Properties

Label 3276.2.hi.f.1369.1
Level $3276$
Weight $2$
Character 3276.1369
Analytic conductor $26.159$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3276,2,Mod(1297,3276)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3276.1297"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3276, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3276.hi (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,3,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1589917022\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1092)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1369.1
Root \(2.13746 + 0.656712i\) of defining polynomial
Character \(\chi\) \(=\) 3276.1369
Dual form 3276.2.hi.f.1297.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13746 + 0.656712i) q^{5} +(-1.13746 + 2.38876i) q^{7} +(-3.00000 + 1.73205i) q^{11} +(-1.00000 + 3.46410i) q^{13} -0.274917 q^{17} +(-0.362541 - 0.209313i) q^{19} -8.27492 q^{23} +(-1.63746 + 2.83616i) q^{25} +(4.13746 - 7.16629i) q^{29} +(4.50000 + 2.59808i) q^{31} +(-0.274917 - 3.46410i) q^{35} -10.4498i q^{37} +(-3.41238 - 1.97014i) q^{41} +(5.13746 + 8.89834i) q^{43} +(1.86254 - 1.07534i) q^{47} +(-4.41238 - 5.43424i) q^{49} +(-4.41238 + 7.64246i) q^{53} +(2.27492 - 3.94027i) q^{55} -10.8685i q^{59} +(4.91238 - 8.50848i) q^{61} +(-1.13746 - 4.59698i) q^{65} +(10.1873 - 5.88164i) q^{67} +(-3.41238 + 1.97014i) q^{71} +(7.13746 + 4.12081i) q^{73} +(-0.725083 - 9.13642i) q^{77} +(0.774917 + 1.34220i) q^{79} +8.71780i q^{83} +(0.312707 - 0.180541i) q^{85} -16.9594i q^{89} +(-7.13746 - 6.32904i) q^{91} +0.549834 q^{95} +(-9.04983 + 5.22492i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{5} + 3 q^{7} - 12 q^{11} - 4 q^{13} + 14 q^{17} - 9 q^{19} - 18 q^{23} + q^{25} + 9 q^{29} + 18 q^{31} + 14 q^{35} + 9 q^{41} + 13 q^{43} + 15 q^{47} + 5 q^{49} + 5 q^{53} - 6 q^{55} - 3 q^{61}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times\).

\(n\) \(1639\) \(2017\) \(2341\) \(2549\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.13746 + 0.656712i −0.508687 + 0.293691i −0.732294 0.680989i \(-0.761550\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) −1.13746 + 2.38876i −0.429919 + 0.902867i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.00000 + 1.73205i −0.904534 + 0.522233i −0.878668 0.477432i \(-0.841568\pi\)
−0.0258656 + 0.999665i \(0.508234\pi\)
\(12\) 0 0
\(13\) −1.00000 + 3.46410i −0.277350 + 0.960769i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.274917 −0.0666772 −0.0333386 0.999444i \(-0.510614\pi\)
−0.0333386 + 0.999444i \(0.510614\pi\)
\(18\) 0 0
\(19\) −0.362541 0.209313i −0.0831727 0.0480198i 0.457837 0.889036i \(-0.348624\pi\)
−0.541010 + 0.841016i \(0.681958\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.27492 −1.72544 −0.862720 0.505682i \(-0.831241\pi\)
−0.862720 + 0.505682i \(0.831241\pi\)
\(24\) 0 0
\(25\) −1.63746 + 2.83616i −0.327492 + 0.567232i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.13746 7.16629i 0.768307 1.33075i −0.170174 0.985414i \(-0.554433\pi\)
0.938480 0.345332i \(-0.112234\pi\)
\(30\) 0 0
\(31\) 4.50000 + 2.59808i 0.808224 + 0.466628i 0.846339 0.532645i \(-0.178802\pi\)
−0.0381148 + 0.999273i \(0.512135\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.274917 3.46410i −0.0464695 0.585540i
\(36\) 0 0
\(37\) 10.4498i 1.71794i −0.512022 0.858972i \(-0.671103\pi\)
0.512022 0.858972i \(-0.328897\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.41238 1.97014i −0.532924 0.307684i 0.209283 0.977855i \(-0.432887\pi\)
−0.742206 + 0.670172i \(0.766220\pi\)
\(42\) 0 0
\(43\) 5.13746 + 8.89834i 0.783455 + 1.35698i 0.929918 + 0.367768i \(0.119878\pi\)
−0.146463 + 0.989216i \(0.546789\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.86254 1.07534i 0.271680 0.156854i −0.357971 0.933733i \(-0.616531\pi\)
0.629651 + 0.776878i \(0.283198\pi\)
\(48\) 0 0
\(49\) −4.41238 5.43424i −0.630339 0.776320i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.41238 + 7.64246i −0.606086 + 1.04977i 0.385792 + 0.922586i \(0.373928\pi\)
−0.991879 + 0.127187i \(0.959405\pi\)
\(54\) 0 0
\(55\) 2.27492 3.94027i 0.306750 0.531306i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.8685i 1.41495i −0.706736 0.707477i \(-0.749833\pi\)
0.706736 0.707477i \(-0.250167\pi\)
\(60\) 0 0
\(61\) 4.91238 8.50848i 0.628965 1.08940i −0.358794 0.933417i \(-0.616812\pi\)
0.987760 0.155983i \(-0.0498546\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.13746 4.59698i −0.141084 0.570186i
\(66\) 0 0
\(67\) 10.1873 5.88164i 1.24458 0.718556i 0.274554 0.961572i \(-0.411470\pi\)
0.970022 + 0.243016i \(0.0781366\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.41238 + 1.97014i −0.404975 + 0.233812i −0.688628 0.725115i \(-0.741787\pi\)
