−0.646193 + 0.763174i \(0.723640\pi\)
\(32\) 6.74091 1.19164
\(33\) 0.986008 0.171642
\(34\) 4.11270 0.705323
\(35\) 0 0
\(36\) −0.831364 −0.138561
\(37\) 5.78472 0.951002 0.475501 0.879715i \(-0.342267\pi\)
0.475501 + 0.879715i \(0.342267\pi\)
\(38\) −1.84638 −0.299523
\(39\) 8.65087 1.38525
\(40\) 0 0
\(41\) −7.94318 −1.24052 −0.620258 0.784398i \(-0.712972\pi\)
−0.620258 + 0.784398i \(0.712972\pi\)
\(42\) −2.86637 −0.442290
\(43\) −3.12028 −0.475838 −0.237919 0.971285i \(-0.576465\pi\)
−0.237919 + 0.971285i \(0.576465\pi\)
\(44\) −0.894996 −0.134926
\(45\) 0 0
\(46\) 11.6650 1.71991
\(47\) 6.01342 0.877147 0.438574 0.898695i \(-0.355484\pi\)
0.438574 + 0.898695i \(0.355484\pi\)
\(48\) 7.50226 1.08286
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 3.45792 0.484206
\(52\) −7.85237 −1.08893
\(53\) 3.72017 0.511005 0.255502 0.966808i \(-0.417759\pi\)
0.255502 + 0.966808i \(0.417759\pi\)
\(54\) −10.2902 −1.40032
\(55\) 0 0
\(56\) −1.09097 −0.145787
\(57\) −1.55242 −0.205623
\(58\) 12.9345 1.69839
\(59\) −12.0350 −1.56683 −0.783415 0.621499i \(-0.786524\pi\)
−0.783415 + 0.621499i \(0.786524\pi\)
\(60\) 0 0
\(61\) 2.35446 0.301457 0.150729 0.988575i \(-0.451838\pi\)
0.150729 + 0.988575i \(0.451838\pi\)
\(62\) 13.2860 1.68733
\(63\) 0.589984 0.0743310
\(64\) −2.78107 −0.347633
\(65\) 0 0
\(66\) −1.82055 −0.224094
\(67\) −13.3961 −1.63659 −0.818296 0.574797i \(-0.805081\pi\)
−0.818296 + 0.574797i \(0.805081\pi\)
\(68\) −3.13875 −0.380629
\(69\) 9.80782 1.18072
\(70\) 0 0
\(71\) 5.20182 0.617342 0.308671 0.951169i \(-0.400116\pi\)
0.308671 + 0.951169i \(0.400116\pi\)
\(72\) −0.643657 −0.0758557
\(73\) −1.04516 −0.122326 −0.0611632 0.998128i \(-0.519481\pi\)
−0.0611632 + 0.998128i \(0.519481\pi\)
\(74\) −10.6808 −1.24162
\(75\) 0 0
\(76\) 1.40913 0.161638
\(77\) 0.635141 0.0723811
\(78\) −15.9728 −1.80857
\(79\) −1.52502 −0.171578 −0.0857888 0.996313i \(-0.527341\pi\)
−0.0857888 + 0.996313i \(0.527341\pi\)
\(80\) 0 0
\(81\) −6.88197 −0.764663
\(82\) 14.6661 1.61961
\(83\) −14.9418 −1.64008 −0.820041 0.572305i \(-0.806049\pi\)
−0.820041 + 0.572305i \(0.806049\pi\)
\(84\) 2.18756 0.238683
\(85\) 0 0
\(86\) 5.76123 0.621250
\(87\) 10.8752 1.16595
\(88\) −0.692923 −0.0738658
\(89\) 6.46580 0.685373 0.342687 0.939450i \(-0.388663\pi\)
0.342687 + 0.939450i \(0.388663\pi\)
\(90\) 0 0
\(91\) 5.57250 0.584156
\(92\) −8.90253 −0.928153
\(93\) 11.1708 1.15835
\(94\) −11.1031 −1.14519
\(95\) 0 0
\(96\) −10.4647 −1.06805
\(97\) 0.286485 0.0290881 0.0145441 0.999894i \(-0.495370\pi\)
0.0145441 + 0.999894i \(0.495370\pi\)
\(98\) −1.84638 −0.186513
\(99\) 0.374723 0.0376611
\(100\) 0 0
\(101\) −5.92982 −0.590039 −0.295020 0.955491i \(-0.595326\pi\)
−0.295020 + 0.955491i \(0.595326\pi\)
\(102\) −6.38465 −0.632175
\(103\) −5.03528 −0.496141 −0.248070 0.968742i \(-0.579796\pi\)
−0.248070 + 0.968742i \(0.579796\pi\)
\(104\) −6.07945 −0.596139
\(105\) 0 0
\(106\) −6.86886 −0.667163
\(107\) 15.2709 1.47630 0.738148 0.674639i \(-0.235701\pi\)
0.738148 + 0.674639i \(0.235701\pi\)
\(108\) 7.85332 0.755686
\(109\) −3.90048 −0.373598 −0.186799 0.982398i \(-0.559811\pi\)
−0.186799 + 0.982398i \(0.559811\pi\)
\(110\) 0 0
\(111\) −8.98033 −0.852375
\(112\) 4.83261 0.456639
\(113\) −11.5157 −1.08330 −0.541652 0.840603i \(-0.682201\pi\)
−0.541652 + 0.840603i \(0.682201\pi\)
\(114\) 2.86637 0.268460
\(115\) 0 0
\(116\) −9.87141 −0.916538
\(117\) 3.28768 0.303947
\(118\) 22.2213 2.04564
\(119\) 2.22744 0.204189
\(120\) 0 0
\(121\) −10.5966 −0.963327
\(122\) −4.34723 −0.393579
\(123\) 12.3312 1.11186
\(124\) −10.1397 −0.910569
\(125\) 0 0
\(126\) −1.08934 −0.0970458
\(127\) −9.21079 −0.817325 −0.408663 0.912686i \(-0.634005\pi\)
−0.408663 + 0.912686i \(0.634005\pi\)
\(128\) −8.34690 −0.737769
\(129\) 4.84399 0.426490
\(130\) 0 0
\(131\) 4.05325 0.354134 0.177067 0.984199i \(-0.443339\pi\)
0.177067 + 0.984199i \(0.443339\pi\)
\(132\) 1.38941 0.120933
\(133\) −1.00000 −0.0867110
\(134\) 24.7343 2.13672
\(135\) 0 0
\(136\) −2.43008 −0.208377
\(137\) −20.4577 −1.74782 −0.873911 0.486085i \(-0.838424\pi\)
−0.873911 + 0.486085i \(0.838424\pi\)
\(138\) −18.1090 −1.54154
\(139\) −14.0099 −1.18830 −0.594152 0.804353i \(-0.702512\pi\)
−0.594152 + 0.804353i \(0.702512\pi\)
\(140\) 0 0
\(141\) −9.33537 −0.786180
\(142\) −9.60454 −0.805995
\(143\) 3.53932 0.295973
