Properties

Label 329.1.f.b.46.4
Level 329329
Weight 11
Character 329.46
Analytic conductor 0.1640.164
Analytic rank 00
Dimension 88
Projective image D15D_{15}
CM discriminant -47
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [329,1,Mod(46,329)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("329.46"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(329, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: N N == 329=747 329 = 7 \cdot 47
Weight: k k == 1 1
Character orbit: [χ][\chi] == 329.f (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1641923891560.164192389156
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ15)\Q(\zeta_{15})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8x7+x5x4+x3x+1 x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D15D_{15}
Projective field: Galois closure of 15.1.143108492101942920287.1

Embedding invariants

Embedding label 46.4
Root 0.104528+0.994522i-0.104528 + 0.994522i of defining polynomial
Character χ\chi == 329.46
Dual form 329.1.f.b.93.4

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+(0.978148+1.69420i)q2+(0.8090171.40126i)q3+(1.41355+2.44833i)q4+3.16535q6+(0.9781480.207912i)q73.57433q8+(0.8090171.40126i)q9+(2.28716+3.96149i)q12+(0.6045281.86055i)q14+(2.082683.60730i)q16+(0.1045280.181049i)q17+(1.582682.74128i)q18+(1.08268+1.20243i)q21+(2.89169+5.00856i)q24+(0.500000+0.866025i)q251.00000q27+(1.891692.10094i)q28+(2.287163.96149i)q32+0.408977q34+4.57433q36+(0.104528+0.181049i)q37+(3.096180.658114i)q42+(0.5000000.866025i)q476.73968q48+(0.913545+0.406737i)q491.95630q50+(0.1691310.292943i)q51+(0.669131+1.15897i)q53+(0.9781481.69420i)q54+(3.49622+0.743145i)q56+(0.9781481.69420i)q59+(0.978148+1.69420i)q61+(0.500000+1.53884i)q63+4.78339q64+(0.295511+0.511841i)q680.209057q71+(2.89169+5.00856i)q72+(0.204489+0.354185i)q74+(0.809017+1.40126i)q75+(0.809017+1.40126i)q791.00000q83+(1.413554.35045i)q84+(0.3090170.535233i)q89+(0.9781481.69420i)q94+(3.700716.40982i)q96+1.33826q97+(0.204489+1.94558i)q98+O(q100)q+(0.978148 + 1.69420i) q^{2} +(0.809017 - 1.40126i) q^{3} +(-1.41355 + 2.44833i) q^{4} +3.16535 q^{6} +(-0.978148 - 0.207912i) q^{7} -3.57433 q^{8} +(-0.809017 - 1.40126i) q^{9} +(2.28716 + 3.96149i) q^{12} +(-0.604528 - 1.86055i) q^{14} +(-2.08268 - 3.60730i) q^{16} +(0.104528 - 0.181049i) q^{17} +(1.58268 - 2.74128i) q^{18} +(-1.08268 + 1.20243i) q^{21} +(-2.89169 + 5.00856i) q^{24} +(-0.500000 + 0.866025i) q^{25} -1.00000 q^{27} +(1.89169 - 2.10094i) q^{28} +(2.28716 - 3.96149i) q^{32} +0.408977 q^{34} +4.57433 q^{36} +(0.104528 + 0.181049i) q^{37} +(-3.09618 - 0.658114i) q^{42} +(-0.500000 - 0.866025i) q^{47} -6.73968 q^{48} +(0.913545 + 0.406737i) q^{49} -1.95630 q^{50} +(-0.169131 - 0.292943i) q^{51} +(-0.669131 + 1.15897i) q^{53} +(-0.978148 - 1.69420i) q^{54} +(3.49622 + 0.743145i) q^{56} +(0.978148 - 1.69420i) q^{59} +(0.978148 + 1.69420i) q^{61} +(0.500000 + 1.53884i) q^{63} +4.78339 q^{64} +(0.295511 + 0.511841i) q^{68} -0.209057 q^{71} +(2.89169 + 5.00856i) q^{72} +(-0.204489 + 0.354185i) q^{74} +(0.809017 + 1.40126i) q^{75} +(0.809017 + 1.40126i) q^{79} -1.00000 q^{83} +(-1.41355 - 4.35045i) q^{84} +(-0.309017 - 0.535233i) q^{89} +(0.978148 - 1.69420i) q^{94} +(-3.70071 - 6.40982i) q^{96} +1.33826 q^{97} +(0.204489 + 1.94558i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8qq2+2q35q4+4q6+q72q82q9+5q123q146q16q17+2q18+2q218q244q258q27+5q322q34+10q36+q98+O(q100) 8 q - q^{2} + 2 q^{3} - 5 q^{4} + 4 q^{6} + q^{7} - 2 q^{8} - 2 q^{9} + 5 q^{12} - 3 q^{14} - 6 q^{16} - q^{17} + 2 q^{18} + 2 q^{21} - 8 q^{24} - 4 q^{25} - 8 q^{27} + 5 q^{32} - 2 q^{34} + 10 q^{36}+ \cdots - q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/329Z)×\left(\mathbb{Z}/329\mathbb{Z}\right)^\times.

