Defining parameters
| Level: | \( N \) | \(=\) | \( 33120 = 2^{5} \cdot 3^{2} \cdot 5 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 33120.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 110 \) | ||
| Sturm bound: | \(13824\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(33120))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 6976 | 440 | 6536 |
| Cusp forms | 6849 | 440 | 6409 |
| Eisenstein series | 127 | 0 | 127 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(420\) | \(22\) | \(398\) | \(413\) | \(22\) | \(391\) | \(7\) | \(0\) | \(7\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(448\) | \(22\) | \(426\) | \(440\) | \(22\) | \(418\) | \(8\) | \(0\) | \(8\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(444\) | \(22\) | \(422\) | \(436\) | \(22\) | \(414\) | \(8\) | \(0\) | \(8\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(432\) | \(22\) | \(410\) | \(424\) | \(22\) | \(402\) | \(8\) | \(0\) | \(8\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(442\) | \(36\) | \(406\) | \(434\) | \(36\) | \(398\) | \(8\) | \(0\) | \(8\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(434\) | \(31\) | \(403\) | \(426\) | \(31\) | \(395\) | \(8\) | \(0\) | \(8\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(438\) | \(31\) | \(407\) | \(430\) | \(31\) | \(399\) | \(8\) | \(0\) | \(8\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(430\) | \(36\) | \(394\) | \(422\) | \(36\) | \(386\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(452\) | \(22\) | \(430\) | \(444\) | \(22\) | \(422\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(424\) | \(22\) | \(402\) | \(416\) | \(22\) | \(394\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(428\) | \(22\) | \(406\) | \(420\) | \(22\) | \(398\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(440\) | \(22\) | \(418\) | \(432\) | \(22\) | \(410\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(430\) | \(30\) | \(400\) | \(422\) | \(30\) | \(392\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(438\) | \(35\) | \(403\) | \(430\) | \(35\) | \(395\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(434\) | \(35\) | \(399\) | \(426\) | \(35\) | \(391\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(442\) | \(30\) | \(412\) | \(434\) | \(30\) | \(404\) | \(8\) | \(0\) | \(8\) | |||
| Plus space | \(+\) | \(3448\) | \(210\) | \(3238\) | \(3385\) | \(210\) | \(3175\) | \(63\) | \(0\) | \(63\) | ||||||
| Minus space | \(-\) | \(3528\) | \(230\) | \(3298\) | \(3464\) | \(230\) | \(3234\) | \(64\) | \(0\) | \(64\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(33120))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | 23 | |||||||
| 33120.2.a.a | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-4\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{5}-4q^{7}-4q^{11}-2q^{13}-2q^{17}+\cdots\) | |
| 33120.2.a.b | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-4\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{5}-4q^{7}+2q^{11}-4q^{13}-6q^{17}+\cdots\) | |
| 33120.2.a.c | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-4\) | $+$ | $+$ | $+$ | $-$ | \(q-q^{5}-4q^{7}+4q^{11}-4q^{13}+8q^{19}+\cdots\) | |
| 33120.2.a.d | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-2\) | $-$ | $-$ | $+$ | $-$ | \(q-q^{5}-2q^{7}-6q^{11}+2q^{13}+4q^{17}+\cdots\) | |
