Properties

Label 33120.2.a
Level $33120$
Weight $2$
Character orbit 33120.a
Rep. character $\chi_{33120}(1,\cdot)$
Character field $\Q$
Dimension $440$
Newform subspaces $110$
Sturm bound $13824$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 33120 = 2^{5} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 33120.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 110 \)
Sturm bound: \(13824\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(33120))\).

Total New Old
Modular forms 6976 440 6536
Cusp forms 6849 440 6409
Eisenstein series 127 0 127

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(23\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(420\)\(22\)\(398\)\(413\)\(22\)\(391\)\(7\)\(0\)\(7\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(448\)\(22\)\(426\)\(440\)\(22\)\(418\)\(8\)\(0\)\(8\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(444\)\(22\)\(422\)\(436\)\(22\)\(414\)\(8\)\(0\)\(8\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(432\)\(22\)\(410\)\(424\)\(22\)\(402\)\(8\)\(0\)\(8\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(442\)\(36\)\(406\)\(434\)\(36\)\(398\)\(8\)\(0\)\(8\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(434\)\(31\)\(403\)\(426\)\(31\)\(395\)\(8\)\(0\)\(8\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(438\)\(31\)\(407\)\(430\)\(31\)\(399\)\(8\)\(0\)\(8\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(430\)\(36\)\(394\)\(422\)\(36\)\(386\)\(8\)\(0\)\(8\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(452\)\(22\)\(430\)\(444\)\(22\)\(422\)\(8\)\(0\)\(8\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(424\)\(22\)\(402\)\(416\)\(22\)\(394\)\(8\)\(0\)\(8\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(428\)\(22\)\(406\)\(420\)\(22\)\(398\)\(8\)\(0\)\(8\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(440\)\(22\)\(418\)\(432\)\(22\)\(410\)\(8\)\(0\)\(8\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(430\)\(30\)\(400\)\(422\)\(30\)\(392\)\(8\)\(0\)\(8\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(438\)\(35\)\(403\)\(430\)\(35\)\(395\)\(8\)\(0\)\(8\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(434\)\(35\)\(399\)\(426\)\(35\)\(391\)\(8\)\(0\)\(8\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(442\)\(30\)\(412\)\(434\)\(30\)\(404\)\(8\)\(0\)\(8\)
Plus space\(+\)\(3448\)\(210\)\(3238\)\(3385\)\(210\)\(3175\)\(63\)\(0\)\(63\)
Minus space\(-\)\(3528\)\(230\)\(3298\)\(3464\)\(230\)\(3234\)\(64\)\(0\)\(64\)

Trace form

\( 440 q - 32 q^{13} + 16 q^{17} + 440 q^{25} - 32 q^{37} - 48 q^{41} + 408 q^{49} - 32 q^{53} - 64 q^{61} - 80 q^{73} - 32 q^{77} + 16 q^{89} - 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(33120))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 23
33120.2.a.a 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(-4\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-4q^{7}-4q^{11}-2q^{13}-2q^{17}+\cdots\)
33120.2.a.b 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(-4\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-4q^{7}+2q^{11}-4q^{13}-6q^{17}+\cdots\)
33120.2.a.c 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(-4\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-4q^{7}+4q^{11}-4q^{13}+8q^{19}+\cdots\)
33120.2.a.d 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-2q^{7}-6q^{11}+2q^{13}+4q^{17}+\cdots\)
33120.2.a.e 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(-2\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-2q^{7}-2q^{11}-4q^{13}-6q^{17}+\cdots\)
33120.2.a.f 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(-2\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-2q^{7}+4q^{11}-2q^{13}+6q^{17}+\cdots\)
33120.2.a.g 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-q^{7}+2q^{11}-4q^{13}+3q^{17}+\cdots\)
33120.2.a.h 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(0\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-6q^{11}+4q^{13}-2q^{17}-4q^{19}+\cdots\)
33120.2.a.i 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(0\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-6q^{13}-6q^{17}-8q^{19}+q^{23}+\cdots\)
33120.2.a.j 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(0\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-6q^{13}-6q^{17}+8q^{19}-q^{23}+\cdots\)
33120.2.a.k 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(0\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}+6q^{11}+4q^{13}-2q^{17}+4q^{19}+\cdots\)
33120.2.a.l 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}+q^{7}-2q^{11}-4q^{13}+3q^{17}+\cdots\)
33120.2.a.m 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}+2q^{7}-4q^{11}-2q^{13}+6q^{17}+\cdots\)
33120.2.a.n 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}+2q^{7}+2q^{11}-4q^{13}-6q^{17}+\cdots\)
33120.2.a.o 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(2\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}+2q^{7}+6q^{11}+2q^{13}+4q^{17}+\cdots\)
33120.2.a.p 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(4\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}+4q^{7}-4q^{11}-4q^{13}-8q^{19}+\cdots\)