nn 9999 283283
χ(n)\chi(n) 1-1 e(23)e\left(\frac{2}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i 0.266667π0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
33 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
44 −1.41355 + 2.44833i −1.41355 + 2.44833i
55 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
66 3.16535 3.16535
77 −0.978148 0.207912i −0.978148 0.207912i
88 −3.57433 −3.57433
99 −0.809017 1.40126i −0.809017 1.40126i
1010 0 0
1111 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1212 2.28716 + 3.96149i 2.28716 + 3.96149i
1313 0 0 1.00000 00
−1.00000 π\pi
1414 −0.604528 1.86055i −0.604528 1.86055i
1515 0 0
1616 −2.08268 3.60730i −2.08268 3.60730i
1717 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
1818 1.58268 2.74128i 1.58268 2.74128i
1919 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2020 0 0
2121 −1.08268 + 1.20243i −1.08268 + 1.20243i
2222 0 0
2323 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2424 −2.89169 + 5.00856i −2.89169 + 5.00856i
2525 −0.500000 + 0.866025i −0.500000 + 0.866025i
2626 0 0
2727 −1.00000 −1.00000
2828 1.89169 2.10094i 1.89169 2.10094i
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3232 2.28716 3.96149i 2.28716 3.96149i
3333 0 0
3434 0.408977 0.408977
3535 0 0
3636 4.57433 4.57433
3737 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 −3.09618 0.658114i −3.09618 0.658114i
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 0 0
4646 0 0
4747 −0.500000 0.866025i −0.500000 0.866025i
4848 −6.73968 −6.73968
4949 0.913545 + 0.406737i 0.913545 + 0.406737i
5050 −1.95630 −1.95630
5151 −0.169131 0.292943i −0.169131 0.292943i
5252 0 0
5353 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
5454 −0.978148 1.69420i −0.978148 1.69420i
5555 0 0
5656 3.49622 + 0.743145i 3.49622 + 0.743145i
5757 0 0
5858 0 0
5959 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
6060 0 0
6161 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i 0.266667π0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
6262 0 0
6363 0.500000 + 1.53884i 0.500000 + 1.53884i
6464 4.78339 4.78339
6565 0 0
6666 0 0
6767 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6868 0.295511 + 0.511841i 0.295511 + 0.511841i
6969 0 0
7070 0 0
7171 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
7272 2.89169 + 5.00856i 2.89169 + 5.00856i
7373 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7474 −0.204489 + 0.354185i −0.204489 + 0.354185i
7575 0.809017 + 1.40126i 0.809017 + 1.40126i
7676 0 0
7777 0 0
7878 0 0
7979 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
8080 0 0
8181 0 0
8282 0 0
8383 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8484 −1.41355 4.35045i −1.41355 4.35045i
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0.978148 1.69420i 0.978148 1.69420i
9595 0 0
9696 −3.70071 6.40982i −3.70071 6.40982i
9797 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
9898 0.204489 + 1.94558i 0.204489 + 1.94558i
9999 0 0
100100 −1.41355 2.44833i −1.41355 2.44833i
101101 −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
102102 0.330869 0.573083i 0.330869 0.573083i
103103 −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
104104 0 0
105105 0 0
106106 −2.61803 −2.61803
107107 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
108108 1.41355 2.44833i 1.41355 2.44833i
109109 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
110110 0 0
111111 0.338261 0.338261
112112 1.28716 + 3.96149i 1.28716 + 3.96149i
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 3.82709 3.82709
119119 −0.139886 + 0.155360i −0.139886 + 0.155360i
120120 0 0
121121 −0.500000 0.866025i −0.500000 0.866025i
122122 −1.91355 + 3.31436i −1.91355 + 3.31436i
123123 0 0