\(144\) 2.85116 0.237597
\(145\) 0 0
\(146\) 1.92976 0.159708
\(147\) −1.55242 −0.128042
\(148\) 8.15141 0.670042
\(149\) 3.46416 0.283795 0.141897 0.989881i \(-0.454680\pi\)
0.141897 + 0.989881i \(0.454680\pi\)
\(150\) 0 0
\(151\) 0.607812 0.0494631 0.0247315 0.999694i \(-0.492127\pi\)
0.0247315 + 0.999694i \(0.492127\pi\)
\(152\) 1.09097 0.0884897
\(153\) 1.31415 0.106243
\(154\) −1.17271 −0.0945000
\(155\) 0 0
\(156\) 12.1902 0.975997
\(157\) 5.18853 0.414090 0.207045 0.978331i \(-0.433615\pi\)
0.207045 + 0.978331i \(0.433615\pi\)
\(158\) 2.81576 0.224010
\(159\) −5.77528 −0.458009
\(160\) 0 0
\(161\) 6.31775 0.497909
\(162\) 12.7067 0.998336
\(163\) −17.5170 −1.37204 −0.686020 0.727582i \(-0.740644\pi\)
−0.686020 + 0.727582i \(0.740644\pi\)
\(164\) −11.1930 −0.874024
\(165\) 0 0
\(166\) 27.5884 2.14127
\(167\) 21.9293 1.69694 0.848470 0.529244i \(-0.177524\pi\)
0.848470 + 0.529244i \(0.177524\pi\)
\(168\) 1.69365 0.130668
\(169\) 18.0527 1.38867
\(170\) 0 0
\(171\) −0.589984 −0.0451172
\(172\) −4.39688 −0.335259
\(173\) −24.5830 −1.86901 −0.934505 0.355951i \(-0.884157\pi\)
−0.934505 + 0.355951i \(0.884157\pi\)
\(174\) −20.0798 −1.52225
\(175\) 0 0
\(176\) 3.06939 0.231364
\(177\) 18.6835 1.40434
\(178\) −11.9383 −0.894816
\(179\) −0.0177631 −0.00132768 −0.000663840 1.00000i \(-0.500211\pi\)
−0.000663840 1.00000i \(0.500211\pi\)
\(180\) 0 0
\(181\) 17.7988 1.32297 0.661486 0.749957i \(-0.269926\pi\)
0.661486 + 0.749957i \(0.269926\pi\)
\(182\) −10.2890 −0.762669
\(183\) −3.65511 −0.270194
\(184\) −6.89250 −0.508122
\(185\) 0 0
\(186\) −20.6255 −1.51234
\(187\) 1.41474 0.103456
\(188\) 8.47368 0.618007
\(189\) −5.57317 −0.405389
\(190\) 0 0
\(191\) 19.6215 1.41976 0.709882 0.704321i \(-0.248748\pi\)
0.709882 + 0.704321i \(0.248748\pi\)
\(192\) 4.31739 0.311581
\(193\) 5.01539 0.361016 0.180508 0.983574i \(-0.442226\pi\)
0.180508 + 0.983574i \(0.442226\pi\)
\(194\) −0.528961 −0.0379772
\(195\) 0 0
\(196\) 1.40913 0.100652
\(197\) 12.3267 0.878244 0.439122 0.898428i \(-0.355290\pi\)
0.439122 + 0.898428i \(0.355290\pi\)
\(198\) −0.691883 −0.0491699
\(199\) −10.7033 −0.758737 −0.379369 0.925246i \(-0.623859\pi\)
−0.379369 + 0.925246i \(0.623859\pi\)
\(200\) 0 0
\(201\) 20.7964 1.46686
\(202\) 10.9487 0.770349
\(203\) 7.00533 0.491678
\(204\) 4.87266 0.341155
\(205\) 0 0
\(206\) 9.29705 0.647756
\(207\) 3.72737 0.259070
\(208\) 26.9297 1.86724
\(209\) −0.635141 −0.0439336
\(210\) 0 0
\(211\) 13.8781 0.955407 0.477704 0.878521i \(-0.341469\pi\)
0.477704 + 0.878521i \(0.341469\pi\)
\(212\) 5.24220 0.360036
\(213\) −8.07542 −0.553319
\(214\) −28.1960 −1.92744
\(215\) 0 0
\(216\) 6.08018 0.413704
\(217\) 7.19570 0.488476
\(218\) 7.20178 0.487766
\(219\) 1.62253 0.109640
\(220\) 0 0
\(221\) 12.4124 0.834948
\(222\) 16.5811 1.11285
\(223\) −17.8488 −1.19525 −0.597623 0.801777i \(-0.703888\pi\)
−0.597623 + 0.801777i \(0.703888\pi\)
\(224\) −6.74091 −0.450396
\(225\) 0 0
\(226\) 21.2623 1.41435
\(227\) 7.33763 0.487016 0.243508 0.969899i \(-0.421702\pi\)
0.243508 + 0.969899i \(0.421702\pi\)
\(228\) −2.18756 −0.144875
\(229\) 11.4405 0.756010 0.378005 0.925804i \(-0.376610\pi\)
0.378005 + 0.925804i \(0.376610\pi\)
\(230\) 0 0
\(231\) −0.986008 −0.0648746
\(232\) −7.64263 −0.501763
\(233\) 24.5735 1.60987 0.804933 0.593366i \(-0.202201\pi\)
0.804933 + 0.593366i \(0.202201\pi\)
\(234\) −6.07032 −0.396829
\(235\) 0 0
\(236\) −16.9589 −1.10393
\(237\) 2.36747 0.153784
\(238\) −4.11270 −0.266587
\(239\) 23.5206 1.52142 0.760712 0.649090i \(-0.224850\pi\)
0.760712 + 0.649090i \(0.224850\pi\)
\(240\) 0 0
\(241\) −29.1440 −1.87733 −0.938666 0.344828i \(-0.887937\pi\)
−0.938666 + 0.344828i \(0.887937\pi\)
\(242\) 19.5654 1.25771
\(243\) −6.03580 −0.387196
\(244\) 3.31773 0.212396
\(245\) 0 0
\(246\) −22.7681 −1.45164
\(247\) −5.57250 −0.354570
\(248\) −7.85032 −0.498496
\(249\) 23.1961 1.46999
\(250\) 0 0
\(251\) −2.36845 −0.149496 −0.0747478 0.997202i \(-0.523815\pi\)
−0.0747478 + 0.997202i \(0.523815\pi\)
\(252\) 0.831364 0.0523710
\(253\) 4.01267 0.252274
\(254\) 17.0066 1.06709
\(255\) 0 0
\(256\) 20.9737 1.31086
\(257\) −1.77806 −0.110912 −0.0554562 0.998461i \(-0.517661\pi\)
−0.0554562 + 0.998461i \(0.517661\pi\)
\(258\) −8.94387 −0.556821
\(259\) −5.78472 −0.359445
\(260\) 0 0
\(261\) 4.13303 0.255828
\(262\) −7.48385 −0.462354