33120.2.a.q 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(4\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}+4q^{7}-2q^{11}-4q^{13}-6q^{17}+\cdots\)
33120.2.a.r 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(-1\) \(4\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}+4q^{7}+4q^{11}-2q^{13}-2q^{17}+\cdots\)
33120.2.a.s 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(-5\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-5q^{7}+2q^{11}+4q^{13}-3q^{17}+\cdots\)
33120.2.a.t 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(-4\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-4q^{7}-4q^{11}-4q^{13}+8q^{19}+\cdots\)
33120.2.a.u 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(-3\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}-3q^{7}+6q^{11}+4q^{13}-7q^{17}+\cdots\)
33120.2.a.v 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(-2\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-2q^{7}-4q^{11}-2q^{13}-6q^{17}+\cdots\)
33120.2.a.w 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(-2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-2q^{7}+2q^{11}-4q^{13}+6q^{17}+\cdots\)
33120.2.a.x 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(-1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-q^{7}+2q^{11}+q^{17}+4q^{19}+\cdots\)
33120.2.a.y 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(0\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-4q^{11}-6q^{13}-6q^{17}-4q^{19}+\cdots\)
33120.2.a.z 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(0\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-4q^{11}-2q^{13}-6q^{17}-2q^{19}+\cdots\)
33120.2.a.ba 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(0\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-4q^{11}-2q^{13}-2q^{17}-4q^{19}+\cdots\)
33120.2.a.bb 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(0\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-2q^{13}+2q^{17}-4q^{19}-q^{23}+\cdots\)
33120.2.a.bc 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(0\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}-2q^{13}+2q^{17}+4q^{19}+q^{23}+\cdots\)
33120.2.a.bd 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(0\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+4q^{11}-6q^{13}-6q^{17}+4q^{19}+\cdots\)
33120.2.a.be 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(0\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+4q^{11}-2q^{13}-6q^{17}+2q^{19}+\cdots\)
33120.2.a.bf 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(0\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+4q^{11}-2q^{13}-2q^{17}+4q^{19}+\cdots\)
33120.2.a.bg 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+q^{7}-2q^{11}+q^{17}-4q^{19}+\cdots\)
33120.2.a.bh 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(2\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+2q^{7}-2q^{11}-4q^{13}+6q^{17}+\cdots\)
33120.2.a.bi 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(2\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+2q^{7}+4q^{11}-2q^{13}-6q^{17}+\cdots\)
33120.2.a.bj 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(3\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}+3q^{7}-6q^{11}+4q^{13}-7q^{17}+\cdots\)
33120.2.a.bk 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(4\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+4q^{7}+4q^{11}-4q^{13}-8q^{19}+\cdots\)
33120.2.a.bl 33120.a 1.a $1$ $264.465$ \(\Q\) None \(0\) \(0\) \(1\) \(5\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+5q^{7}-2q^{11}+4q^{13}-3q^{17}+\cdots\)
33120.2.a.bm 33120.a 1.a $2$ $264.465$ \(\Q(\sqrt{7}) \) None \(0\) \(0\) \(-2\) \(-2\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.bn 33120.a 1.a $2$ $264.465$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(-2\) \(0\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.bo 33120.a 1.a $2$ $264.465$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(-2\) \(0\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.bp 33120.a 1.a $2$ $264.465$ \(\Q(\sqrt{7}) \) None \(0\) \(0\) \(-2\) \(2\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.bq 33120.a 1.a $2$ $264.465$ \(\Q(\sqrt{13}) \) None \(0\) \(0\) \(2\) \(-3\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.br 33120.a 1.a $2$ $264.465$ \(\Q(\sqrt{3}) \) None \(0\) \(0\) \(2\) \(-2\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.bs 33120.a 1.a $2$ $264.465$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(2\) \(0\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.bt 33120.a 1.a $2$ $264.465$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(2\) \(0\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.bu 33120.a 1.a $2$ $264.465$ \(\Q(\sqrt{3}) \) None \(0\) \(0\) \(2\) \(2\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.bv 33120.a 1.a $2$ $264.465$ \(\Q(\sqrt{13}) \) None \(0\) \(0\) \(2\) \(3\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.bw 33120.a 1.a $3$ $264.465$ 3.3.1573.1 None \(0\) \(0\) \(-3\) \(-4\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.bx 33120.a 1.a $3$ $264.465$ 3.3.148.1 None \(0\) \(0\) \(-3\) \(-3\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.by 33120.a 1.a $3$ $264.465$ 3.3.148.1 None \(0\) \(0\) \(-3\) \(3\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.bz 33120.a 1.a $3$ $264.465$ 3.3.1573.1 None \(0\) \(0\) \(-3\) \(4\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.ca 33120.a 1.a $4$ $264.465$ 4.4.11348.1 None \(0\) \(0\) \(-4\) \(-5\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.cb 33120.a 1.a $4$ $264.465$ 4.4.63796.1 None \(0\) \(0\) \(-4\) \(-3\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.cc 33120.a 1.a $4$ $264.465$ 4.4.19796.1 None \(0\) \(0\) \(-4\) \(-3\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.cd 33120.a 1.a $4$ $264.465$ 4.4.22676.1 None \(0\) \(0\) \(-4\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.ce 33120.a 1.a $4$ $264.465$ 4.4.22676.1 None \(0\) \(0\) \(-4\) \(1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.cf 33120.a 1.a $4$ $264.465$ 4.4.63796.1 None \(0\) \(0\) \(-4\) \(3\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.cg 33120.a 1.a $4$ $264.465$ 4.4.19796.1 None \(0\) \(0\) \(-4\) \(3\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.ch 33120.a 1.a $4$ $264.465$ 4.4.11348.1 None \(0\) \(0\) \(-4\) \(5\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.ci 33120.a 1.a $4$ $264.465$ 4.4.21208.1 None \(0\) \(0\) \(4\) \(-5\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.cj 33120.a 1.a $4$ $264.465$ 4.4.25492.1 None \(0\) \(0\) \(4\) \(-3\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.ck 33120.a 1.a $4$ $264.465$ 4.4.25492.1 None \(0\) \(0\) \(4\) \(3\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.cl 33120.a 1.a $4$ $264.465$ 4.4.21208.1 None \(0\) \(0\) \(4\) \(5\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.cm 33120.a 1.a $5$ $264.465$ 5.5.406264.1 None \(0\) \(0\) \(-5\) \(-8\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.cn 33120.a 1.a $5$ $264.465$ 5.5.876604.1 None \(0\) \(0\) \(-5\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.co 33120.a 1.a $5$ $264.465$ 5.5.876604.1 None \(0\) \(0\) \(-5\) \(1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.cp 33120.a 1.a $5$ $264.465$ 5.5.406264.1 None \(0\) \(0\) \(-5\) \(8\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.cq 33120.a 1.a $5$ $264.465$ 5.5.4276148.1 None \(0\) \(0\) \(5\) \(-5\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.cr 33120.a 1.a $5$ $264.465$ 5.5.792644.1 None \(0\) \(0\) \(5\) \(-5\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.cs 33120.a 1.a $5$ $264.465$ 5.5.2255384.1 None \(0\) \(0\) \(5\) \(-4\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.ct 33120.a 1.a $5$ $264.465$ 5.5.998068.1 None \(0\) \(0\) \(5\) \(-3\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.cu 33120.a 1.a $5$ $264.465$ 5.5.1143052.1 None \(0\) \(0\) \(5\) \(-1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.cv 33120.a 1.a $5$ $264.465$ 5.5.387268.1 None \(0\) \(0\) \(5\) \(-1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.cw 33120.a 1.a $5$ $264.465$ 5.5.2147332.1 None \(0\) \(0\) \(5\) \(-1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.cx 33120.a 1.a $5$ $264.465$ 5.5.2147332.1 None \(0\) \(0\) \(5\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.cy 33120.a 1.a $5$ $264.465$ 5.5.387268.1 None \(0\) \(0\) \(5\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.cz 33120.a 1.a $5$ $264.465$ 5.5.1143052.1 None \(0\) \(0\) \(5\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.da 33120.a 1.a $5$ $264.465$ 5.5.998068.1 None \(0\) \(0\) \(5\) \(3\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.db 33120.a 1.a $5$ $264.465$ 5.5.2255384.1 None \(0\) \(0\) \(5\) \(4\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.dc 33120.a 1.a $5$ $264.465$ 5.5.792644.1 None \(0\) \(0\) \(5\) \(5\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.dd 33120.a 1.a $5$ $264.465$ 5.5.4276148.1 None \(0\) \(0\) \(5\) \(5\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.de 33120.a 1.a $6$ $264.465$ 6.6.255601784.1 None \(0\) \(0\) \(-6\) \(-4\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.df 33120.a 1.a $6$ $264.465$ 6.6.21692500.1 None \(0\) \(0\) \(-6\) \(-1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.dg 33120.a 1.a $6$ $264.465$ 6.6.21692500.1 None \(0\) \(0\) \(-6\) \(1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.dh 33120.a 1.a $6$ $264.465$ 6.6.255601784.1 None \(0\) \(0\) \(-6\) \(4\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.di 33120.a 1.a $6$ $264.465$ 6.6.1656120708.1 None \(0\) \(0\) \(6\) \(-3\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.dj 33120.a 1.a $6$ $264.465$ 6.6.180753348.1 None \(0\) \(0\) \(6\) \(-3\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.dk 33120.a 1.a $6$ $264.465$ 6.6.180753348.1 None \(0\) \(0\) \(6\) \(3\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.dl 33120.a 1.a $6$ $264.465$ 6.6.1656120708.1 None \(0\) \(0\) \(6\) \(3\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.dm 33120.a 1.a $7$ $264.465$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(0\) \(-7\) \(-7\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.dn 33120.a 1.a $7$ $264.465$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(0\) \(-7\) \(-3\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.do 