124124 0 0
125125 0 0
126126 −2.11803 + 2.35232i −2.11803 + 2.35232i
127127 0 0 1.00000 00
−1.00000 π\pi
128128 2.39169 + 4.14253i 2.39169 + 4.14253i
129129 0 0
130130 0 0
131131 −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 0.951057i 0.400000π-0.400000\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −0.373619 + 0.647127i −0.373619 + 0.647127i
137137 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 −1.61803 −1.61803
142142 −0.204489 0.354185i −0.204489 0.354185i
143143 0 0
144144 −3.36984 + 5.83674i −3.36984 + 5.83674i
145145 0 0
146146 0 0
147147 1.30902 0.951057i 1.30902 0.951057i
148148 −0.591023 −0.591023
149149 −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
150150 −1.58268 + 2.74128i −1.58268 + 2.74128i
151151 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
152152 0 0
153153 −0.338261 −0.338261
154154 0 0
155155 0 0
156156 0 0
157157 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
158158 −1.58268 + 2.74128i −1.58268 + 2.74128i
159159 1.08268 + 1.87525i 1.08268 + 1.87525i
160160 0 0
161161 0 0
162162 0 0
163163 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
164164 0 0
165165 0 0
166166 −0.978148 1.69420i −0.978148 1.69420i
167167 0 0 1.00000 00
−1.00000 π\pi
168168 3.86984 4.29789i 3.86984 4.29789i
169169 1.00000 1.00000
170170 0 0
171171 0 0
172172 0 0
173173 −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 0.951057i 0.400000π-0.400000\pi
174174 0 0
175175 0.669131 0.743145i 0.669131 0.743145i
176176 0 0
177177 −1.58268 2.74128i −1.58268 2.74128i
178178 0.604528 1.04707i 0.604528 1.04707i
179179 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 3.16535 3.16535
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 2.82709 2.82709
189189 0.978148 + 0.207912i 0.978148 + 0.207912i
190190 0 0
191191 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 3.86984 6.70276i 3.86984 6.70276i
193193 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 1.30902 + 2.26728i 1.30902 + 2.26728i
195195 0 0
196196 −2.28716 + 1.66172i −2.28716 + 1.66172i
197197 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
198198 0 0
199199 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 1.78716 3.09546i 1.78716 3.09546i
201201 0 0
202202 −3.57433 −3.57433
203203 0 0
204204 0.956295 0.956295
205205 0 0
206206 1.78716 3.09546i 1.78716 3.09546i
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 −1.89169 3.27651i −1.89169 3.27651i
213213 −0.169131 + 0.292943i −0.169131 + 0.292943i
214214 0 0
215215 0 0
216216 3.57433 3.57433
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0.330869 + 0.573083i 0.330869 + 0.573083i
223223 0 0 1.00000 00
−1.00000 π\pi
224224 −3.06082 + 3.39939i −3.06082 + 3.39939i
225225 1.61803 1.61803
226226 0 0
227227 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
228228 0 0
229229 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
234234 0 0
235235 0 0
236236 2.76531 + 4.78966i 2.76531 + 4.78966i
237237 2.61803 2.61803
238238 −0.400040 0.0850311i −0.400040 0.0850311i
239239 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
240240 0 0
241241 −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
242242 0.978148 1.69420i 0.978148 1.69420i
243243 −0.500000 0.866025i −0.500000 0.866025i
244244 −5.53062 −5.53062
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 −0.809017 + 1.40126i −0.809017 + 1.40126i
250250 0 0
251251 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
252252 −4.47437 0.951057i −4.47437 0.951057i
253253 0 0
254254 0 0
255255 0 0
256256 −2.28716 + 3.96149i −2.28716 + 3.96149i
257257 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
258258 0 0
259259 −0.0646021 0.198825i −0.0646021 0.198825i
260260 0 0
261261 0 0