0.283654 + 0.958927i \(0.408453\pi\)
\(72\) 0 0
\(73\) 7.13746 + 4.12081i 0.835376 + 0.482305i 0.855690 0.517489i \(-0.173133\pi\)
−0.0203136 + 0.999794i \(0.506466\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.725083 9.13642i −0.0826309 1.04119i
\(78\) 0 0
\(79\) 0.774917 + 1.34220i 0.0871850 + 0.151009i 0.906320 0.422592i \(-0.138880\pi\)
−0.819135 + 0.573600i \(0.805546\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.71780i 0.956903i 0.878114 + 0.478451i \(0.158802\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) 0 0
\(85\) 0.312707 0.180541i 0.0339178 0.0195825i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.9594i 1.79770i −0.438261 0.898848i \(-0.644405\pi\)
0.438261 0.898848i \(-0.355595\pi\)
\(90\) 0 0
\(91\) −7.13746 6.32904i −0.748209 0.663463i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.549834 0.0564118
\(96\) 0 0
\(97\) −9.04983 + 5.22492i −0.918871 + 0.530511i −0.883275 0.468856i \(-0.844666\pi\)
−0.0355966 + 0.999366i \(0.511333\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.27492 + 10.8685i 0.624378 + 1.08145i 0.988661 + 0.150166i \(0.0479807\pi\)
−0.364283 + 0.931288i \(0.618686\pi\)
\(102\) 0 0
\(103\) 0.862541 + 1.49397i 0.0849887 + 0.147205i 0.905386 0.424589i \(-0.139581\pi\)
−0.820398 + 0.571793i \(0.806248\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.27492 −0.799966 −0.399983 0.916522i \(-0.630984\pi\)
−0.399983 + 0.916522i \(0.630984\pi\)
\(108\) 0 0
\(109\) −9.41238 5.43424i −0.901542 0.520506i −0.0238419 0.999716i \(-0.507590\pi\)
−0.877700 + 0.479210i \(0.840923\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.13746 + 3.70219i 0.201075 + 0.348272i 0.948875 0.315652i \(-0.102223\pi\)
−0.747800 + 0.663924i \(0.768890\pi\)
\(114\) 0 0
\(115\) 9.41238 5.43424i 0.877709 0.506745i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.312707 0.656712i 0.0286658 0.0602007i
\(120\) 0 0
\(121\) 0.500000 0.866025i 0.0454545 0.0787296i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.8685i 0.972106i
\(126\) 0 0
\(127\) 4.86254 8.42217i 0.431481 0.747347i −0.565520 0.824734i \(-0.691325\pi\)
0.997001 + 0.0773878i \(0.0246579\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.1375 17.5586i −0.885714 1.53410i −0.844893 0.534935i \(-0.820336\pi\)
−0.0408206 0.999166i \(-0.512997\pi\)
\(132\) 0 0
\(133\) 0.912376 0.627940i 0.0791130 0.0544493i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 13.4953i 1.15298i −0.817103 0.576492i \(-0.804421\pi\)
0.817103 0.576492i \(-0.195579\pi\)
\(138\) 0 0
\(139\) −5.50000 9.52628i −0.466504 0.808008i 0.532764 0.846264i \(-0.321153\pi\)
−0.999268 + 0.0382553i \(0.987820\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.00000 12.1244i −0.250873 1.01389i
\(144\) 0 0
\(145\) 10.8685i 0.902578i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.82475 + 5.67232i 0.804875 + 0.464695i 0.845173 0.534493i \(-0.179497\pi\)
−0.0402979 + 0.999188i \(0.512831\pi\)
\(150\) 0 0
\(151\) 12.4124 + 7.16629i 1.01010 + 0.583184i 0.911222 0.411915i \(-0.135140\pi\)
0.0988825 + 0.995099i \(0.468473\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.82475 −0.548177
\(156\) 0 0
\(157\) −4.04983 + 7.01452i −0.323212 + 0.559820i −0.981149 0.193254i \(-0.938096\pi\)
0.657937 + 0.753073i \(0.271429\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.41238 19.7668i 0.741799 1.55784i
\(162\) 0 0
\(163\) −6.36254 3.67341i −0.498353 0.287724i 0.229680 0.973266i \(-0.426232\pi\)
−0.728033 + 0.685542i \(0.759565\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.412376 0.238085i −0.0319106 0.0184236i 0.483960 0.875090i \(-0.339198\pi\)
−0.515870 + 0.856667i \(0.672531\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.27492 3.94027i 0.172959 0.299573i −0.766494 0.642251i \(-0.778001\pi\)
0.939453 + 0.342678i \(0.111334\pi\)
\(174\) 0 0
\(175\) −4.91238 7.13752i −0.371341 0.539546i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.27492 + 12.6005i 0.543753 + 0.941808i 0.998684 + 0.0512811i \(0.0163304\pi\)
−0.454931 + 0.890526i \(0.650336\pi\)
\(180\) 0 0
\(181\) −12.7251 −0.945848 −0.472924 0.881103i \(-0.656801\pi\)
−0.472924 + 0.881103i \(0.656801\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.86254 + 11.8863i 0.504544 + 0.873896i
\(186\) 0 0
\(187\) 0.824752 0.476171i 0.0603118 0.0348210i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.72508 + 4.71998i −0.197180 + 0.341526i −0.947613 0.319421i \(-0.896512\pi\)
0.750433 + 0.660947i \(0.229845\pi\)
\(192\) 0 0
\(193\) 16.5498 9.55505i 1.19128 0.687788i 0.232686 0.972552i \(-0.425249\pi\)
0.958598 + 0.284764i \(0.0919154\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.58762 + 1.49397i 0.184361 + 0.106441i 0.589340 0.807885i \(-0.299388\pi\)