\(263\) 24.8221 1.53060 0.765298 0.643677i \(-0.222592\pi\)
0.765298 + 0.643677i \(0.222592\pi\)
\(264\) 1.07571 0.0662053
\(265\) 0 0
\(266\) 1.84638 0.113209
\(267\) −10.0377 −0.614294
\(268\) −18.8768 −1.15308
\(269\) −26.5502 −1.61879 −0.809397 0.587262i \(-0.800206\pi\)
−0.809397 + 0.587262i \(0.800206\pi\)
\(270\) 0 0
\(271\) 24.2958 1.47587 0.737933 0.674873i \(-0.235802\pi\)
0.737933 + 0.674873i \(0.235802\pi\)
\(272\) 10.7643 0.652684
\(273\) −8.65087 −0.523575
\(274\) 37.7728 2.28194
\(275\) 0 0
\(276\) 13.8205 0.831896
\(277\) 5.95966 0.358082 0.179041 0.983842i \(-0.442701\pi\)
0.179041 + 0.983842i \(0.442701\pi\)
\(278\) 25.8676 1.55144
\(279\) 4.24535 0.254162
\(280\) 0 0
\(281\) 4.42446 0.263941 0.131971 0.991254i \(-0.457870\pi\)
0.131971 + 0.991254i \(0.457870\pi\)
\(282\) 17.2367 1.02643
\(283\) −6.14101 −0.365045 −0.182522 0.983202i \(-0.558426\pi\)
−0.182522 + 0.983202i \(0.558426\pi\)
\(284\) 7.33003 0.434957
\(285\) 0 0
\(286\) −6.53495 −0.386419
\(287\) 7.94318 0.468871
\(288\) −3.97703 −0.234349
\(289\) −12.0385 −0.708148
\(290\) 0 0
\(291\) −0.444745 −0.0260714
\(292\) −1.47276 −0.0861869
\(293\) 21.5171 1.25704 0.628520 0.777793i \(-0.283661\pi\)
0.628520 + 0.777793i \(0.283661\pi\)
\(294\) 2.86637 0.167170
\(295\) 0 0
\(296\) 6.31097 0.366818
\(297\) −3.53975 −0.205397
\(298\) −6.39616 −0.370520
\(299\) 35.2057 2.03600
\(300\) 0 0
\(301\) 3.12028 0.179850
\(302\) −1.12225 −0.0645785
\(303\) 9.20559 0.528847
\(304\) −4.83261 −0.277169
\(305\) 0 0
\(306\) −2.42643 −0.138710
\(307\) −17.3176 −0.988366 −0.494183 0.869358i \(-0.664533\pi\)
−0.494183 + 0.869358i \(0.664533\pi\)
\(308\) 0.894996 0.0509971
\(309\) 7.81688 0.444687
\(310\) 0 0
\(311\) −15.4755 −0.877533 −0.438766 0.898601i \(-0.644584\pi\)
−0.438766 + 0.898601i \(0.644584\pi\)
\(312\) 9.43787 0.534314
\(313\) 13.0889 0.739830 0.369915 0.929066i \(-0.379387\pi\)
0.369915 + 0.929066i \(0.379387\pi\)
\(314\) −9.58001 −0.540631
\(315\) 0 0
\(316\) −2.14894 −0.120888
\(317\) −8.99443 −0.505178 −0.252589 0.967574i \(-0.581282\pi\)
−0.252589 + 0.967574i \(0.581282\pi\)
\(318\) 10.6634 0.597972
\(319\) 4.44937 0.249117
\(320\) 0 0
\(321\) −23.7069 −1.32319
\(322\) −11.6650 −0.650064
\(323\) −2.22744 −0.123938
\(324\) −9.69758 −0.538754
\(325\) 0 0
\(326\) 32.3432 1.79132
\(327\) 6.05520 0.334853
\(328\) −8.66580 −0.478489
\(329\) −6.01342 −0.331530
\(330\) 0 0
\(331\) 21.5227 1.18299 0.591497 0.806307i \(-0.298537\pi\)
0.591497 + 0.806307i \(0.298537\pi\)
\(332\) −21.0550 −1.15554
\(333\) −3.41289 −0.187025
\(334\) −40.4899 −2.21551
\(335\) 0 0
\(336\) −7.50226 −0.409282
\(337\) −3.82310 −0.208258 −0.104129 0.994564i \(-0.533205\pi\)
−0.104129 + 0.994564i \(0.533205\pi\)
\(338\) −33.3323 −1.81304
\(339\) 17.8772 0.970956
\(340\) 0 0
\(341\) 4.57029 0.247495
\(342\) 1.08934 0.0589046
\(343\) −1.00000 −0.0539949
\(344\) −3.40414 −0.183539
\(345\) 0 0
\(346\) 45.3896 2.44016
\(347\) 8.26780 0.443839 0.221919 0.975065i \(-0.428768\pi\)
0.221919 + 0.975065i \(0.428768\pi\)
\(348\) 15.3246 0.821485
\(349\) 22.3122 1.19434 0.597172 0.802113i \(-0.296291\pi\)
0.597172 + 0.802113i \(0.296291\pi\)
\(350\) 0 0
\(351\) −31.0565 −1.65767
\(352\) −4.28143 −0.228201
\(353\) 5.55432 0.295627 0.147813 0.989015i \(-0.452776\pi\)
0.147813 + 0.989015i \(0.452776\pi\)
\(354\) −34.4969 −1.83349
\(355\) 0 0
\(356\) 9.11114 0.482890
\(357\) −3.45792 −0.183013
\(358\) 0.0327975 0.00173340
\(359\) 27.8244 1.46852 0.734258 0.678871i \(-0.237530\pi\)
0.734258 + 0.678871i \(0.237530\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −32.8634 −1.72726
\(363\) 16.4504 0.863422
\(364\) 7.85237 0.411576
\(365\) 0 0
\(366\) 6.74873 0.352762
\(367\) 11.4375 0.597033 0.298516 0.954405i \(-0.403508\pi\)
0.298516 + 0.954405i \(0.403508\pi\)
\(368\) 30.5313 1.59155
\(369\) 4.68635 0.243962
\(370\) 0 0
\(371\) −3.72017 −0.193142
\(372\) 15.7411 0.816135
\(373\) −33.1968 −1.71887 −0.859433 0.511249i \(-0.829183\pi\)
−0.859433 + 0.511249i \(0.829183\pi\)
\(374\) −2.61215 −0.135071
\(375\) 0 0
\(376\) 6.56048 0.338331
\(377\) 39.0372 2.01052
\(378\) 10.2902 0.529271
\(379\) 8.87233 0.455741 0.227871 0.973691i \(-0.426824\pi\)
0.227871 + 0.973691i \(0.426824\pi\)
\(380\) 0 0
\(381\) 14.2990 0.732562
\(382\) −36.2289 −1.85363
\(383\) 7.04228 0.359844 0.179922 0.983681i \(-0.442415\pi\)
