Properties

Label 3276.2.a.s.1.3
Level $3276$
Weight $2$
Character 3276.1
Self dual yes
Analytic conductor $26.159$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3276,2,Mod(1,3276)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3276.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3276, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3276.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-4,0,0,0,0,0,-4,0,0,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.1589917022\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{19})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 11x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.31342\) of defining polynomial
Character \(\chi\) \(=\) 3276.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.31342 q^{5} -1.00000 q^{7} +2.62685 q^{11} -1.00000 q^{13} -6.92820 q^{17} -2.27492 q^{19} +1.31342 q^{23} -3.27492 q^{25} +8.24163 q^{29} +6.27492 q^{31} -1.31342 q^{35} +10.5498 q^{37} +6.92820 q^{41} +10.8248 q^{43} -1.31342 q^{47} +1.00000 q^{49} +10.8685 q^{53} +3.45017 q^{55} -9.55505 q^{59} -2.00000 q^{61} -1.31342 q^{65} -0.549834 q^{67} -5.25370 q^{71} -0.274917 q^{73} -2.62685 q^{77} +5.72508 q^{79} +3.94027 q^{83} -9.09967 q^{85} -17.7967 q^{89} +1.00000 q^{91} -2.98793 q^{95} +4.27492 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7} - 4 q^{13} + 6 q^{19} + 2 q^{25} + 10 q^{31} + 12 q^{37} - 2 q^{43} + 4 q^{49} + 44 q^{55} - 8 q^{61} + 28 q^{67} + 14 q^{73} + 38 q^{79} + 24 q^{85} + 4 q^{91} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.31342 0.587381 0.293691 0.955901i \(-0.405116\pi\)
0.293691 + 0.955901i \(0.405116\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.62685 0.792025 0.396012 0.918245i \(-0.370394\pi\)
0.396012 + 0.918245i \(0.370394\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.92820 −1.68034 −0.840168 0.542326i \(-0.817544\pi\)
−0.840168 + 0.542326i \(0.817544\pi\)
\(18\) 0 0
\(19\) −2.27492 −0.521902 −0.260951 0.965352i \(-0.584036\pi\)
−0.260951 + 0.965352i \(0.584036\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.31342 0.273868 0.136934 0.990580i \(-0.456275\pi\)
0.136934 + 0.990580i \(0.456275\pi\)
\(24\) 0 0
\(25\) −3.27492 −0.654983
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.24163 1.53043 0.765216 0.643774i \(-0.222632\pi\)
0.765216 + 0.643774i \(0.222632\pi\)
\(30\) 0 0
\(31\) 6.27492 1.12701 0.563504 0.826113i \(-0.309453\pi\)
0.563504 + 0.826113i \(0.309453\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.31342 −0.222009
\(36\) 0 0
\(37\) 10.5498 1.73438 0.867191 0.497976i \(-0.165923\pi\)
0.867191 + 0.497976i \(0.165923\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.92820 1.08200 0.541002 0.841021i \(-0.318045\pi\)
0.541002 + 0.841021i \(0.318045\pi\)
\(42\) 0 0
\(43\) 10.8248 1.65076 0.825380 0.564578i \(-0.190961\pi\)
0.825380 + 0.564578i \(0.190961\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.31342 −0.191583 −0.0957913 0.995401i \(-0.530538\pi\)
−0.0957913 + 0.995401i \(0.530538\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.8685 1.49290 0.746450 0.665442i \(-0.231757\pi\)
0.746450 + 0.665442i \(0.231757\pi\)
\(54\) 0 0
\(55\) 3.45017 0.465220
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −9.55505 −1.24396 −0.621981 0.783032i \(-0.713672\pi\)
−0.621981 + 0.783032i \(0.713672\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.31342 −0.162910
\(66\) 0 0
\(67\) −0.549834 −0.0671730 −0.0335865 0.999436i \(-0.510693\pi\)
−0.0335865 + 0.999436i \(0.510693\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.25370 −0.623499 −0.311750 0.950164i \(-0.600915\pi\)
−0.311750 + 0.950164i \(0.600915\pi\)
\(72\) 0 0
\(73\) −0.274917 −0.0321766 −0.0160883 0.999871i \(-0.505121\pi\)
−0.0160883 + 0.999871i \(0.505121\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.62685 −0.299357
\(78\) 0 0
\(79\) 5.72508 0.644122 0.322061 0.946719i \(-0.395624\pi\)
0.322061 + 0.946719i \(0.395624\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.94027 0.432501 0.216251 0.976338i \(-0.430617\pi\)