| 33120.2.a.e | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-2\) | $+$ | $+$ | $+$ | $-$ | \(q-q^{5}-2q^{7}-2q^{11}-4q^{13}-6q^{17}+\cdots\) | |
| 33120.2.a.f | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-2\) | $-$ | $+$ | $+$ | $-$ | \(q-q^{5}-2q^{7}+4q^{11}-2q^{13}+6q^{17}+\cdots\) | |
| 33120.2.a.g | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q-q^{5}-q^{7}+2q^{11}-4q^{13}+3q^{17}+\cdots\) | |
| 33120.2.a.h | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $-$ | \(q-q^{5}-6q^{11}+4q^{13}-2q^{17}-4q^{19}+\cdots\) | |
| 33120.2.a.i | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $-$ | \(q-q^{5}-6q^{13}-6q^{17}-8q^{19}+q^{23}+\cdots\) | |
| 33120.2.a.j | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{5}-6q^{13}-6q^{17}+8q^{19}-q^{23}+\cdots\) | |
| 33120.2.a.k | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $+$ | \(q-q^{5}+6q^{11}+4q^{13}-2q^{17}+4q^{19}+\cdots\) | |
| 33120.2.a.l | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(1\) | $+$ | $-$ | $+$ | $-$ | \(q-q^{5}+q^{7}-2q^{11}-4q^{13}+3q^{17}+\cdots\) | |
| 33120.2.a.m | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(2\) | $-$ | $+$ | $+$ | $+$ | \(q-q^{5}+2q^{7}-4q^{11}-2q^{13}+6q^{17}+\cdots\) | |
| 33120.2.a.n | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(2\) | $-$ | $+$ | $+$ | $+$ | \(q-q^{5}+2q^{7}+2q^{11}-4q^{13}-6q^{17}+\cdots\) | |
| 33120.2.a.o | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(2\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{5}+2q^{7}+6q^{11}+2q^{13}+4q^{17}+\cdots\) | |
| 33120.2.a.p | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(4\) | $-$ | $+$ | $+$ | $+$ | \(q-q^{5}+4q^{7}-4q^{11}-4q^{13}-8q^{19}+\cdots\) | |
| 33120.2.a.q | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(4\) | $-$ | $-$ | $+$ | $-$ | \(q-q^{5}+4q^{7}-2q^{11}-4q^{13}-6q^{17}+\cdots\) | |
| 33120.2.a.r | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(4\) | $+$ | $-$ | $+$ | $-$ | \(q-q^{5}+4q^{7}+4q^{11}-2q^{13}-2q^{17}+\cdots\) | |
| 33120.2.a.s | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(-5\) | $+$ | $-$ | $-$ | $+$ | \(q+q^{5}-5q^{7}+2q^{11}+4q^{13}-3q^{17}+\cdots\) | |
| 33120.2.a.t | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(-4\) | $-$ | $+$ | $-$ | $+$ | \(q+q^{5}-4q^{7}-4q^{11}-4q^{13}+8q^{19}+\cdots\) | |
| 33120.2.a.u | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(-3\) | $+$ | $-$ | $-$ | $-$ | \(q+q^{5}-3q^{7}+6q^{11}+4q^{13}-7q^{17}+\cdots\) | |
| 33120.2.a.v | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(-2\) | $+$ | $+$ | $-$ | $+$ | \(q+q^{5}-2q^{7}-4q^{11}-2q^{13}-6q^{17}+\cdots\) | |
| 33120.2.a.w | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(-2\) | $-$ | $+$ | $-$ | $+$ | \(q+q^{5}-2q^{7}+2q^{11}-4q^{13}+6q^{17}+\cdots\) | |
| 33120.2.a.x | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(-1\) | $+$ | $-$ | $-$ | $+$ | \(q+q^{5}-q^{7}+2q^{11}+q^{17}+4q^{19}+\cdots\) | |
| 33120.2.a.y | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{5}-4q^{11}-6q^{13}-6q^{17}-4q^{19}+\cdots\) | |
| 33120.2.a.z | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{5}-4q^{11}-2q^{13}-6q^{17}-2q^{19}+\cdots\) | |