−0.404979 + 0.914326i \(0.632721\pi\)
\(198\) 0 0
\(199\) −26.6495 −1.88913 −0.944567 0.328320i \(-0.893518\pi\)
−0.944567 + 0.328320i \(0.893518\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 12.4124 + 18.0348i 0.871178 + 1.26579i
\(204\) 0 0
\(205\) 5.17525 0.361455
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.45017 0.100310
\(210\) 0 0
\(211\) −8.50000 + 14.7224i −0.585164 + 1.01353i 0.409691 + 0.912224i \(0.365637\pi\)
−0.994855 + 0.101310i \(0.967697\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −11.6873 6.74766i −0.797067 0.460187i
\(216\) 0 0
\(217\) −11.3248 + 7.79423i −0.768774 + 0.529107i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.274917 0.952341i 0.0184929 0.0640614i
\(222\) 0 0
\(223\) −20.6873 11.9438i −1.38532 0.799817i −0.392540 0.919735i \(-0.628403\pi\)
−0.992784 + 0.119918i \(0.961737\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.28929i 0.483807i −0.970300 0.241903i \(-0.922228\pi\)
0.970300 0.241903i \(-0.0777717\pi\)
\(228\) 0 0
\(229\) −18.7749 + 10.8397i −1.24068 + 0.716308i −0.969233 0.246145i \(-0.920836\pi\)
−0.271448 + 0.962453i \(0.587503\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.13746 12.3624i −0.467590 0.809890i 0.531724 0.846918i \(-0.321544\pi\)
−0.999314 + 0.0370274i \(0.988211\pi\)
\(234\) 0 0
\(235\) −1.41238 + 2.44631i −0.0921332 + 0.159579i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.62685i 0.169917i 0.996385 + 0.0849583i \(0.0270757\pi\)
−0.996385 + 0.0849583i \(0.972924\pi\)
\(240\) 0 0
\(241\) 23.0504i 1.48481i −0.669954 0.742403i \(-0.733686\pi\)
0.669954 0.742403i \(-0.266314\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.58762 + 3.28356i 0.548643 + 0.209779i
\(246\) 0 0
\(247\) 1.08762 1.04657i 0.0692039 0.0665915i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.1375 + 24.4868i 0.892348 + 1.54559i 0.837052 + 0.547123i \(0.184277\pi\)
0.0552962 + 0.998470i \(0.482390\pi\)
\(252\) 0 0
\(253\) 24.8248 14.3326i 1.56072 0.901081i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 21.9244 1.36761 0.683804 0.729666i \(-0.260324\pi\)
0.683804 + 0.729666i \(0.260324\pi\)
\(258\) 0 0
\(259\) 24.9622 + 11.8863i 1.55108 + 0.738577i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.5498 + 18.2728i 0.650531 + 1.12675i 0.982994 + 0.183636i \(0.0587868\pi\)
−0.332464 + 0.943116i \(0.607880\pi\)
\(264\) 0 0
\(265\) 11.5906i 0.712007i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −21.3746 −1.30323 −0.651616 0.758549i \(-0.725909\pi\)
−0.651616 + 0.758549i \(0.725909\pi\)
\(270\) 0 0
\(271\) 9.61260i 0.583924i −0.956430 0.291962i \(-0.905692\pi\)
0.956430 0.291962i \(-0.0943080\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.3446i 0.684108i
\(276\) 0 0
\(277\) 12.4502 0.748058 0.374029 0.927417i \(-0.377976\pi\)
0.374029 + 0.927417i \(0.377976\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 32.1293i 1.91667i −0.285645 0.958335i \(-0.592208\pi\)
0.285645 0.958335i \(-0.407792\pi\)
\(282\) 0 0
\(283\) −2.54983 4.41644i −0.151572 0.262530i 0.780234 0.625488i \(-0.215100\pi\)
−0.931806 + 0.362958i \(0.881767\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.58762 5.91041i 0.506911 0.348880i
\(288\) 0 0
\(289\) −16.9244 −0.995554
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −9.41238 + 5.43424i −0.549877 + 0.317472i −0.749072 0.662488i \(-0.769500\pi\)
0.199195 + 0.979960i \(0.436167\pi\)
\(294\) 0 0
\(295\) 7.13746 + 12.3624i 0.415559 + 0.719769i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.27492 28.6652i 0.478551 1.65775i
\(300\) 0 0
\(301\) −27.0997 + 2.15068i −1.56200 + 0.123963i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.9041i 0.738885i
\(306\) 0 0
\(307\) 2.09313i 0.119461i −0.998215 0.0597307i \(-0.980976\pi\)
0.998215 0.0597307i \(-0.0190242\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.68729 15.0468i 0.492611 0.853228i −0.507353 0.861739i \(-0.669376\pi\)
0.999964 + 0.00851095i \(0.00270915\pi\)
\(312\) 0 0
\(313\) −8.68729 15.0468i −0.491035 0.850497i 0.508912 0.860819i \(-0.330048\pi\)
−0.999947 + 0.0103213i \(0.996715\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −21.5120 + 12.4200i −1.20824 + 0.697576i −0.962374 0.271729i \(-0.912405\pi\)
−0.245863 + 0.969305i \(0.579071\pi\)
\(318\) 0 0
\(319\) 28.6652i 1.60494i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.0996689 + 0.0575438i 0.00554572 + 0.00320183i
\(324\) 0 0
\(325\) −8.18729 8.50848i −0.454149 0.471966i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.450166 + 5.67232i 0.0248184 + 0.312725i
\(330\) 0 0
\(331\) 12.0997 + 6.98575i 0.665058 + 0.383971i 0.794201 0.607655i \(-0.207889\pi\)