262262 1.30902 2.26728i 1.30902 2.26728i
263263 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
264264 0 0
265265 0 0
266266 0 0
267267 −1.00000 −1.00000
268268 0 0
269269 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
270270 0 0
271271 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
272272 −0.870796 −0.870796
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 −1.58268 2.74128i −1.58268 2.74128i
283283 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
284284 0.295511 0.511841i 0.295511 0.511841i
285285 0 0
286286 0 0
287287 0 0
288288 −7.40142 −7.40142
289289 0.478148 + 0.828176i 0.478148 + 0.828176i
290290 0 0
291291 1.08268 1.87525i 1.08268 1.87525i
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 2.89169 + 1.28746i 2.89169 + 1.28746i
295295 0 0
296296 −0.373619 0.647127i −0.373619 0.647127i
297297 0 0
298298 1.78716 3.09546i 1.78716 3.09546i
299299 0 0
300300 −4.57433 −4.57433
301301 0 0
302302 0 0
303303 1.47815 + 2.56023i 1.47815 + 2.56023i
304304 0 0
305305 0 0
306306 −0.330869 0.573083i −0.330869 0.573083i
307307 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
308308 0 0
309309 −2.95630 −2.95630
310310 0 0
311311 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
312312 0 0
313313 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
314314 −1.20906 −1.20906
315315 0 0
316316 −4.57433 −4.57433
317317 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
318318 −2.11803 + 3.66854i −2.11803 + 3.66854i
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0.309017 + 0.951057i 0.309017 + 0.951057i
330330 0 0
331331 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
332332 1.41355 2.44833i 1.41355 2.44833i
333333 0.169131 0.292943i 0.169131 0.292943i
334334 0 0
335335 0 0
336336 6.59240 + 1.40126i 6.59240 + 1.40126i
337337 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
338338 0.978148 + 1.69420i 0.978148 + 1.69420i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 −0.809017 0.587785i −0.809017 0.587785i
344344 0 0
345345 0 0
346346 1.30902 2.26728i 1.30902 2.26728i
347347 −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 1.91355 + 0.406737i 1.91355 + 0.406737i
351351 0 0
352352 0 0
353353 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
354354 3.09618 5.36274i 3.09618 5.36274i
355355 0 0
356356 1.74724 1.74724
357357 0.104528 + 0.321706i 0.104528 + 0.321706i
358358 0 0
359359 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
360360 0 0
361361 −0.500000 + 0.866025i −0.500000 + 0.866025i
362362 0 0
363363 −1.61803 −1.61803
364364 0 0
365365 0 0
366366 3.09618 + 5.36274i 3.09618 + 5.36274i
367367 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
368368 0 0
369369 0 0
370370 0 0
371371 0.895472 0.994522i 0.895472 0.994522i
372372 0 0
373373 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
374374 0 0
375375 0 0
376376 1.78716 + 3.09546i 1.78716 + 3.09546i
377377 0 0
378378 0.604528 + 1.86055i 0.604528 + 1.86055i
379379 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
380380 0 0
381381 0 0
382382 −0.978148 + 1.69420i −0.978148 + 1.69420i
383383 −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
384384 7.73968 7.73968
385385 0 0
386386 0 0
387387 0 0
388388 −1.89169 + 3.27651i −1.89169 + 3.27651i
389389 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
390390 0 0
391391 0 0
392392 −3.26531 1.45381i −3.26531 1.45381i
393393 −2.16535 −2.16535
394394 −0.978148 1.69420i −0.978148 1.69420i
395395 0 0
396396 0 0
397397 −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
398398 0 0
399399 0 0
400400 4.16535 4.16535
401401 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
402402 0 0
403403 0 0
404404 −2.58268 4.47333i −2.58268 4.47333i
405405 0 0