0.179922 + 0.983681i \(0.442415\pi\)
\(384\) 12.9579 0.661256
\(385\) 0 0
\(386\) −9.26033 −0.471338
\(387\) 1.84092 0.0935790
\(388\) 0.403694 0.0204945
\(389\) 9.52351 0.482861 0.241430 0.970418i \(-0.422383\pi\)
0.241430 + 0.970418i \(0.422383\pi\)
\(390\) 0 0
\(391\) 14.0724 0.711672
\(392\) 1.09097 0.0551025
\(393\) −6.29235 −0.317407
\(394\) −22.7599 −1.14663
\(395\) 0 0
\(396\) 0.528033 0.0265347
\(397\) −18.0259 −0.904694 −0.452347 0.891842i \(-0.649413\pi\)
−0.452347 + 0.891842i \(0.649413\pi\)
\(398\) 19.7624 0.990600
\(399\) 1.55242 0.0777183
\(400\) 0 0
\(401\) 17.1013 0.854000 0.427000 0.904252i \(-0.359570\pi\)
0.427000 + 0.904252i \(0.359570\pi\)
\(402\) −38.3981 −1.91512
\(403\) 40.0980 1.99742
\(404\) −8.35588 −0.415721
\(405\) 0 0
\(406\) −12.9345 −0.641929
\(407\) −3.67411 −0.182119
\(408\) 3.77250 0.186767
\(409\) −30.6842 −1.51724 −0.758618 0.651535i \(-0.774125\pi\)
−0.758618 + 0.651535i \(0.774125\pi\)
\(410\) 0 0
\(411\) 31.7591 1.56656
\(412\) −7.09536 −0.349563
\(413\) 12.0350 0.592206
\(414\) −6.88216 −0.338240
\(415\) 0 0
\(416\) −37.5637 −1.84171
\(417\) 21.7493 1.06507
\(418\) 1.17271 0.0573593
\(419\) 18.3213 0.895056 0.447528 0.894270i \(-0.352304\pi\)
0.447528 + 0.894270i \(0.352304\pi\)
\(420\) 0 0
\(421\) −39.7775 −1.93864 −0.969318 0.245810i \(-0.920946\pi\)
−0.969318 + 0.245810i \(0.920946\pi\)
\(422\) −25.6243 −1.24737
\(423\) −3.54782 −0.172501
\(424\) 4.05861 0.197104
\(425\) 0 0
\(426\) 14.9103 0.722407
\(427\) −2.35446 −0.113940
\(428\) 21.5187 1.04015
\(429\) −5.49453 −0.265278
\(430\) 0 0
\(431\) −7.40688 −0.356777 −0.178388 0.983960i \(-0.557088\pi\)
−0.178388 + 0.983960i \(0.557088\pi\)
\(432\) −26.9330 −1.29581
\(433\) −2.89348 −0.139052 −0.0695260 0.997580i \(-0.522149\pi\)
−0.0695260 + 0.997580i \(0.522149\pi\)
\(434\) −13.2860 −0.637749
\(435\) 0 0
\(436\) −5.49628 −0.263224
\(437\) −6.31775 −0.302219
\(438\) −2.99580 −0.143145
\(439\) 13.4021 0.639648 0.319824 0.947477i \(-0.396376\pi\)
0.319824 + 0.947477i \(0.396376\pi\)
\(440\) 0 0
\(441\) −0.589984 −0.0280945
\(442\) −22.9180 −1.09010
\(443\) 30.1848 1.43413 0.717063 0.697009i \(-0.245486\pi\)
0.717063 + 0.697009i \(0.245486\pi\)
\(444\) −12.6544 −0.600553
\(445\) 0 0
\(446\) 32.9558 1.56050
\(447\) −5.37784 −0.254363
\(448\) 2.78107 0.131393
\(449\) −4.25344 −0.200732 −0.100366 0.994951i \(-0.532001\pi\)
−0.100366 + 0.994951i \(0.532001\pi\)
\(450\) 0 0
\(451\) 5.04504 0.237562
\(452\) −16.2271 −0.763257
\(453\) −0.943581 −0.0443333
\(454\) −13.5481 −0.635843
\(455\) 0 0
\(456\) −1.69365 −0.0793125
\(457\) −13.1584 −0.615523 −0.307762 0.951463i \(-0.599580\pi\)
−0.307762 + 0.951463i \(0.599580\pi\)
\(458\) −21.1236 −0.987039
\(459\) −12.4139 −0.579431
\(460\) 0 0
\(461\) −10.4037 −0.484546 −0.242273 0.970208i \(-0.577893\pi\)
−0.242273 + 0.970208i \(0.577893\pi\)
\(462\) 1.82055 0.0846995
\(463\) 21.8835 1.01701 0.508506 0.861059i \(-0.330198\pi\)
0.508506 + 0.861059i \(0.330198\pi\)
\(464\) 33.8540 1.57163
\(465\) 0 0
\(466\) −45.3721 −2.10182
\(467\) 30.8015 1.42532 0.712661 0.701509i \(-0.247490\pi\)
0.712661 + 0.701509i \(0.247490\pi\)
\(468\) 4.63277 0.214150
\(469\) 13.3961 0.618574
\(470\) 0 0
\(471\) −8.05479 −0.371145
\(472\) −13.1299 −0.604354
\(473\) 1.98182 0.0911241
\(474\) −4.37125 −0.200778
\(475\) 0 0
\(476\) 3.13875 0.143864
\(477\) −2.19484 −0.100495
\(478\) −43.4281 −1.98635
\(479\) 37.1170 1.69592 0.847960 0.530060i \(-0.177831\pi\)
0.847960 + 0.530060i \(0.177831\pi\)
\(480\) 0 0
\(481\) −32.2353 −1.46980
\(482\) 53.8110 2.45103
\(483\) −9.80782 −0.446271
\(484\) −14.9320 −0.678726
\(485\) 0 0
\(486\) 11.1444 0.505520
\(487\) −22.3662 −1.01351 −0.506754 0.862091i \(-0.669155\pi\)
−0.506754 + 0.862091i \(0.669155\pi\)
\(488\) 2.56865 0.116277
\(489\) 27.1938 1.22975
\(490\) 0 0
\(491\) 11.7030 0.528148 0.264074 0.964502i \(-0.414934\pi\)
0.264074 + 0.964502i \(0.414934\pi\)
\(492\) 17.3762 0.783380
\(493\) 15.6039 0.702766
\(494\) 10.2890 0.462922
\(495\) 0 0
\(496\) 34.7740 1.56140
\(497\) −5.20182 −0.233333
\(498\) −42.8288 −1.91920
\(499\) 13.1438 0.588397 0.294199 0.955744i \(-0.404947\pi\)
0.294199 + 0.955744i \(0.404947\pi\)
\(500\) 0 0
\(501\) −34.0435 −1.52095
\(502\) 4.37307 0.195180
\(503\) −43.2979 −1.93056 −0.965278 0.261225i \(-0.915874\pi\)
−0.965278 + 0.261225i \(0.915874\pi\)