| 33120.2.a.ba | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(0\) | $+$ | $-$ | $-$ | $+$ | \(q+q^{5}-4q^{11}-2q^{13}-2q^{17}-4q^{19}+\cdots\) | |
| 33120.2.a.bb | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{5}-2q^{13}+2q^{17}-4q^{19}-q^{23}+\cdots\) | |
| 33120.2.a.bc | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(0\) | $+$ | $-$ | $-$ | $-$ | \(q+q^{5}-2q^{13}+2q^{17}+4q^{19}+q^{23}+\cdots\) | |
| 33120.2.a.bd | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(0\) | $+$ | $-$ | $-$ | $-$ | \(q+q^{5}+4q^{11}-6q^{13}-6q^{17}+4q^{19}+\cdots\) | |
| 33120.2.a.be | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{5}+4q^{11}-2q^{13}-6q^{17}+2q^{19}+\cdots\) | |
| 33120.2.a.bf | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(0\) | $+$ | $-$ | $-$ | $-$ | \(q+q^{5}+4q^{11}-2q^{13}-2q^{17}+4q^{19}+\cdots\) | |
| 33120.2.a.bg | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(1\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{5}+q^{7}-2q^{11}+q^{17}-4q^{19}+\cdots\) | |
| 33120.2.a.bh | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(2\) | $+$ | $+$ | $-$ | $-$ | \(q+q^{5}+2q^{7}-2q^{11}-4q^{13}+6q^{17}+\cdots\) | |
| 33120.2.a.bi | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(2\) | $+$ | $+$ | $-$ | $-$ | \(q+q^{5}+2q^{7}+4q^{11}-2q^{13}-6q^{17}+\cdots\) | |
| 33120.2.a.bj | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(3\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{5}+3q^{7}-6q^{11}+4q^{13}-7q^{17}+\cdots\) | |
| 33120.2.a.bk | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(4\) | $+$ | $+$ | $-$ | $-$ | \(q+q^{5}+4q^{7}+4q^{11}-4q^{13}-8q^{19}+\cdots\) | |
| 33120.2.a.bl | $1$ | $264.465$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(5\) | $+$ | $-$ | $-$ | $-$ | \(q+q^{5}+5q^{7}-2q^{11}+4q^{13}-3q^{17}+\cdots\) | |
| 33120.2.a.bm | $2$ | $264.465$ | \(\Q(\sqrt{7}) \) | None | \(0\) | \(0\) | \(-2\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
| 33120.2.a.bn | $2$ | $264.465$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | $+$ | $+$ | $+$ | $+$ | ||
| 33120.2.a.bo | $2$ | $264.465$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | $+$ | $+$ | $+$ | $-$ | ||
| 33120.2.a.bp | $2$ | $264.465$ | \(\Q(\sqrt{7}) \) | None | \(0\) | \(0\) | \(-2\) | \(2\) | $-$ | $-$ | $+$ | $+$ | ||
| 33120.2.a.bq | $2$ | $264.465$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(0\) | \(2\) | \(-3\) | $-$ | $-$ | $-$ | $+$ | ||
| 33120.2.a.br | $2$ | $264.465$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(0\) | \(2\) | \(-2\) | $+$ | $-$ | $-$ | $+$ | ||
| 33120.2.a.bs | $2$ | $264.465$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | $-$ | $+$ | $-$ | $+$ | ||
| 33120.2.a.bt | $2$ | $264.465$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | $-$ | $+$ | $-$ | $-$ | ||
| 33120.2.a.bu | $2$ | $264.465$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(0\) | \(2\) | \(2\) | $-$ | $-$ | $-$ | $-$ | ||
| 33120.2.a.bv | $2$ | $264.465$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(0\) | \(2\) | \(3\) | $+$ | $-$ | $-$ | $-$ | ||
| 33120.2.a.bw | $3$ | $264.465$ | 3.3.1573.1 | None | \(0\) | \(0\) | \(-3\) | \(-4\) | $-$ | $-$ | $+$ | $-$ | ||
| 33120.2.a.bx | $3$ | $264.465$ | 3.3.148.1 | None | \(0\) | \(0\) | \(-3\) | \(-3\) | $+$ | $-$ | $+$ | $+$ | ||
