Properties

Label 33120.2.a.ce
Level $33120$
Weight $2$
Character orbit 33120.a
Self dual yes
Analytic conductor $264.465$
Dimension $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [33120,2,Mod(1,33120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("33120.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(33120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 33120 = 2^{5} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 33120.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-4,0,1,0,0,0,6,0,4,0,0,0,11,0,-4,0,0,0,4,0,4,0,0,0,11, 0,-11,0,0,0,-1,0,-11,0,0,0,7,0,-8,0,0,0,12,0,3,0,0,0,11,0,-6,0,0,0,11, 0,16,0,0,0,-4,0,-17,0,0,0,31,0,6,0,0,0,12,0,-16,0,0,0,-3,0,-11,0,0,0,14, 0,-18,0,0,0,4,0,-4,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(264.464531494\)
Dimension: \(4\)
Coefficient field: 4.4.22676.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 6x + 2 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 4 q - 4 q^{5} + q^{7} + 6 q^{11} + 4 q^{13} + 11 q^{17} - 4 q^{19} + 4 q^{23} + 4 q^{25} + 11 q^{29} - 11 q^{31} - q^{35} - 11 q^{37} + 7 q^{41} - 8 q^{43} + 12 q^{47} + 3 q^{49} + 11 q^{53} - 6 q^{55}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(23\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.