\(504\) 0.643657 0.0286708
\(505\) 0 0
\(506\) −7.40892 −0.329367
\(507\) −28.0255 −1.24465
\(508\) −12.9792 −0.575858
\(509\) −24.1123 −1.06876 −0.534379 0.845245i \(-0.679454\pi\)
−0.534379 + 0.845245i \(0.679454\pi\)
\(510\) 0 0
\(511\) 1.04516 0.0462350
\(512\) −22.0317 −0.973672
\(513\) 5.57317 0.246062
\(514\) 3.28298 0.144806
\(515\) 0 0
\(516\) 6.82581 0.300490
\(517\) −3.81937 −0.167976
\(518\) 10.6808 0.469288
\(519\) 38.1632 1.67518
\(520\) 0 0
\(521\) 10.9385 0.479224 0.239612 0.970869i \(-0.422980\pi\)
0.239612 + 0.970869i \(0.422980\pi\)
\(522\) −7.63116 −0.334007
\(523\) 40.8100 1.78450 0.892248 0.451546i \(-0.149127\pi\)
0.892248 + 0.451546i \(0.149127\pi\)
\(524\) 5.71155 0.249510
\(525\) 0 0
\(526\) −45.8311 −1.99833
\(527\) 16.0280 0.698189
\(528\) −4.76499 −0.207370
\(529\) 16.9140 0.735391
\(530\) 0 0
\(531\) 7.10049 0.308135
\(532\) −1.40913 −0.0610935
\(533\) 44.2633 1.91726
\(534\) 18.5333 0.802016
\(535\) 0 0
\(536\) −14.6148 −0.631262
\(537\) 0.0275759 0.00118999
\(538\) 49.0218 2.11348
\(539\) −0.635141 −0.0273575
\(540\) 0 0
\(541\) 16.0217 0.688826 0.344413 0.938818i \(-0.388078\pi\)
0.344413 + 0.938818i \(0.388078\pi\)
\(542\) −44.8594 −1.92688
\(543\) −27.6312 −1.18577
\(544\) −15.0149 −0.643761
\(545\) 0 0
\(546\) 15.9728 0.683574
\(547\) −37.9792 −1.62387 −0.811936 0.583746i \(-0.801586\pi\)
−0.811936 + 0.583746i \(0.801586\pi\)
\(548\) −28.8276 −1.23145
\(549\) −1.38909 −0.0592850
\(550\) 0 0
\(551\) −7.00533 −0.298437
\(552\) 10.7001 0.455425
\(553\) 1.52502 0.0648503
\(554\) −11.0038 −0.467508
\(555\) 0 0
\(556\) −19.7417 −0.837236
\(557\) 16.7176 0.708348 0.354174 0.935180i \(-0.384762\pi\)
0.354174 + 0.935180i \(0.384762\pi\)
\(558\) −7.83854 −0.331832
\(559\) 17.3878 0.735424
\(560\) 0 0
\(561\) −2.19627 −0.0927266
\(562\) −8.16925 −0.344599
\(563\) 5.47540 0.230761 0.115380 0.993321i \(-0.463191\pi\)
0.115380 + 0.993321i \(0.463191\pi\)
\(564\) −13.1547 −0.553914
\(565\) 0 0
\(566\) 11.3386 0.476599
\(567\) 6.88197 0.289015
\(568\) 5.67505 0.238120
\(569\) −16.3600 −0.685847 −0.342924 0.939363i \(-0.611417\pi\)
−0.342924 + 0.939363i \(0.611417\pi\)
\(570\) 0 0
\(571\) 7.04971 0.295021 0.147511 0.989060i \(-0.452874\pi\)
0.147511 + 0.989060i \(0.452874\pi\)
\(572\) 4.98736 0.208532
\(573\) −30.4609 −1.27252
\(574\) −14.6661 −0.612153
\(575\) 0 0
\(576\) 1.64078 0.0683660
\(577\) −18.0308 −0.750632 −0.375316 0.926897i \(-0.622466\pi\)
−0.375316 + 0.926897i \(0.622466\pi\)
\(578\) 22.2277 0.924551
\(579\) −7.78600 −0.323575
\(580\) 0 0
\(581\) 14.9418 0.619892
\(582\) 0.821170 0.0340386
\(583\) −2.36284 −0.0978586
\(584\) −1.14024 −0.0471834
\(585\) 0 0
\(586\) −39.7287 −1.64118
\(587\) 14.0660 0.580568 0.290284 0.956941i \(-0.406250\pi\)
0.290284 + 0.956941i \(0.406250\pi\)
\(588\) −2.18756 −0.0902136
\(589\) −7.19570 −0.296494
\(590\) 0 0
\(591\) −19.1363 −0.787162
\(592\) −27.9553 −1.14896
\(593\) 17.6566 0.725069 0.362534 0.931970i \(-0.381912\pi\)
0.362534 + 0.931970i \(0.381912\pi\)
\(594\) 6.53574 0.268165
\(595\) 0 0
\(596\) 4.88145 0.199952
\(597\) 16.6161 0.680050
\(598\) −65.0031 −2.65818
\(599\) −33.7765 −1.38007 −0.690034 0.723777i \(-0.742405\pi\)
−0.690034 + 0.723777i \(0.742405\pi\)
\(600\) 0 0
\(601\) −22.3881 −0.913232 −0.456616 0.889664i \(-0.650939\pi\)
−0.456616 + 0.889664i \(0.650939\pi\)
\(602\) −5.76123 −0.234810
\(603\) 7.90347 0.321854
\(604\) 0.856486 0.0348499
\(605\) 0 0
\(606\) −16.9970 −0.690457
\(607\) −33.7677 −1.37059 −0.685294 0.728267i \(-0.740326\pi\)
−0.685294 + 0.728267i \(0.740326\pi\)
\(608\) 6.74091 0.273380
\(609\) −10.8752 −0.440687
\(610\) 0 0
\(611\) −33.5098 −1.35566
\(612\) 1.85181 0.0748550
\(613\) −2.12330 −0.0857592 −0.0428796 0.999080i \(-0.513653\pi\)
−0.0428796 + 0.999080i \(0.513653\pi\)
\(614\) 31.9749 1.29040
\(615\) 0 0
\(616\) 0.692923 0.0279186
\(617\) 41.0771 1.65370 0.826851 0.562421i \(-0.190130\pi\)
0.826851 + 0.562421i \(0.190130\pi\)
\(618\) −14.4330 −0.580579
\(619\) 4.48300 0.180187 0.0900934 0.995933i \(-0.471283\pi\)
0.0900934 + 0.995933i \(0.471283\pi\)
\(620\) 0 0
\(621\) −35.2099 −1.41293
\(622\) 28.5736 1.14570
\(623\) −6.46580 −0.259047
\(624\) −41.8063 −1.67359
\(625\) 0 0
\(626\) −24.1672 −0.965915
\(627\) 0.986008 0.0393774
\(628\) 7.31131 0.291753
\(629\) −12.8851 −0.513762
\(630\) 0 0