| 33120.2.a.by | $3$ | $264.465$ | 3.3.148.1 | None | \(0\) | \(0\) | \(-3\) | \(3\) | $+$ | $-$ | $+$ | $-$ | ||
| 33120.2.a.bz | $3$ | $264.465$ | 3.3.1573.1 | None | \(0\) | \(0\) | \(-3\) | \(4\) | $+$ | $-$ | $+$ | $+$ | ||
| 33120.2.a.ca | $4$ | $264.465$ | 4.4.11348.1 | None | \(0\) | \(0\) | \(-4\) | \(-5\) | $-$ | $-$ | $+$ | $-$ | ||
| 33120.2.a.cb | $4$ | $264.465$ | 4.4.63796.1 | None | \(0\) | \(0\) | \(-4\) | \(-3\) | $-$ | $-$ | $+$ | $+$ | ||
| 33120.2.a.cc | $4$ | $264.465$ | 4.4.19796.1 | None | \(0\) | \(0\) | \(-4\) | \(-3\) | $+$ | $-$ | $+$ | $+$ | ||
| 33120.2.a.cd | $4$ | $264.465$ | 4.4.22676.1 | None | \(0\) | \(0\) | \(-4\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | ||
| 33120.2.a.ce | $4$ | $264.465$ | 4.4.22676.1 | None | \(0\) | \(0\) | \(-4\) | \(1\) | $-$ | $-$ | $+$ | $-$ | ||
| 33120.2.a.cf | $4$ | $264.465$ | 4.4.63796.1 | None | \(0\) | \(0\) | \(-4\) | \(3\) | $+$ | $-$ | $+$ | $-$ | ||
| 33120.2.a.cg | $4$ | $264.465$ | 4.4.19796.1 | None | \(0\) | \(0\) | \(-4\) | \(3\) | $-$ | $-$ | $+$ | $-$ | ||
| 33120.2.a.ch | $4$ | $264.465$ | 4.4.11348.1 | None | \(0\) | \(0\) | \(-4\) | \(5\) | $-$ | $-$ | $+$ | $+$ | ||
| 33120.2.a.ci | $4$ | $264.465$ | 4.4.21208.1 | None | \(0\) | \(0\) | \(4\) | \(-5\) | $+$ | $-$ | $-$ | $-$ | ||
| 33120.2.a.cj | $4$ | $264.465$ | 4.4.25492.1 | None | \(0\) | \(0\) | \(4\) | \(-3\) | $-$ | $-$ | $-$ | $+$ | ||
| 33120.2.a.ck | $4$ | $264.465$ | 4.4.25492.1 | None | \(0\) | \(0\) | \(4\) | \(3\) | $+$ | $-$ | $-$ | $-$ | ||
| 33120.2.a.cl | $4$ | $264.465$ | 4.4.21208.1 | None | \(0\) | \(0\) | \(4\) | \(5\) | $+$ | $-$ | $-$ | $+$ | ||
| 33120.2.a.cm | $5$ | $264.465$ | 5.5.406264.1 | None | \(0\) | \(0\) | \(-5\) | \(-8\) | $-$ | $-$ | $+$ | $+$ | ||
| 33120.2.a.cn | $5$ | $264.465$ | 5.5.876604.1 | None | \(0\) | \(0\) | \(-5\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | ||
| 33120.2.a.co | $5$ | $264.465$ | 5.5.876604.1 | None | \(0\) | \(0\) | \(-5\) | \(1\) | $-$ | $-$ | $+$ | $-$ | ||
| 33120.2.a.cp | $5$ | $264.465$ | 5.5.406264.1 | None | \(0\) | \(0\) | \(-5\) | \(8\) | $-$ | $-$ | $+$ | $-$ | ||
| 33120.2.a.cq | $5$ | $264.465$ | 5.5.4276148.1 | None | \(0\) | \(0\) | \(5\) | \(-5\) | $+$ | $-$ | $-$ | $-$ | ||
| 33120.2.a.cr | $5$ | $264.465$ | 5.5.792644.1 | None | \(0\) | \(0\) | \(5\) | \(-5\) | $+$ | $-$ | $-$ | $+$ | ||
| 33120.2.a.cs | $5$ | $264.465$ | 5.5.2255384.1 | None | \(0\) | \(0\) | \(5\) | \(-4\) | $-$ | $-$ | $-$ | $-$ | ||
| 33120.2.a.ct | $5$ | $264.465$ | 5.5.998068.1 | None | \(0\) | \(0\) | \(5\) | \(-3\) | $-$ | $-$ | $-$ | $-$ | ||
| 33120.2.a.cu | $5$ | $264.465$ | 5.5.1143052.1 | None | \(0\) | \(0\) | \(5\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | ||
| 33120.2.a.cv | $5$ | $264.465$ | 5.5.387268.1 | None | \(0\) | \(0\) | \(5\) | \(-1\) | $-$ | $-$ | $-$ | $-$ | ||
| 33120.2.a.cw | $5$ | $264.465$ | 5.5.2147332.1 | None | \(0\) | \(0\) | \(5\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | ||
| 33120.2.a.cx | $5$ | $264.465$ | 5.5.2147332.1 | None | \(0\) | \(0\) | \(5\) | \(1\) | $-$ | $-$ | $-$ | $-$ | ||
| 33120.2.a.cy | $5$ | $264.465$ | 5.5.387268.1 | None | \(0\) | \(0\) | \(5\) | \(1\) | $-$ | $-$ | $-$ | $+$ | ||
| 33120.2.a.cz | $5$ | $264.465$ | 5.5.1143052.1 | None | \(0\) | \(0\) | \(5\) | \(1\) | $+$ | $-$ | $-$ | $-$ | ||