−0.129144 + 0.991626i \(0.541223\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −7.72508 + 13.3802i −0.422066 + 0.731040i
\(336\) 0 0
\(337\) −10.0000 −0.544735 −0.272367 0.962193i \(-0.587807\pi\)
−0.272367 + 0.962193i \(0.587807\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −18.0000 −0.974755
\(342\) 0 0
\(343\) 18.0000 4.35890i 0.971909 0.235358i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −28.8248 −1.54739 −0.773697 0.633556i \(-0.781595\pi\)
−0.773697 + 0.633556i \(0.781595\pi\)
\(348\) 0 0
\(349\) 8.95017 + 5.16738i 0.479091 + 0.276604i 0.720038 0.693935i \(-0.244124\pi\)
−0.240946 + 0.970538i \(0.577458\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.00000 3.46410i 0.319348 0.184376i −0.331754 0.943366i \(-0.607640\pi\)
0.651102 + 0.758990i \(0.274307\pi\)
\(354\) 0 0
\(355\) 2.58762 4.48190i 0.137337 0.237874i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.4124 7.16629i 0.655100 0.378222i −0.135307 0.990804i \(-0.543202\pi\)
0.790407 + 0.612581i \(0.209869\pi\)
\(360\) 0 0
\(361\) −9.41238 16.3027i −0.495388 0.858038i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.8248 −0.566593
\(366\) 0 0
\(367\) 6.54983 + 11.3446i 0.341899 + 0.592186i 0.984785 0.173776i \(-0.0555967\pi\)
−0.642887 + 0.765961i \(0.722263\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −13.2371 19.2331i −0.687237 0.998533i
\(372\) 0 0
\(373\) −1.63746 + 2.83616i −0.0847844 + 0.146851i −0.905299 0.424774i \(-0.860353\pi\)
0.820515 + 0.571625i \(0.193687\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.6873 + 21.4989i 1.06545 + 1.10725i
\(378\) 0 0
\(379\) 15.0498 + 8.68903i 0.773058 + 0.446325i 0.833964 0.551818i \(-0.186066\pi\)
−0.0609064 + 0.998143i \(0.519399\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.824752 + 0.476171i 0.0421428 + 0.0243312i 0.520923 0.853603i \(-0.325588\pi\)
−0.478781 + 0.877935i \(0.658921\pi\)
\(384\) 0 0
\(385\) 6.82475 + 9.91613i 0.347822 + 0.505373i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −14.4124 + 24.9630i −0.730736 + 1.26567i 0.225832 + 0.974166i \(0.427490\pi\)
−0.956569 + 0.291507i \(0.905844\pi\)
\(390\) 0 0
\(391\) 2.27492 0.115048
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.76287 1.01779i −0.0886997 0.0512108i
\(396\) 0 0
\(397\) −12.0000 6.92820i −0.602263 0.347717i 0.167668 0.985843i \(-0.446376\pi\)
−0.769931 + 0.638127i \(0.779710\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.45203i 0.322199i −0.986938 0.161100i \(-0.948496\pi\)
0.986938 0.161100i \(-0.0515040\pi\)
\(402\) 0 0
\(403\) −13.5000 + 12.9904i −0.672483 + 0.647097i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 18.0997 + 31.3495i 0.897167 + 1.55394i
\(408\) 0 0
\(409\) 12.5430i 0.620211i −0.950702 0.310105i \(-0.899636\pi\)
0.950702 0.310105i \(-0.100364\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 25.9622 + 12.3624i 1.27752 + 0.608316i
\(414\) 0 0
\(415\) −5.72508 9.91613i −0.281033 0.486764i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.68729 6.38658i 0.180136 0.312005i −0.761791 0.647823i \(-0.775680\pi\)
0.941927 + 0.335818i \(0.109013\pi\)
\(420\) 0 0
\(421\) 29.9210i 1.45826i 0.684374 + 0.729131i \(0.260076\pi\)
−0.684374 + 0.729131i \(0.739924\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.450166 0.779710i 0.0218362 0.0378215i
\(426\) 0 0
\(427\) 14.7371 + 21.4125i 0.713180 + 1.03623i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.1752 + 6.45203i −0.538293 + 0.310783i −0.744387 0.667749i \(-0.767258\pi\)
0.206094 + 0.978532i \(0.433925\pi\)
\(432\) 0 0
\(433\) −4.22508 7.31806i −0.203045 0.351683i 0.746463 0.665426i \(-0.231750\pi\)
−0.949508 + 0.313743i \(0.898417\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.00000 + 1.73205i 0.143509 + 0.0828552i
\(438\) 0 0
\(439\) −9.00000 −0.429547 −0.214773 0.976664i \(-0.568901\pi\)
−0.214773 + 0.976664i \(0.568901\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 19.6873 + 34.0994i 0.935372 + 1.62011i 0.773970 + 0.633222i \(0.218268\pi\)
0.161401 + 0.986889i \(0.448399\pi\)
\(444\) 0 0
\(445\) 11.1375 + 19.2906i 0.527966 + 0.914464i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.96221 + 1.13288i −0.0926024 + 0.0534640i −0.545586 0.838055i \(-0.683693\pi\)
0.452984 + 0.891519i \(0.350360\pi\)
\(450\) 0 0
\(451\) 13.6495 0.642730
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 12.2749 + 2.51176i 0.575457 + 0.117753i
\(456\) 0 0
\(457\) 18.2153i 0.852076i −0.904705 0.426038i \(-0.859909\pi\)
0.904705 0.426038i \(-0.140091\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.13746 0.656712i 0.0529767 0.0305861i −0.473278 0.880913i \(-0.656929\pi\)
0.526254 + 0.850327i \(0.323596\pi\)
\(462\) 0 0
\(463\) 1.78959i 0.0831695i −0.999135 0.0415848i \(-0.986759\pi\)