\(631\) −1.94680 −0.0775008 −0.0387504 0.999249i \(-0.512338\pi\)
−0.0387504 + 0.999249i \(0.512338\pi\)
\(632\) −1.66375 −0.0661805
\(633\) −21.5447 −0.856324
\(634\) 16.6072 0.659555
\(635\) 0 0
\(636\) −8.13811 −0.322697
\(637\) −5.57250 −0.220790
\(638\) −8.21525 −0.325245
\(639\) −3.06899 −0.121407
\(640\) 0 0
\(641\) −28.4963 −1.12553 −0.562767 0.826615i \(-0.690263\pi\)
−0.562767 + 0.826615i \(0.690263\pi\)
\(642\) 43.7721 1.72755
\(643\) −8.76049 −0.345480 −0.172740 0.984967i \(-0.555262\pi\)
−0.172740 + 0.984967i \(0.555262\pi\)
\(644\) 8.90253 0.350809
\(645\) 0 0
\(646\) 4.11270 0.161812
\(647\) 13.6320 0.535928 0.267964 0.963429i \(-0.413649\pi\)
0.267964 + 0.963429i \(0.413649\pi\)
\(648\) −7.50805 −0.294944
\(649\) 7.64396 0.300052
\(650\) 0 0
\(651\) −11.1708 −0.437817
\(652\) −24.6838 −0.966691
\(653\) 16.3713 0.640659 0.320330 0.947306i \(-0.396206\pi\)
0.320330 + 0.947306i \(0.396206\pi\)
\(654\) −11.1802 −0.437181
\(655\) 0 0
\(656\) 38.3863 1.49873
\(657\) 0.616626 0.0240569
\(658\) 11.1031 0.432843
\(659\) −6.46448 −0.251820 −0.125910 0.992042i \(-0.540185\pi\)
−0.125910 + 0.992042i \(0.540185\pi\)
\(660\) 0 0
\(661\) −28.7000 −1.11630 −0.558149 0.829740i \(-0.688488\pi\)
−0.558149 + 0.829740i \(0.688488\pi\)
\(662\) −39.7391 −1.54450
\(663\) −19.2693 −0.748357
\(664\) −16.3012 −0.632608
\(665\) 0 0
\(666\) 6.30150 0.244178
\(667\) 44.2579 1.71367
\(668\) 30.9012 1.19560
\(669\) 27.7089 1.07129
\(670\) 0 0
\(671\) −1.49541 −0.0577297
\(672\) 10.4647 0.403686
\(673\) 37.2829 1.43715 0.718575 0.695450i \(-0.244795\pi\)
0.718575 + 0.695450i \(0.244795\pi\)
\(674\) 7.05891 0.271899
\(675\) 0 0
\(676\) 25.4386 0.978409
\(677\) −39.2133 −1.50709 −0.753544 0.657397i \(-0.771657\pi\)
−0.753544 + 0.657397i \(0.771657\pi\)
\(678\) −33.0081 −1.26767
\(679\) −0.286485 −0.0109943
\(680\) 0 0
\(681\) −11.3911 −0.436508
\(682\) −8.43850 −0.323127
\(683\) 33.8564 1.29548 0.647739 0.761862i \(-0.275715\pi\)
0.647739 + 0.761862i \(0.275715\pi\)
\(684\) −0.831364 −0.0317880
\(685\) 0 0
\(686\) 1.84638 0.0704952
\(687\) −17.7605 −0.677606
\(688\) 15.0791 0.574886
\(689\) −20.7307 −0.789775
\(690\) 0 0
\(691\) −7.65402 −0.291173 −0.145586 0.989346i \(-0.546507\pi\)
−0.145586 + 0.989346i \(0.546507\pi\)
\(692\) −34.6406 −1.31684
\(693\) −0.374723 −0.0142346
\(694\) −15.2655 −0.579471
\(695\) 0 0
\(696\) 11.8646 0.449726
\(697\) 17.6929 0.670168
\(698\) −41.1968 −1.55932
\(699\) −38.1485 −1.44291
\(700\) 0 0
\(701\) −32.8682 −1.24141 −0.620707 0.784043i \(-0.713154\pi\)
−0.620707 + 0.784043i \(0.713154\pi\)
\(702\) 57.3422 2.16424
\(703\) 5.78472 0.218175
\(704\) 1.76637 0.0665726
\(705\) 0 0
\(706\) −10.2554 −0.385967
\(707\) 5.92982 0.223014
\(708\) 26.3274 0.989446
\(709\) 17.6646 0.663408 0.331704 0.943384i \(-0.392377\pi\)
0.331704 + 0.943384i \(0.392377\pi\)
\(710\) 0 0
\(711\) 0.899735 0.0337427
\(712\) 7.05402 0.264360
\(713\) 45.4606 1.70251
\(714\) 6.38465 0.238940
\(715\) 0 0
\(716\) −0.0250306 −0.000935436 0
\(717\) −36.5140 −1.36364
\(718\) −51.3745 −1.91728
\(719\) −33.4548 −1.24765 −0.623827 0.781562i \(-0.714423\pi\)
−0.623827 + 0.781562i \(0.714423\pi\)
\(720\) 0 0
\(721\) 5.03528 0.187524
\(722\) −1.84638 −0.0687152
\(723\) 45.2439 1.68264
\(724\) 25.0808 0.932120
\(725\) 0 0
\(726\) −30.3737 −1.12727
\(727\) −22.0141 −0.816458 −0.408229 0.912880i \(-0.633853\pi\)
−0.408229 + 0.912880i \(0.633853\pi\)
\(728\) 6.07945 0.225319
\(729\) 30.0160 1.11170
\(730\) 0 0
\(731\) 6.95023 0.257063
\(732\) −5.15052 −0.190369
\(733\) 16.9719 0.626870 0.313435 0.949610i \(-0.398520\pi\)
0.313435 + 0.949610i \(0.398520\pi\)
\(734\) −21.1180 −0.779480
\(735\) 0 0
\(736\) −42.5874 −1.56979
\(737\) 8.50841 0.313411
\(738\) −8.65279 −0.318514
\(739\) 13.1814 0.484887 0.242444 0.970165i \(-0.422051\pi\)
0.242444 + 0.970165i \(0.422051\pi\)
\(740\) 0 0
\(741\) 8.65087 0.317798
\(742\) 6.86886 0.252164
\(743\) −41.5200 −1.52322 −0.761611 0.648035i \(-0.775591\pi\)
−0.761611 + 0.648035i \(0.775591\pi\)
\(744\) 12.1870 0.446797
\(745\) 0 0
\(746\) 61.2940 2.24413
\(747\) 8.81545 0.322541
\(748\) 1.99355 0.0728913
\(749\) −15.2709 −0.557987
\(750\) 0 0
\(751\) −9.25144 −0.337590 −0.168795 0.985651i \(-0.553988\pi\)
−0.168795 + 0.985651i \(0.553988\pi\)
\(752\) −29.0605 −1.05973
\(753\) 3.67684 0.133992
\(754\) −72.0776 −2.62491