0.216251 + 0.976338i \(0.430617\pi\)
\(84\) 0 0
\(85\) −9.09967 −0.986998
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −17.7967 −1.88644 −0.943222 0.332163i \(-0.892222\pi\)
−0.943222 + 0.332163i \(0.892222\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.98793 −0.306555
\(96\) 0 0
\(97\) 4.27492 0.434052 0.217026 0.976166i \(-0.430364\pi\)
0.217026 + 0.976166i \(0.430364\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.55505 0.950763 0.475382 0.879780i \(-0.342310\pi\)
0.475382 + 0.879780i \(0.342310\pi\)
\(102\) 0 0
\(103\) 13.0997 1.29075 0.645374 0.763866i \(-0.276701\pi\)
0.645374 + 0.763866i \(0.276701\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.55505 −0.923722 −0.461861 0.886952i \(-0.652818\pi\)
−0.461861 + 0.886952i \(0.652818\pi\)
\(108\) 0 0
\(109\) 19.0997 1.82942 0.914708 0.404115i \(-0.132420\pi\)
0.914708 + 0.404115i \(0.132420\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −13.4953 −1.26953 −0.634767 0.772704i \(-0.718904\pi\)
−0.634767 + 0.772704i \(0.718904\pi\)
\(114\) 0 0
\(115\) 1.72508 0.160865
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.92820 0.635107
\(120\) 0 0
\(121\) −4.09967 −0.372697
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.8685 −0.972106
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 19.1101 1.66966 0.834829 0.550510i \(-0.185567\pi\)
0.834829 + 0.550510i \(0.185567\pi\)
\(132\) 0 0
\(133\) 2.27492 0.197260
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 20.5498 1.74301 0.871507 0.490383i \(-0.163143\pi\)
0.871507 + 0.490383i \(0.163143\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.62685 −0.219668
\(144\) 0 0
\(145\) 10.8248 0.898947
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.88054 −0.645599 −0.322800 0.946467i \(-0.604624\pi\)
−0.322800 + 0.946467i \(0.604624\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.24163 0.661983
\(156\) 0 0
\(157\) −5.45017 −0.434971 −0.217485 0.976064i \(-0.569785\pi\)
−0.217485 + 0.976064i \(0.569785\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.31342 −0.103512
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.94027 0.304907 0.152454 0.988311i \(-0.451283\pi\)
0.152454 + 0.988311i \(0.451283\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.67451 −0.127310 −0.0636552 0.997972i \(-0.520276\pi\)
−0.0636552 + 0.997972i \(0.520276\pi\)
\(174\) 0 0
\(175\) 3.27492 0.247560
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 25.6772 1.91921 0.959603 0.281358i \(-0.0907848\pi\)
0.959603 + 0.281358i \(0.0907848\pi\)
\(180\) 0 0
\(181\) −15.0997 −1.12235 −0.561175 0.827697i \(-0.689650\pi\)
−0.561175 + 0.827697i \(0.689650\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 13.8564 1.01874
\(186\) 0 0
\(187\) −18.1993 −1.33087
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.55505 0.691379 0.345690 0.938349i \(-0.387645\pi\)
0.345690 + 0.938349i \(0.387645\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −7.88054 −0.561466 −0.280733 0.959786i \(-0.590577\pi\)
−0.280733 + 0.959786i \(0.590577\pi\)
\(198\) 0 0
\(199\) −13.0997 −0.928611 −0.464305 0.885675i \(-0.653696\pi\)
−0.464305 + 0.885675i \(0.653696\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.24163 −0.578449
\(204\) 0 0
\(205\) 9.09967 0.635548
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.97586 −0.413359
\(210\) 0 0
\(211\) 22.2749 1.53347 0.766734 0.641965i \(-0.221880\pi\)
0.766734 + 0.641965i \(0.221880\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 14.2175 0.969625
\(216\) 0 0
\(217\) −6.27492 −0.425969
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.92820 0.466041
\(222\) 0 0
\(223\) 23.3746 1.56528 0.782639 0.622476i \(-0.213873\pi\)
0.782639 + 0.622476i \(0.213873\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −14.8087 −0.982891 −0.491446 0.870908i \(-0.663531\pi\)
−0.491446 + 0.870908i \(0.663531\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.1222 −1.05620 −0.528099 0.849183i \(-0.677095\pi\)
−0.528099 + 0.849183i \(0.677095\pi\)
\(234\) 0 0
\(235\) −1.72508 −0.112532