0.999135 0.0415848i \(-0.0132407\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.13746 + 1.97014i 0.0526353 + 0.0911670i 0.891143 0.453723i \(-0.149905\pi\)
−0.838507 + 0.544890i \(0.816571\pi\)
\(468\) 0 0
\(469\) 2.46221 + 31.0251i 0.113694 + 1.43261i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −30.8248 17.7967i −1.41732 0.818292i
\(474\) 0 0
\(475\) 1.18729 0.685484i 0.0544767 0.0314522i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −19.5498 + 11.2871i −0.893255 + 0.515721i −0.875006 0.484113i \(-0.839143\pi\)
−0.0182490 + 0.999833i \(0.505809\pi\)
\(480\) 0 0
\(481\) 36.1993 + 10.4498i 1.65055 + 0.476472i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.86254 11.8863i 0.311612 0.539728i
\(486\) 0 0
\(487\) 17.3781i 0.787475i −0.919223 0.393737i \(-0.871182\pi\)
0.919223 0.393737i \(-0.128818\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.13746 + 3.70219i −0.0964622 + 0.167077i −0.910218 0.414130i \(-0.864086\pi\)
0.813756 + 0.581207i \(0.197419\pi\)
\(492\) 0 0
\(493\) −1.13746 + 1.97014i −0.0512286 + 0.0887305i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.824752 10.3923i −0.0369952 0.466159i
\(498\) 0 0
\(499\) 3.87459 2.23699i 0.173450 0.100142i −0.410761 0.911743i \(-0.634737\pi\)
0.584212 + 0.811601i \(0.301404\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.68729 + 4.65453i 0.119820 + 0.207535i 0.919696 0.392630i \(-0.128435\pi\)
−0.799876 + 0.600165i \(0.795101\pi\)
\(504\) 0 0
\(505\) −14.2749 8.24163i −0.635225 0.366748i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 33.3276i 1.47722i −0.674133 0.738610i \(-0.735483\pi\)
0.674133 0.738610i \(-0.264517\pi\)
\(510\) 0 0
\(511\) −17.9622 + 12.3624i −0.794601 + 0.546882i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.96221 1.13288i −0.0864653 0.0499208i
\(516\) 0 0
\(517\) −3.72508 + 6.45203i −0.163829 + 0.283760i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.1375 17.5586i 0.444130 0.769256i −0.553861 0.832609i \(-0.686846\pi\)
0.997991 + 0.0633532i \(0.0201795\pi\)
\(522\) 0 0
\(523\) −14.0997 −0.616535 −0.308268 0.951300i \(-0.599749\pi\)
−0.308268 + 0.951300i \(0.599749\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.23713 0.714256i −0.0538901 0.0311135i
\(528\) 0 0
\(529\) 45.4743 1.97714
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10.2371 9.85068i 0.443419 0.426680i
\(534\) 0 0
\(535\) 9.41238 5.43424i 0.406932 0.234943i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 22.6495 + 8.66025i 0.975583 + 0.373024i
\(540\) 0 0
\(541\) 40.2371 23.2309i 1.72993 0.998775i 0.840225 0.542239i \(-0.182423\pi\)
0.889705 0.456536i \(-0.150910\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.2749 0.611470
\(546\) 0 0
\(547\) 30.7251 1.31371 0.656855 0.754017i \(-0.271886\pi\)
0.656855 + 0.754017i \(0.271886\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.00000 + 1.73205i −0.127804 + 0.0737878i
\(552\) 0 0
\(553\) −4.08762 + 0.324401i −0.173823 + 0.0137949i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −24.0000 + 13.8564i −1.01691 + 0.587115i −0.913208 0.407493i \(-0.866403\pi\)
−0.103704 + 0.994608i \(0.533070\pi\)
\(558\) 0 0
\(559\) −35.9622 + 8.89834i −1.52104 + 0.376360i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −40.8248 −1.72056 −0.860279 0.509823i \(-0.829711\pi\)
−0.860279 + 0.509823i \(0.829711\pi\)
\(564\) 0 0
\(565\) −4.86254 2.80739i −0.204569 0.118108i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 23.3746 0.979914 0.489957 0.871747i \(-0.337013\pi\)
0.489957 + 0.871747i \(0.337013\pi\)
\(570\) 0 0
\(571\) −1.50000 + 2.59808i −0.0627730 + 0.108726i −0.895704 0.444651i \(-0.853328\pi\)
0.832931 + 0.553377i \(0.186661\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 13.5498 23.4690i 0.565067 0.978725i
\(576\) 0 0
\(577\) −10.4003 6.00463i −0.432971 0.249976i 0.267640 0.963519i \(-0.413756\pi\)
−0.700612 + 0.713543i \(0.747089\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −20.8248 9.91613i −0.863956 0.411391i
\(582\) 0 0
\(583\) 30.5698i 1.26607i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.58762 1.49397i −0.106803 0.0616626i 0.445647 0.895209i \(-0.352974\pi\)
−0.552450 + 0.833546i \(0.686307\pi\)
\(588\) 0 0
\(589\) −1.08762 1.88382i −0.0448148 0.0776215i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −38.0619 + 21.9750i −1.56301 + 0.902407i −0.566064 + 0.824361i \(0.691535\pi\)
−0.996950 + 0.0780454i \(0.975132\pi\)
\(594\) 0 0
\(595\) 0.0755795 + 0.952341i 0.00309846 + 0.0390422i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.13746 + 1.97014i −0.0464753 + 0.0804976i −0.888327 0.459211i \(-0.848132\pi\)
0.841852 + 0.539709i \(0.181466\pi\)
\(600\) 0 0
\(601\) 9.77492 16.9307i 0.398727 0.690616i −0.594842 0.803843i \(-0.702785\pi\)