\(755\) 0 0
\(756\) −7.85332 −0.285622
\(757\) −46.3097 −1.68315 −0.841577 0.540138i \(-0.818372\pi\)
−0.841577 + 0.540138i \(0.818372\pi\)
\(758\) −16.3817 −0.595011
\(759\) −6.22935 −0.226111
\(760\) 0 0
\(761\) −13.8330 −0.501447 −0.250724 0.968059i \(-0.580669\pi\)
−0.250724 + 0.968059i \(0.580669\pi\)
\(762\) −26.4015 −0.956425
\(763\) 3.90048 0.141207
\(764\) 27.6493 1.00032
\(765\) 0 0
\(766\) −13.0027 −0.469808
\(767\) 67.0653 2.42159
\(768\) −32.5601 −1.17491
\(769\) −47.3912 −1.70897 −0.854486 0.519475i \(-0.826127\pi\)
−0.854486 + 0.519475i \(0.826127\pi\)
\(770\) 0 0
\(771\) 2.76030 0.0994098
\(772\) 7.06733 0.254359
\(773\) 2.71864 0.0977827 0.0488914 0.998804i \(-0.484431\pi\)
0.0488914 + 0.998804i \(0.484431\pi\)
\(774\) −3.39903 −0.122176
\(775\) 0 0
\(776\) 0.312547 0.0112198
\(777\) 8.98033 0.322167
\(778\) −17.5840 −0.630418
\(779\) −7.94318 −0.284594
\(780\) 0 0
\(781\) −3.30389 −0.118222
\(782\) −25.9830 −0.929151
\(783\) −39.0419 −1.39524
\(784\) −4.83261 −0.172593
\(785\) 0 0
\(786\) 11.6181 0.414404
\(787\) 42.6584 1.52061 0.760304 0.649567i \(-0.225050\pi\)
0.760304 + 0.649567i \(0.225050\pi\)
\(788\) 17.3700 0.618779
\(789\) −38.5344 −1.37186
\(790\) 0 0
\(791\) 11.5157 0.409450
\(792\) 0.408813 0.0145265
\(793\) −13.1202 −0.465912
\(794\) 33.2827 1.18116
\(795\) 0 0
\(796\) −15.0823 −0.534579
\(797\) −1.20848 −0.0428064 −0.0214032 0.999771i \(-0.506813\pi\)
−0.0214032 + 0.999771i \(0.506813\pi\)
\(798\) −2.86637 −0.101468
\(799\) −13.3945 −0.473864
\(800\) 0 0
\(801\) −3.81472 −0.134786
\(802\) −31.5756 −1.11497
\(803\) 0.663823 0.0234258
\(804\) 29.3048 1.03350
\(805\) 0 0
\(806\) −74.0363 −2.60782
\(807\) 41.2171 1.45091
\(808\) −6.46928 −0.227588
\(809\) 21.2138 0.745838 0.372919 0.927864i \(-0.378357\pi\)
0.372919 + 0.927864i \(0.378357\pi\)
\(810\) 0 0
\(811\) 15.5505 0.546051 0.273026 0.962007i \(-0.411976\pi\)
0.273026 + 0.962007i \(0.411976\pi\)
\(812\) 9.87141 0.346419
\(813\) −37.7174 −1.32281
\(814\) 6.78382 0.237773
\(815\) 0 0
\(816\) −16.7108 −0.584995
\(817\) −3.12028 −0.109165
\(818\) 56.6548 1.98089
\(819\) −3.28768 −0.114881
\(820\) 0 0
\(821\) −8.59655 −0.300022 −0.150011 0.988684i \(-0.547931\pi\)
−0.150011 + 0.988684i \(0.547931\pi\)
\(822\) −58.6394 −2.04528
\(823\) −43.7337 −1.52446 −0.762230 0.647306i \(-0.775896\pi\)
−0.762230 + 0.647306i \(0.775896\pi\)
\(824\) −5.49336 −0.191370
\(825\) 0 0
\(826\) −22.2213 −0.773178
\(827\) −1.50328 −0.0522740 −0.0261370 0.999658i \(-0.508321\pi\)
−0.0261370 + 0.999658i \(0.508321\pi\)
\(828\) 5.25235 0.182532
\(829\) −27.2420 −0.946153 −0.473076 0.881021i \(-0.656857\pi\)
−0.473076 + 0.881021i \(0.656857\pi\)
\(830\) 0 0
\(831\) −9.25192 −0.320945
\(832\) 15.4975 0.537279
\(833\) −2.22744 −0.0771761
\(834\) −40.1575 −1.39054
\(835\) 0 0
\(836\) −0.894996 −0.0309541
\(837\) −40.1029 −1.38616
\(838\) −33.8282 −1.16858
\(839\) −14.1262 −0.487692 −0.243846 0.969814i \(-0.578409\pi\)
−0.243846 + 0.969814i \(0.578409\pi\)
\(840\) 0 0
\(841\) 20.0746 0.692228
\(842\) 73.4445 2.53106
\(843\) −6.86864 −0.236568
\(844\) 19.5560 0.673146
\(845\) 0 0
\(846\) 6.55063 0.225215
\(847\) 10.5966 0.364103
\(848\) −17.9782 −0.617372
\(849\) 9.53344 0.327187
\(850\) 0 0
\(851\) −36.5464 −1.25279
\(852\) −11.3793 −0.389849
\(853\) −9.42263 −0.322625 −0.161312 0.986903i \(-0.551573\pi\)
−0.161312 + 0.986903i \(0.551573\pi\)
\(854\) 4.34723 0.148759
\(855\) 0 0
\(856\) 16.6602 0.569433
\(857\) 26.6568 0.910578 0.455289 0.890344i \(-0.349536\pi\)
0.455289 + 0.890344i \(0.349536\pi\)
\(858\) 10.1450 0.346345
\(859\) 18.0373 0.615425 0.307713 0.951479i \(-0.400436\pi\)
0.307713 + 0.951479i \(0.400436\pi\)
\(860\) 0 0
\(861\) −12.3312 −0.420245
\(862\) 13.6759 0.465804
\(863\) −49.8010 −1.69525 −0.847623 0.530600i \(-0.821967\pi\)
−0.847623 + 0.530600i \(0.821967\pi\)
\(864\) 37.5682 1.27810
\(865\) 0 0
\(866\) 5.34248 0.181545
\(867\) 18.6889 0.634707
\(868\) 10.1397 0.344163
\(869\) 0.968601 0.0328575
\(870\) 0 0
\(871\) 74.6496 2.52941
\(872\) −4.25532 −0.144103
\(873\) −0.169021 −0.00572051
\(874\) 11.6650 0.394574
\(875\) 0 0
\(876\) 2.28635 0.0772486
\(877\) 23.9045 0.807198 0.403599 0.914936i \(-0.367759\pi\)
0.403599 + 0.914936i \(0.367759\pi\)
\(878\) −24.7454 −0.835118
\(879\) −33.4036 −1.12667
\(880\) 0 0
\(881\) −22.3593 −0.753305 −0.376652 0.926355i \(-0.622925\pi\)