406406 0 0
407407 0 0
408408 0.604528 + 1.04707i 0.604528 + 1.04707i
409409 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 0 0
411411 0 0
412412 5.16535 5.16535
413413 −1.30902 + 1.45381i −1.30902 + 1.45381i
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 −0.809017 + 1.40126i −0.809017 + 1.40126i
424424 2.39169 4.14253i 2.39169 4.14253i
425425 0.104528 + 0.181049i 0.104528 + 0.181049i
426426 −0.661739 −0.661739
427427 −0.604528 1.86055i −0.604528 1.86055i
428428 0 0
429429 0 0
430430 0 0
431431 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
432432 2.08268 + 3.60730i 2.08268 + 3.60730i
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 −0.169131 1.60917i −0.169131 1.60917i
442442 0 0
443443 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
444444 −0.478148 + 0.828176i −0.478148 + 0.828176i
445445 0 0
446446 0 0
447447 −2.95630 −2.95630
448448 −4.67886 0.994522i −4.67886 0.994522i
449449 0 0 1.00000 00
−1.00000 π\pi
450450 1.58268 + 2.74128i 1.58268 + 2.74128i
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
458458 0 0
459459 −0.104528 + 0.181049i −0.104528 + 0.181049i
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
468468 0 0
469469 0 0
470470 0 0
471471 0.500000 + 0.866025i 0.500000 + 0.866025i
472472 −3.49622 + 6.05563i −3.49622 + 6.05563i
473473 0 0
474474 2.56082 + 4.43548i 2.56082 + 4.43548i
475475 0 0
476476 −0.182636 0.562096i −0.182636 0.562096i
477477 2.16535 2.16535
478478 1.78716 + 3.09546i 1.78716 + 3.09546i
479479 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
480480 0 0
481481 0 0
482482 −3.57433 −3.57433
483483 0 0
484484 2.82709 2.82709
485485 0 0
486486 0.978148 1.69420i 0.978148 1.69420i
487487 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
488488 −3.49622 6.05563i −3.49622 6.05563i
489489 0 0
490490 0 0
491491 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0.204489 + 0.0434654i 0.204489 + 0.0434654i
498498 −3.16535 −3.16535
499499 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
500500 0 0
501501 0 0
502502 1.78716 + 3.09546i 1.78716 + 3.09546i
503503 0 0 1.00000 00
−1.00000 π\pi
504504 −1.78716 5.50033i −1.78716 5.50033i
505505 0 0
506506 0 0
507507 0.809017 1.40126i 0.809017 1.40126i
508508 0 0
509509 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
510510 0 0
511511 0 0
512512 −4.16535 −4.16535
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0.273659 0.303929i 0.273659 0.303929i
519519 −2.16535 −2.16535
520520 0 0
521521 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
522522 0 0
523523 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
524524 3.78339 3.78339
525525 −0.500000 1.53884i −0.500000 1.53884i
526526 −1.20906 −1.20906
527527 0 0
528528 0 0
529529 −0.500000 + 0.866025i −0.500000 + 0.866025i
530530 0 0
531531 −3.16535 −3.16535
532532 0 0
533533 0 0
534534 −0.978148 1.69420i −0.978148 1.69420i
535535 0 0
536536 0 0
537537 0 0
538538 1.95630 1.95630
539539 0 0
540540 0 0
541541 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i 0.266667π0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
542542 −0.204489 + 0.354185i −0.204489 + 0.354185i
543543 0 0
544544 −0.478148 0.828176i −0.478148 0.828176i
545545 0 0
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0 0
549549 1.58268 2.74128i 1.58268 2.74128i
550550 0 0
551551 0 0
552552 0 0
553553 −0.500000 1.53884i −0.500000 1.53884i
554554 3.16535 3.16535
555555 0 0
556556 0 0
557557 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
564564 2.28716 3.96149i 2.28716 3.96149i
565565 0 0
566566 −2.61803 −2.61803
567567 0 0
568568 0.747238 0.747238
569569 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
570570 0 0
571571 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