33120.a 1.a $7$ $264.465$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(0\) \(-7\) \(3\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.dp 33120.a 1.a $7$ $264.465$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(0\) \(-7\) \(7\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.dq 33120.a 1.a $9$ $264.465$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(0\) \(-9\) \(-4\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.dr 33120.a 1.a $9$ $264.465$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(0\) \(-9\) \(0\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.ds 33120.a 1.a $9$ $264.465$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(0\) \(-9\) \(0\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.dt 33120.a 1.a $9$ $264.465$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(0\) \(-9\) \(4\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.du 33120.a 1.a $9$ $264.465$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(0\) \(9\) \(-4\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.dv 33120.a 1.a $9$ $264.465$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(0\) \(9\) \(0\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.dw 33120.a 1.a $9$ $264.465$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(0\) \(9\) \(0\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.dx 33120.a 1.a $9$ $264.465$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(0\) \(9\) \(4\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.dy 33120.a 1.a $10$ $264.465$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(0\) \(-10\) \(-10\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.dz 33120.a 1.a $10$ $264.465$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(0\) \(-10\) \(10\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.ea 33120.a 1.a $10$ $264.465$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(0\) \(10\) \(-10\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
33120.2.a.eb 33120.a 1.a $10$ $264.465$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(0\) \(10\) \(10\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.ec 33120.a 1.a $11$ $264.465$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None \(0\) \(0\) \(-11\) \(-6\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
33120.2.a.ed 33120.a 1.a $11$ $264.465$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None \(0\) \(0\) \(-11\) \(6\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
33120.2.a.ee 33120.a 1.a $11$ $264.465$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None \(0\) \(0\) \(11\) \(-6\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
33120.2.a.ef 33120.a 1.a $11$ $264.465$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None \(0\) \(0\) \(11\) \(6\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(33120))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(33120)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 36}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 30}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(138))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(184))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(207))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(230))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(240))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(276))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(288))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(345))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(360))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(368))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(414))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(460))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(480))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(552))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(690))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(720))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(736))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(828))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(920))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1035))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1104))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1380))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1440))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1656))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1840))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2070))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2208))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2760))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3312))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3680))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4140))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5520))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6624))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(8280))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(11040))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(16560))\)\(^{\oplus 2}\)