−0.376652 + 0.926355i \(0.622925\pi\)
\(882\) 1.08934 0.0366799
\(883\) −39.2226 −1.31994 −0.659972 0.751290i \(-0.729432\pi\)
−0.659972 + 0.751290i \(0.729432\pi\)
\(884\) 17.4907 0.588275
\(885\) 0 0
\(886\) −55.7328 −1.87238
\(887\) −26.7082 −0.896773 −0.448387 0.893840i \(-0.648001\pi\)
−0.448387 + 0.893840i \(0.648001\pi\)
\(888\) −9.79730 −0.328776
\(889\) 9.21079 0.308920
\(890\) 0 0
\(891\) 4.37102 0.146435
\(892\) −25.1513 −0.842128
\(893\) 6.01342 0.201231
\(894\) 9.92955 0.332094
\(895\) 0 0
\(896\) 8.34690 0.278850
\(897\) −54.6541 −1.82485
\(898\) 7.85348 0.262074
\(899\) 50.4082 1.68121
\(900\) 0 0
\(901\) −8.28645 −0.276062
\(902\) −9.31508 −0.310158
\(903\) −4.84399 −0.161198
\(904\) −12.5633 −0.417849
\(905\) 0 0
\(906\) 1.74221 0.0578811
\(907\) −12.1350 −0.402936 −0.201468 0.979495i \(-0.564571\pi\)
−0.201468 + 0.979495i \(0.564571\pi\)
\(908\) 10.3397 0.343134
\(909\) 3.49850 0.116038
\(910\) 0 0
\(911\) 20.5631 0.681286 0.340643 0.940193i \(-0.389355\pi\)
0.340643 + 0.940193i \(0.389355\pi\)
\(912\) 7.50226 0.248425
\(913\) 9.49019 0.314079
\(914\) 24.2954 0.803621
\(915\) 0 0
\(916\) 16.1212 0.532658
\(917\) −4.05325 −0.133850
\(918\) 22.9208 0.756499
\(919\) 9.87993 0.325909 0.162954 0.986634i \(-0.447898\pi\)
0.162954 + 0.986634i \(0.447898\pi\)
\(920\) 0 0
\(921\) 26.8842 0.885865
\(922\) 19.2091 0.632619
\(923\) −28.9871 −0.954122
\(924\) −1.38941 −0.0457083
\(925\) 0 0
\(926\) −40.4053 −1.32780
\(927\) 2.97073 0.0975717
\(928\) −47.2223 −1.55015
\(929\) −5.42109 −0.177860 −0.0889300 0.996038i \(-0.528345\pi\)
−0.0889300 + 0.996038i \(0.528345\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 34.6273 1.13425
\(933\) 24.0244 0.786525
\(934\) −56.8713 −1.86089
\(935\) 0 0
\(936\) 3.58678 0.117237
\(937\) −9.19384 −0.300350 −0.150175 0.988659i \(-0.547984\pi\)
−0.150175 + 0.988659i \(0.547984\pi\)
\(938\) −24.7343 −0.807603
\(939\) −20.3196 −0.663103
\(940\) 0 0
\(941\) −38.0888 −1.24166 −0.620830 0.783945i \(-0.713204\pi\)
−0.620830 + 0.783945i \(0.713204\pi\)
\(942\) 14.8722 0.484563
\(943\) 50.1830 1.63418
\(944\) 58.1607 1.89297
\(945\) 0 0
\(946\) −3.65920 −0.118971
\(947\) 40.9053 1.32924 0.664622 0.747179i \(-0.268592\pi\)
0.664622 + 0.747179i \(0.268592\pi\)
\(948\) 3.33607 0.108351
\(949\) 5.82414 0.189059
\(950\) 0 0
\(951\) 13.9632 0.452786
\(952\) 2.43008 0.0787592
\(953\) 27.3800 0.886925 0.443463 0.896293i \(-0.353750\pi\)
0.443463 + 0.896293i \(0.353750\pi\)
\(954\) 4.05252 0.131205
\(955\) 0 0
\(956\) 33.1436 1.07194
\(957\) −6.90731 −0.223282
\(958\) −68.5322 −2.21418
\(959\) 20.4577 0.660615
\(960\) 0 0
\(961\) 20.7781 0.670260
\(962\) 59.5187 1.91896
\(963\) −9.00960 −0.290330
\(964\) −41.0677 −1.32270
\(965\) 0 0
\(966\) 18.1090 0.582647
\(967\) −4.50712 −0.144939 −0.0724696 0.997371i \(-0.523088\pi\)
−0.0724696 + 0.997371i \(0.523088\pi\)
\(968\) −11.5606 −0.371572
\(969\) 3.45792 0.111085
\(970\) 0 0
\(971\) 24.6779 0.791952 0.395976 0.918261i \(-0.370406\pi\)
0.395976 + 0.918261i \(0.370406\pi\)
\(972\) −8.50522 −0.272805
\(973\) 14.0099 0.449136
\(974\) 41.2965 1.32323
\(975\) 0 0
\(976\) −11.3782 −0.364206
\(977\) 19.1163 0.611584 0.305792 0.952098i \(-0.401079\pi\)
0.305792 + 0.952098i \(0.401079\pi\)
\(978\) −50.2103 −1.60555
\(979\) −4.10670 −0.131251
\(980\) 0 0
\(981\) 2.30122 0.0734724
\(982\) −21.6082 −0.689544
\(983\) 36.5423 1.16552 0.582760 0.812644i \(-0.301973\pi\)
0.582760 + 0.812644i \(0.301973\pi\)
\(984\) 13.4530 0.428865
\(985\) 0 0
\(986\) −28.8108 −0.917524
\(987\) 9.33537 0.297148
\(988\) −7.85237 −0.249817
\(989\) 19.7132 0.626842
\(990\) 0 0
\(991\) 47.7696 1.51745 0.758726 0.651409i \(-0.225822\pi\)
0.758726 + 0.651409i \(0.225822\pi\)
\(992\) −48.5055 −1.54005
\(993\) −33.4123 −1.06031
\(994\) 9.60454 0.304638
\(995\) 0 0
\(996\) 32.6863 1.03570
\(997\) −48.9690 −1.55086 −0.775432 0.631432i \(-0.782468\pi\)
−0.775432 + 0.631432i \(0.782468\pi\)
\(998\) −24.2685 −0.768205
\(999\) 32.2392 1.02000
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3325.2.a.y.1.3 8
5.4 even 2 665.2.a.k.1.6 8
15.14 odd 2 5985.2.a.bq.1.3 8
35.34 odd 2 4655.2.a.bi.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
665.2.a.k.1.6 8 5.4 even 2
3325.2.a.y.1.3 8 1.1 even 1 trivial
4655.2.a.bi.1.6 8 35.34 odd 2
5985.2.a.bq.1.3 8 15.14 odd 2