572572 0 0
573573 1.61803 1.61803
574574 0 0
575575 0 0
576576 −3.86984 6.70276i −3.86984 6.70276i
577577 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
578578 −0.935398 + 1.62016i −0.935398 + 1.62016i
579579 0 0
580580 0 0
581581 0.978148 + 0.207912i 0.978148 + 0.207912i
582582 4.23607 4.23607
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0.478148 + 4.54927i 0.478148 + 4.54927i
589589 0 0
590590 0 0
591591 −0.809017 + 1.40126i −0.809017 + 1.40126i
592592 0.435398 0.754131i 0.435398 0.754131i
593593 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
594594 0 0
595595 0 0
596596 5.16535 5.16535
597597 0 0
598598 0 0
599599 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
600600 −2.89169 5.00856i −2.89169 5.00856i
601601 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 −2.89169 + 5.00856i −2.89169 + 5.00856i
607607 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0.478148 0.828176i 0.478148 0.828176i
613613 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
614614 −0.204489 0.354185i −0.204489 0.354185i
615615 0 0
616616 0 0
617617 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
618618 −2.89169 5.00856i −2.89169 5.00856i
619619 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
620620 0 0
621621 0 0
622622 0 0
623623 0.190983 + 0.587785i 0.190983 + 0.587785i
624624 0 0
625625 −0.500000 0.866025i −0.500000 0.866025i
626626 0 0
627627 0 0
628628 −0.873619 1.51315i −0.873619 1.51315i
629629 0.0437048 0.0437048
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 −2.89169 5.00856i −2.89169 5.00856i
633633 0 0
634634 0 0
635635 0 0
636636 −6.12165 −6.12165
637637 0 0
638638 0 0
639639 0.169131 + 0.292943i 0.169131 + 0.292943i
640640 0 0
641641 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 0 0
643643 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
644644 0 0
645645 0 0
646646 0 0
647647 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 −1.30902 + 1.45381i −1.30902 + 1.45381i
659659 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
660660 0 0
661661 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
662662 0.604528 1.04707i 0.604528 1.04707i
663663 0 0
664664 3.57433 3.57433
665665 0 0
666666 0.661739 0.661739
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 2.28716 + 7.03917i 2.28716 + 7.03917i
673673 0 0 1.00000 00
−1.00000 π\pi
674674 1.30902 + 2.26728i 1.30902 + 2.26728i
675675 0.500000 0.866025i 0.500000 0.866025i
676676 −1.41355 + 2.44833i −1.41355 + 2.44833i
677677 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
678678 0 0
679679 −1.30902 0.278240i −1.30902 0.278240i
680680 0 0
681681 0 0
682682 0 0
683683 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
684684 0 0
685685 0 0
686686 0.204489 1.94558i 0.204489 1.94558i
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
692692 3.78339 3.78339
693693 0 0
694694 −3.57433 −3.57433
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0.873619 + 2.68872i 0.873619 + 2.68872i
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 3.82709 3.82709
707707 1.22256 1.35779i 1.22256 1.35779i
708708 8.94874 8.94874
709709 −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 0.951057i 0.400000π-0.400000\pi
710710 0 0
711711 1.30902 2.26728i 1.30902 2.26728i
712712 1.10453 + 1.91310i 1.10453 + 1.91310i
713713 0 0
714714 −0.442790 + 0.491768i −0.442790 + 0.491768i
715715 0 0
716716 0 0
717717 1.47815 2.56023i 1.47815 2.56023i
718718 0 0
719719 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
720720 0 0
721721 0.564602 + 1.73767i 0.564602 + 1.73767i
722722 −1.95630 −1.95630
723723 1.47815 + 2.56023i 1.47815 + 2.56023i
724724 0 0
725725 0 0
726726 −1.58268 2.74128i −1.58268 2.74128i