0.993569 + 0.113227i \(0.0361187\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.31342i 0.0533983i
\(606\) 0 0
\(607\) −8.63746 + 14.9605i −0.350584 + 0.607229i −0.986352 0.164651i \(-0.947350\pi\)
0.635768 + 0.771880i \(0.280683\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.86254 + 7.52737i 0.0753504 + 0.304525i
\(612\) 0 0
\(613\) −38.8368 + 22.4224i −1.56860 + 0.905634i −0.572271 + 0.820064i \(0.693938\pi\)
−0.996332 + 0.0855692i \(0.972729\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.2371 5.91041i 0.412131 0.237944i −0.279574 0.960124i \(-0.590193\pi\)
0.691705 + 0.722180i \(0.256860\pi\)
\(618\) 0 0
\(619\) 33.5120 + 19.3482i 1.34696 + 0.777669i 0.987818 0.155613i \(-0.0497351\pi\)
0.359145 + 0.933282i \(0.383068\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 40.5120 + 19.2906i 1.62308 + 0.772863i
\(624\) 0 0
\(625\) −1.04983 1.81837i −0.0419934 0.0727347i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.87284i 0.114548i
\(630\) 0 0
\(631\) −3.04983 + 1.76082i −0.121412 + 0.0700972i −0.559476 0.828846i \(-0.688998\pi\)
0.438064 + 0.898944i \(0.355664\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 12.7732i 0.506887i
\(636\) 0 0
\(637\) 23.2371 9.85068i 0.920689 0.390298i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −42.8248 −1.69148 −0.845738 0.533598i \(-0.820839\pi\)
−0.845738 + 0.533598i \(0.820839\pi\)
\(642\) 0 0
\(643\) 32.6873 18.8720i 1.28906 0.744240i 0.310574 0.950549i \(-0.399479\pi\)
0.978487 + 0.206309i \(0.0661453\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17.0997 + 29.6175i 0.672257 + 1.16438i 0.977262 + 0.212033i \(0.0680085\pi\)
−0.305005 + 0.952351i \(0.598658\pi\)
\(648\) 0 0
\(649\) 18.8248 + 32.6054i 0.738936 + 1.27987i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.72508 −0.0675077 −0.0337539 0.999430i \(-0.510746\pi\)
−0.0337539 + 0.999430i \(0.510746\pi\)
\(654\) 0 0
\(655\) 23.0619 + 13.3148i 0.901102 + 0.520252i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2.41238 4.17836i −0.0939728 0.162766i 0.815207 0.579170i \(-0.196623\pi\)
−0.909179 + 0.416405i \(0.863290\pi\)
\(660\) 0 0
\(661\) 11.5378 6.66135i 0.448768 0.259096i −0.258542 0.966000i \(-0.583242\pi\)
0.707310 + 0.706904i \(0.249909\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.625414 + 1.31342i −0.0242525 + 0.0509324i
\(666\) 0 0
\(667\) −34.2371 + 59.3004i −1.32567 + 2.29612i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 34.0339i 1.31387i
\(672\) 0 0
\(673\) 6.96221 12.0589i 0.268373 0.464837i −0.700068 0.714076i \(-0.746847\pi\)
0.968442 + 0.249239i \(0.0801805\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3.13746 5.43424i −0.120582 0.208855i 0.799415 0.600779i \(-0.205143\pi\)
−0.919997 + 0.391924i \(0.871810\pi\)
\(678\) 0 0
\(679\) −2.18729 27.5610i −0.0839406 1.05770i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15.1698i 0.580457i 0.956957 + 0.290229i \(0.0937314\pi\)
−0.956957 + 0.290229i \(0.906269\pi\)
\(684\) 0 0
\(685\) 8.86254 + 15.3504i 0.338620 + 0.586508i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −22.0619 22.9274i −0.840491 0.873464i
\(690\) 0 0
\(691\) 18.6339i 0.708868i 0.935081 + 0.354434i \(0.115326\pi\)
−0.935081 + 0.354434i \(0.884674\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 12.5120 + 7.22383i 0.474609 + 0.274016i
\(696\) 0 0
\(697\) 0.938121 + 0.541624i 0.0355339 + 0.0205155i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 40.5498 1.53155 0.765773 0.643111i \(-0.222357\pi\)
0.765773 + 0.643111i \(0.222357\pi\)
\(702\) 0 0
\(703\) −2.18729 + 3.78850i −0.0824953 + 0.142886i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −33.0997 + 2.62685i −1.24484 + 0.0987928i
\(708\) 0 0
\(709\) −0.987955 0.570396i −0.0371034 0.0214217i 0.481334 0.876538i \(-0.340153\pi\)
−0.518437 + 0.855116i \(0.673486\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −37.2371 21.4989i −1.39454 0.805139i
\(714\) 0 0
\(715\) 11.3746 + 11.8208i 0.425385 + 0.442073i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −23.0997 + 40.0098i −0.861472 + 1.49211i 0.00903554 + 0.999959i \(0.497124\pi\)
−0.870508 + 0.492155i \(0.836209\pi\)
\(720\) 0 0
\(721\) −4.54983 + 0.361083i −0.169445 + 0.0134474i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13.5498 + 23.4690i 0.503228 + 0.871617i
\(726\) 0 0
\(727\) −13.6254 −0.505339 −0.252669 0.967553i \(-0.581308\pi\)
−0.252669 + 0.967553i \(0.581308\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.41238 2.44631i −0.0522386 0.0904799i
\(732\) 0 0
\(733\) −14.2251 + 8.21286i −0.525415 + 0.303349i −0.739148 0.673544i \(-0.764771\pi\)
0.213732 + 0.976892i \(0.431438\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −20.3746 + 35.2898i −0.750508 + 1.29992i