| 33120.2.a.da | $5$ | $264.465$ | 5.5.998068.1 | None | \(0\) | \(0\) | \(5\) | \(3\) | $+$ | $-$ | $-$ | $+$ | ||
| 33120.2.a.db | $5$ | $264.465$ | 5.5.2255384.1 | None | \(0\) | \(0\) | \(5\) | \(4\) | $-$ | $-$ | $-$ | $+$ | ||
| 33120.2.a.dc | $5$ | $264.465$ | 5.5.792644.1 | None | \(0\) | \(0\) | \(5\) | \(5\) | $+$ | $-$ | $-$ | $-$ | ||
| 33120.2.a.dd | $5$ | $264.465$ | 5.5.4276148.1 | None | \(0\) | \(0\) | \(5\) | \(5\) | $-$ | $-$ | $-$ | $+$ | ||
| 33120.2.a.de | $6$ | $264.465$ | 6.6.255601784.1 | None | \(0\) | \(0\) | \(-6\) | \(-4\) | $+$ | $-$ | $+$ | $-$ | ||
| 33120.2.a.df | $6$ | $264.465$ | 6.6.21692500.1 | None | \(0\) | \(0\) | \(-6\) | \(-1\) | $+$ | $-$ | $+$ | $-$ | ||
| 33120.2.a.dg | $6$ | $264.465$ | 6.6.21692500.1 | None | \(0\) | \(0\) | \(-6\) | \(1\) | $-$ | $-$ | $+$ | $+$ | ||
| 33120.2.a.dh | $6$ | $264.465$ | 6.6.255601784.1 | None | \(0\) | \(0\) | \(-6\) | \(4\) | $+$ | $-$ | $+$ | $+$ | ||
| 33120.2.a.di | $6$ | $264.465$ | 6.6.1656120708.1 | None | \(0\) | \(0\) | \(6\) | \(-3\) | $+$ | $-$ | $-$ | $+$ | ||
| 33120.2.a.dj | $6$ | $264.465$ | 6.6.180753348.1 | None | \(0\) | \(0\) | \(6\) | \(-3\) | $-$ | $-$ | $-$ | $-$ | ||
| 33120.2.a.dk | $6$ | $264.465$ | 6.6.180753348.1 | None | \(0\) | \(0\) | \(6\) | \(3\) | $+$ | $-$ | $-$ | $+$ | ||
| 33120.2.a.dl | $6$ | $264.465$ | 6.6.1656120708.1 | None | \(0\) | \(0\) | \(6\) | \(3\) | $+$ | $-$ | $-$ | $-$ | ||
| 33120.2.a.dm | $7$ | $264.465$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(0\) | \(-7\) | \(-7\) | $+$ | $-$ | $+$ | $-$ | ||
| 33120.2.a.dn | $7$ | $264.465$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(0\) | \(-7\) | \(-3\) | $-$ | $-$ | $+$ | $-$ | ||
| 33120.2.a.do | $7$ | $264.465$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(0\) | \(-7\) | \(3\) | $-$ | $-$ | $+$ | $+$ | ||
| 33120.2.a.dp | $7$ | $264.465$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(0\) | \(-7\) | \(7\) | $+$ | $-$ | $+$ | $+$ | ||
| 33120.2.a.dq | $9$ | $264.465$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(0\) | \(-9\) | \(-4\) | $-$ | $+$ | $+$ | $+$ | ||
| 33120.2.a.dr | $9$ | $264.465$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(0\) | \(-9\) | \(0\) | $+$ | $+$ | $+$ | $-$ | ||
| 33120.2.a.ds | $9$ | $264.465$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(0\) | \(-9\) | \(0\) | $+$ | $+$ | $+$ | $+$ | ||
| 33120.2.a.dt | $9$ | $264.465$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(0\) | \(-9\) | \(4\) | $+$ | $+$ | $+$ | $-$ | ||
| 33120.2.a.du | $9$ | $264.465$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(0\) | \(9\) | \(-4\) | $+$ | $+$ | $-$ | $-$ | ||
| 33120.2.a.dv | $9$ | $264.465$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(0\) | \(9\) | \(0\) | $-$ | $+$ | $-$ | $-$ | ||
| 33120.2.a.dw | $9$ | $264.465$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(0\) | \(9\) | \(0\) | $-$ | $+$ | $-$ | $+$ | ||
| 33120.2.a.dx | $9$ | $264.465$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(0\) | \(9\) | \(4\) | $-$ | $+$ | $-$ | $+$ | ||
| 33120.2.a.dy | $10$ | $264.465$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(0\) | \(-10\) | \(-10\) | $-$ | $+$ | $+$ | $+$ | ||
| 33120.2.a.dz | $10$ | $264.465$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(0\) | \(-10\) | \(10\) | $-$ | $+$ | $+$ | $-$ | ||