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 −1.61803 −1.61803
730730 0 0
731731 0 0
732732 −4.47437 + 7.74983i −4.47437 + 7.74983i
733733 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
740740 0 0
741741 0 0
742742 2.56082 + 0.544320i 2.56082 + 0.544320i
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 0 0
746746 0 0
747747 0.809017 + 1.40126i 0.809017 + 1.40126i
748748 0 0
749749 0 0
750750 0 0
751751 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
752752 −2.08268 + 3.60730i −2.08268 + 3.60730i
753753 1.47815 2.56023i 1.47815 2.56023i
754754 0 0
755755 0 0
756756 −1.89169 + 2.10094i −1.89169 + 2.10094i
757757 0 0 1.00000 00
−1.00000 π\pi
758758 −1.91355 3.31436i −1.91355 3.31436i
759759 0 0
760760 0 0
761761 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 0 0
763763 0 0
764764 −2.82709 −2.82709
765765 0 0
766766 1.78716 3.09546i 1.78716 3.09546i
767767 0 0
768768 3.70071 + 6.40982i 3.70071 + 6.40982i
769769 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
770770 0 0
771771 0 0
772772 0 0
773773 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
774774 0 0
775775 0 0
776776 −4.78339 −4.78339
777777 −0.330869 0.0703285i −0.330869 0.0703285i
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −0.435398 4.14253i −0.435398 4.14253i
785785 0 0
786786 −2.11803 3.66854i −2.11803 3.66854i
787787 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
788788 1.41355 2.44833i 1.41355 2.44833i
789789 0.500000 + 0.866025i 0.500000 + 0.866025i
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 1.78716 3.09546i 1.78716 3.09546i
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 −0.209057 −0.209057
800800 2.28716 + 3.96149i 2.28716 + 3.96149i
801801 −0.500000 + 0.866025i −0.500000 + 0.866025i
802802 −0.204489 + 0.354185i −0.204489 + 0.354185i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 −0.809017 1.40126i −0.809017 1.40126i
808808 3.26531 5.65569i 3.26531 5.65569i
809809 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
810810 0 0
811811 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
812812 0 0
813813 0.338261 0.338261
814814 0 0
815815 0 0
816816 −0.704489 + 1.22021i −0.704489 + 1.22021i
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
822822 0 0
823823 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
824824 3.26531 + 5.65569i 3.26531 + 5.65569i
825825 0 0
826826 −3.74346 0.795697i −3.74346 0.795697i
827827 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
828828 0 0
829829 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
830830 0 0
831831 −1.30902 2.26728i −1.30902 2.26728i
832832 0 0
833833 0.169131 0.122881i 0.169131 0.122881i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 −3.16535 −3.16535
847847 0.309017 + 0.951057i 0.309017 + 0.951057i
848848 5.57433 5.57433
849849 1.08268 + 1.87525i 1.08268 + 1.87525i
850850 −0.204489 + 0.354185i −0.204489 + 0.354185i
851851 0 0
852852 −0.478148 0.828176i −0.478148 0.828176i
853853 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
854854 2.56082 2.84408i 2.56082 2.84408i
855855 0 0
856856 0 0
857857 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
858858 0 0
859859 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
860860 0 0
861861 0 0
862862 −2.61803 −2.61803
863863 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
864864 −2.28716 + 3.96149i −2.28716 + 3.96149i
865865 0 0
866866 0 0
867867 1.54732 1.54732
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 −1.08268 1.87525i −1.08268 1.87525i
874874 0 0
875875 0 0
876876 0 0
877877 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
878878 −0.978148 + 1.69420i −0.978148 + 1.69420i
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 2.56082 1.86055i 2.56082 1.86055i