\(738\) 0 0
\(739\) −1.81271 + 1.04657i −0.0666815 + 0.0384986i −0.532970 0.846134i \(-0.678924\pi\)
0.466289 + 0.884633i \(0.345591\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.8625 + 9.73559i 0.618627 + 0.357164i 0.776334 0.630322i \(-0.217077\pi\)
−0.157707 + 0.987486i \(0.550410\pi\)
\(744\) 0 0
\(745\) −14.9003 −0.545906
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.41238 19.7668i 0.343921 0.722264i
\(750\) 0 0
\(751\) −22.4502 −0.819218 −0.409609 0.912261i \(-0.634335\pi\)
−0.409609 + 0.912261i \(0.634335\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −18.8248 −0.685103
\(756\) 0 0
\(757\) 12.4124 21.4989i 0.451135 0.781390i −0.547321 0.836923i \(-0.684352\pi\)
0.998457 + 0.0555330i \(0.0176858\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −28.5498 16.4833i −1.03493 0.597518i −0.116537 0.993186i \(-0.537179\pi\)
−0.918393 + 0.395669i \(0.870513\pi\)
\(762\) 0 0
\(763\) 23.6873 16.3027i 0.857538 0.590198i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 37.6495 + 10.8685i 1.35944 + 0.392438i
\(768\) 0 0
\(769\) −2.12541 1.22711i −0.0766444 0.0442507i 0.461188 0.887302i \(-0.347423\pi\)
−0.537832 + 0.843052i \(0.680757\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.10302i 0.111608i 0.998442 + 0.0558039i \(0.0177722\pi\)
−0.998442 + 0.0558039i \(0.982228\pi\)
\(774\) 0 0
\(775\) −14.7371 + 8.50848i −0.529373 + 0.305634i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.824752 + 1.42851i 0.0295498 + 0.0511817i
\(780\) 0 0
\(781\) 6.82475 11.8208i 0.244209 0.422982i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 10.6383i 0.379697i
\(786\) 0 0
\(787\) 11.1720i 0.398239i 0.979975 + 0.199120i \(0.0638082\pi\)
−0.979975 + 0.199120i \(0.936192\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −11.2749 + 0.894797i −0.400890 + 0.0318153i
\(792\) 0 0
\(793\) 24.5619 + 25.5255i 0.872218 + 0.906435i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7.96221 + 13.7910i 0.282036 + 0.488501i 0.971886 0.235452i \(-0.0756569\pi\)
−0.689850 + 0.723952i \(0.742324\pi\)
\(798\) 0 0
\(799\) −0.512045 + 0.295629i −0.0181148 + 0.0104586i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −28.5498 −1.00750
\(804\) 0 0
\(805\) 2.27492 + 28.6652i 0.0801803 + 1.01031i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12.2749 + 21.2608i 0.431563 + 0.747489i 0.997008 0.0772968i \(-0.0246289\pi\)
−0.565445 + 0.824786i \(0.691296\pi\)
\(810\) 0 0
\(811\) 4.83507i 0.169782i −0.996390 0.0848911i \(-0.972946\pi\)
0.996390 0.0848911i \(-0.0270542\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.64950 0.338007
\(816\) 0 0
\(817\) 4.30136i 0.150485i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 23.7725i 0.829667i 0.909897 + 0.414834i \(0.136160\pi\)
−0.909897 + 0.414834i \(0.863840\pi\)
\(822\) 0 0
\(823\) −26.8248 −0.935052 −0.467526 0.883979i \(-0.654855\pi\)
−0.467526 + 0.883979i \(0.654855\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.62685i 0.0913445i −0.998956 0.0456722i \(-0.985457\pi\)
0.998956 0.0456722i \(-0.0145430\pi\)
\(828\) 0 0
\(829\) −22.0997 38.2777i −0.767553 1.32944i −0.938886 0.344228i \(-0.888141\pi\)
0.171333 0.985213i \(-0.445193\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.21304 + 1.49397i 0.0420293 + 0.0517628i
\(834\) 0 0
\(835\) 0.625414 0.0216433
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.03779 + 0.599168i −0.0358285 + 0.0206856i −0.517807 0.855497i \(-0.673252\pi\)
0.481979 + 0.876183i \(0.339918\pi\)
\(840\) 0 0
\(841\) −19.7371 34.1857i −0.680591 1.17882i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 17.0619 + 0.656712i 0.586946 + 0.0225916i
\(846\) 0 0
\(847\) 1.50000 + 2.17945i 0.0515406 + 0.0748868i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 86.4716i 2.96421i
\(852\) 0 0
\(853\) 30.9885i 1.06102i −0.847677 0.530512i \(-0.822000\pi\)
0.847677 0.530512i \(-0.178000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.31271 + 5.73778i −0.113160 + 0.195999i −0.917043 0.398789i \(-0.869431\pi\)
0.803883 + 0.594788i \(0.202764\pi\)
\(858\) 0 0
\(859\) −26.5000 45.8993i −0.904168 1.56607i −0.822030 0.569445i \(-0.807158\pi\)
−0.0821386 0.996621i \(-0.526175\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −30.5120 + 17.6161i −1.03864 + 0.599660i −0.919448 0.393211i \(-0.871364\pi\)
−0.119194 + 0.992871i \(0.538031\pi\)
\(864\) 0 0
\(865\) 5.97586i 0.203185i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.64950 2.68439i −0.157724 0.0910618i
\(870\) 0 0
\(871\) 10.1873 + 41.1715i 0.345183 + 1.39504i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 25.9622 + 12.3624i 0.877683 + 0.417927i
\(876\) 0 0
\(877\) 22.5498 + 13.0192i 0.761454 + 0.439626i 0.829817 0.558035i \(-0.188444\pi\)