| 33120.2.a.ea | $10$ | $264.465$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(0\) | \(10\) | \(-10\) | $+$ | $+$ | $-$ | $-$ | ||
| 33120.2.a.eb | $10$ | $264.465$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(0\) | \(10\) | \(10\) | $+$ | $+$ | $-$ | $+$ | ||
| 33120.2.a.ec | $11$ | $264.465$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(0\) | \(0\) | \(-11\) | \(-6\) | $-$ | $+$ | $+$ | $-$ | ||
| 33120.2.a.ed | $11$ | $264.465$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(0\) | \(0\) | \(-11\) | \(6\) | $+$ | $+$ | $+$ | $+$ | ||
| 33120.2.a.ee | $11$ | $264.465$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(0\) | \(0\) | \(11\) | \(-6\) | $+$ | $+$ | $-$ | $+$ | ||
| 33120.2.a.ef | $11$ | $264.465$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(0\) | \(0\) | \(11\) | \(6\) | $-$ | $+$ | $-$ | $-$ | ||
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(33120))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(33120)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 36}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 30}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(138))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(184))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(207))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(230))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(240))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(276))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(288))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(345))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(360))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(368))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(414))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(460))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(480))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(552))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(690))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(720))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(736))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(828))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(920))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1035))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1104))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1380))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1440))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1656))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1840))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2070))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2208))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2760))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3312))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3680))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4140))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5520))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6624))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(8280))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(11040))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(16560))\)\(^{\oplus 2}\)