883883 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
888888 −1.20906 −1.20906
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 −2.89169 5.00856i −2.89169 5.00856i
895895 0 0
896896 −1.47815 4.54927i −1.47815 4.54927i
897897 0 0
898898 0 0
899899 0 0
900900 −2.28716 + 3.96149i −2.28716 + 3.96149i
901901 0.139886 + 0.242290i 0.139886 + 0.242290i
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
908908 0 0
909909 2.95630 2.95630
910910 0 0
911911 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
912912 0 0
913913 0 0
914914 −1.58268 + 2.74128i −1.58268 + 2.74128i
915915 0 0
916916 0 0
917917 0.413545 + 1.27276i 0.413545 + 1.27276i
918918 −0.408977 −0.408977
919919 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
920920 0 0
921921 −0.169131 + 0.292943i −0.169131 + 0.292943i
922922 0 0
923923 0 0
924924 0 0
925925 −0.209057 −0.209057
926926 0 0
927927 −1.47815 + 2.56023i −1.47815 + 2.56023i
928928 0 0
929929 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
942942 −0.978148 + 1.69420i −0.978148 + 1.69420i
943943 0 0
944944 −8.14866 −8.14866
945945 0 0
946946 0 0
947947 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
948948 −3.70071 + 6.40982i −3.70071 + 6.40982i
949949 0 0
950950 0 0
951951 0 0
952952 0.500000 0.555306i 0.500000 0.555306i
953953 0 0 1.00000 00
−1.00000 π\pi
954954 2.11803 + 3.66854i 2.11803 + 3.66854i
955955 0 0
956956 −2.58268 + 4.47333i −2.58268 + 4.47333i
957957 0 0
958958 −1.20906 −1.20906
959959 0 0
960960 0 0
961961 −0.500000 0.866025i −0.500000 0.866025i
962962 0 0
963963 0 0
964964 −2.58268 4.47333i −2.58268 4.47333i
965965 0 0
966966 0 0
967967 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
968968 1.78716 + 3.09546i 1.78716 + 3.09546i
969969 0 0
970970 0 0
971971 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
972972 2.82709 2.82709
973973 0 0
974974 1.95630 1.95630
975975 0 0
976976 4.07433 7.05695i 4.07433 7.05695i
977977 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0.604528 + 1.04707i 0.604528 + 1.04707i
983983 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
984984 0 0
985985 0 0
986986 0 0
987987 1.58268 + 0.336408i 1.58268 + 0.336408i
988988 0 0
989989 0 0
990990 0 0
991991 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
992992 0 0
993993 −1.00000 −1.00000
994994 0.126381 + 0.388960i 0.126381 + 0.388960i
995995 0 0
996996 −2.28716 3.96149i −2.28716 3.96149i
997997 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
998998 0 0
999999 −0.104528 0.181049i −0.104528 0.181049i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 329.1.f.b.46.4 8
3.2 odd 2 2961.1.x.d.46.1 8
7.2 even 3 inner 329.1.f.b.93.4 yes 8
7.3 odd 6 2303.1.d.e.2255.1 4
7.4 even 3 2303.1.d.d.2255.1 4
7.5 odd 6 2303.1.f.d.422.4 8
7.6 odd 2 2303.1.f.d.704.4 8
21.2 odd 6 2961.1.x.d.1738.1 8
47.46 odd 2 CM 329.1.f.b.46.4 8
141.140 even 2 2961.1.x.d.46.1 8
329.46 odd 6 2303.1.d.d.2255.1 4
329.93 odd 6 inner 329.1.f.b.93.4 yes 8
329.187 even 6 2303.1.f.d.422.4 8
329.234 even 6 2303.1.d.e.2255.1 4
329.328 even 2 2303.1.f.d.704.4 8
987.422 even 6 2961.1.x.d.1738.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
329.1.f.b.46.4 8 1.1 even 1 trivial
329.1.f.b.46.4 8 47.46 odd 2 CM
329.1.f.b.93.4 yes 8 7.2 even 3 inner
329.1.f.b.93.4 yes 8 329.93 odd 6 inner
2303.1.d.d.2255.1 4 7.4 even 3
2303.1.d.d.2255.1 4 329.46 odd 6
2303.1.d.e.2255.1 4 7.3 odd 6
2303.1.d.e.2255.1 4 329.234 even 6
2303.1.f.d.422.4 8 7.5 odd 6
2303.1.f.d.422.4 8 329.187 even 6
2303.1.f.d.704.4 8 7.6 odd 2
2303.1.f.d.704.4 8 329.328 even 2
2961.1.x.d.46.1 8 3.2 odd 2
2961.1.x.d.46.1 8 141.140 even 2
2961.1.x.d.1738.1 8 21.2 odd 6
2961.1.x.d.1738.1 8 987.422 even 6