−0.0683637 + 0.997660i \(0.521778\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 17.9622 31.1115i 0.605162 1.04817i −0.386864 0.922137i \(-0.626442\pi\)
0.992026 0.126035i \(-0.0402251\pi\)
\(882\) 0 0
\(883\) −38.1993 −1.28551 −0.642755 0.766072i \(-0.722209\pi\)
−0.642755 + 0.766072i \(0.722209\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.2749 0.613612 0.306806 0.951772i \(-0.400740\pi\)
0.306806 + 0.951772i \(0.400740\pi\)
\(888\) 0 0
\(889\) 14.5876 + 21.1953i 0.489253 + 0.710868i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.900331 −0.0301284
\(894\) 0 0
\(895\) −16.5498 9.55505i −0.553200 0.319390i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 37.2371 21.4989i 1.24193 0.717027i
\(900\) 0 0
\(901\) 1.21304 2.10104i 0.0404122 0.0699959i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 14.4743 8.35671i 0.481141 0.277787i
\(906\) 0 0
\(907\) 4.08762 + 7.07997i 0.135727 + 0.235087i 0.925875 0.377830i \(-0.123330\pi\)
−0.790148 + 0.612916i \(0.789996\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 24.7492 0.819977 0.409988 0.912091i \(-0.365533\pi\)
0.409988 + 0.912091i \(0.365533\pi\)
\(912\) 0 0
\(913\) −15.0997 26.1534i −0.499726 0.865551i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 53.4743 4.24381i 1.76588 0.140143i
\(918\) 0 0
\(919\) −20.4622 + 35.4416i −0.674986 + 1.16911i 0.301487 + 0.953470i \(0.402517\pi\)
−0.976473 + 0.215640i \(0.930816\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.41238 13.7910i −0.112320 0.453935i
\(924\) 0 0
\(925\) 29.6375 + 17.1112i 0.974474 + 0.562613i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −9.82475 5.67232i −0.322340 0.186103i 0.330095 0.943948i \(-0.392919\pi\)
−0.652435 + 0.757845i \(0.726252\pi\)
\(930\) 0 0
\(931\) 0.462210 + 2.89371i 0.0151483 + 0.0948374i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.625414 + 1.08325i −0.0204532 + 0.0354260i
\(936\) 0 0
\(937\) −16.7251 −0.546385 −0.273192 0.961959i \(-0.588080\pi\)
−0.273192 + 0.961959i \(0.588080\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 37.9622 + 21.9175i 1.23753 + 0.714490i 0.968589 0.248666i \(-0.0799922\pi\)
0.268943 + 0.963156i \(0.413326\pi\)
\(942\) 0 0
\(943\) 28.2371 + 16.3027i 0.919527 + 0.530889i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 26.5145i 0.861605i 0.902446 + 0.430802i \(0.141769\pi\)
−0.902446 + 0.430802i \(0.858231\pi\)
\(948\) 0 0
\(949\) −21.4124 + 20.6041i −0.695075 + 0.668836i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 5.41238 + 9.37451i 0.175324 + 0.303670i 0.940273 0.340420i \(-0.110569\pi\)
−0.764949 + 0.644090i \(0.777236\pi\)
\(954\) 0 0
\(955\) 7.15838i 0.231640i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 32.2371 + 15.3504i 1.04099 + 0.495689i
\(960\) 0 0
\(961\) −2.00000 3.46410i −0.0645161 0.111745i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −12.5498 + 21.7370i −0.403993 + 0.699737i
\(966\) 0 0
\(967\) 22.2707i 0.716176i −0.933688 0.358088i \(-0.883429\pi\)
0.933688 0.358088i \(-0.116571\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 20.5498 35.5934i 0.659476 1.14225i −0.321276 0.946986i \(-0.604112\pi\)
0.980752 0.195260i \(-0.0625549\pi\)
\(972\) 0 0
\(973\) 29.0120 2.30245i 0.930083 0.0738131i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.17525 1.25588i 0.0695924 0.0401792i −0.464800 0.885416i \(-0.653874\pi\)
0.534392 + 0.845236i \(0.320540\pi\)
\(978\) 0 0
\(979\) 29.3746 + 50.8783i 0.938816 + 1.62608i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −3.51204 2.02768i −0.112017 0.0646729i 0.442945 0.896549i \(-0.353934\pi\)
−0.554962 + 0.831876i \(0.687267\pi\)
\(984\) 0 0
\(985\) −3.92442 −0.125042
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −42.5120 73.6330i −1.35180 2.34139i
\(990\) 0 0
\(991\) −5.36254 9.28819i −0.170347 0.295049i 0.768194 0.640217i \(-0.221155\pi\)
−0.938541 + 0.345167i \(0.887822\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 30.3127 17.5010i 0.960977 0.554821i
\(996\) 0 0
\(997\) 9.37459 0.296896 0.148448 0.988920i \(-0.452572\pi\)
0.148448 + 0.988920i \(0.452572\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3276.2.hi.f.1369.1 4
3.2 odd 2 1092.2.cx.c.277.2 yes 4
7.2 even 3 3276.2.fe.f.2305.2 4
13.10 even 6 3276.2.fe.f.361.2 4
21.2 odd 6 1092.2.cf.c.121.1 4
39.23 odd 6 1092.2.cf.c.361.1 yes 4
91.23 even 6 inner 3276.2.hi.f.1297.1 4
273.23 odd 6 1092.2.cx.c.205.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1092.2.cf.c.121.1 4 21.2 odd 6
1092.2.cf.c.361.1 yes 4 39.23 odd 6
1092.2.cx.c.205.2 yes 4 273.23 odd 6
1092.2.cx.c.277.2 yes 4 3.2 odd 2
3276.2.fe.f.361.2 4 13.10 even 6
3276.2.fe.f.2305.2 4 7.2 even 3
3276.2.hi.f.1297.1 4 91.23 even 6 inner
3276.2.hi.f.1369.1 4 1.1 even 1 trivial