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −13.8564 −0.896296 −0.448148 0.893959i \(-0.647916\pi\)
−0.448148 + 0.893959i \(0.647916\pi\)
\(240\) 0 0
\(241\) 0.824752 0.0531269 0.0265635 0.999647i \(-0.491544\pi\)
0.0265635 + 0.999647i \(0.491544\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.31342 0.0839116
\(246\) 0 0
\(247\) 2.27492 0.144750
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 21.7370 1.37202 0.686012 0.727590i \(-0.259360\pi\)
0.686012 + 0.727590i \(0.259360\pi\)
\(252\) 0 0
\(253\) 3.45017 0.216910
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.8087 −0.923744 −0.461872 0.886947i \(-0.652822\pi\)
−0.461872 + 0.886947i \(0.652822\pi\)
\(258\) 0 0
\(259\) −10.5498 −0.655535
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −31.6531 −1.95181 −0.975906 0.218189i \(-0.929985\pi\)
−0.975906 + 0.218189i \(0.929985\pi\)
\(264\) 0 0
\(265\) 14.2749 0.876901
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 22.6893 1.38339 0.691695 0.722189i \(-0.256864\pi\)
0.691695 + 0.722189i \(0.256864\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.60271 −0.518763
\(276\) 0 0
\(277\) −20.2749 −1.21820 −0.609101 0.793093i \(-0.708470\pi\)
−0.609101 + 0.793093i \(0.708470\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −26.9906 −1.61013 −0.805064 0.593189i \(-0.797869\pi\)
−0.805064 + 0.593189i \(0.797869\pi\)
\(282\) 0 0
\(283\) −17.0997 −1.01647 −0.508235 0.861218i \(-0.669702\pi\)
−0.508235 + 0.861218i \(0.669702\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.92820 −0.408959
\(288\) 0 0
\(289\) 31.0000 1.82353
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.31342 −0.0767311 −0.0383655 0.999264i \(-0.512215\pi\)
−0.0383655 + 0.999264i \(0.512215\pi\)
\(294\) 0 0
\(295\) −12.5498 −0.730680
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.31342 −0.0759573
\(300\) 0 0
\(301\) −10.8248 −0.623928
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.62685 −0.150413
\(306\) 0 0
\(307\) 14.8248 0.846093 0.423047 0.906108i \(-0.360961\pi\)
0.423047 + 0.906108i \(0.360961\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.97586 0.338860 0.169430 0.985542i \(-0.445807\pi\)
0.169430 + 0.985542i \(0.445807\pi\)
\(312\) 0 0
\(313\) −31.0997 −1.75786 −0.878929 0.476953i \(-0.841741\pi\)
−0.878929 + 0.476953i \(0.841741\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.8564 0.778253 0.389127 0.921184i \(-0.372777\pi\)
0.389127 + 0.921184i \(0.372777\pi\)
\(318\) 0 0
\(319\) 21.6495 1.21214
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 15.7611 0.876970
\(324\) 0 0
\(325\) 3.27492 0.181660
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.31342 0.0724114
\(330\) 0 0
\(331\) 24.5498 1.34938 0.674690 0.738101i \(-0.264277\pi\)
0.674690 + 0.738101i \(0.264277\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.722166 −0.0394561
\(336\) 0 0
\(337\) 17.9244 0.976405 0.488203 0.872730i \(-0.337653\pi\)
0.488203 + 0.872730i \(0.337653\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 16.4833 0.892618
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.8087 −0.794975 −0.397488 0.917608i \(-0.630118\pi\)
−0.397488 + 0.917608i \(0.630118\pi\)
\(348\) 0 0
\(349\) −25.3746 −1.35827 −0.679135 0.734013i \(-0.737645\pi\)
−0.679135 + 0.734013i \(0.737645\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 31.2920 1.66551 0.832753 0.553645i \(-0.186764\pi\)
0.832753 + 0.553645i \(0.186764\pi\)
\(354\) 0 0
\(355\) −6.90033 −0.366232
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 27.7128 1.46263 0.731313 0.682042i \(-0.238908\pi\)
0.731313 + 0.682042i \(0.238908\pi\)
\(360\) 0 0
\(361\) −13.8248 −0.727619
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.361083 −0.0188999
\(366\) 0 0
\(367\) 0.549834 0.0287011 0.0143506 0.999897i \(-0.495432\pi\)
0.0143506 + 0.999897i \(0.495432\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −10.8685 −0.564263
\(372\) 0 0
\(373\) −19.0997 −0.988943 −0.494472 0.869194i \(-0.664638\pi\)
−0.494472 + 0.869194i \(0.664638\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.24163 −0.424465
\(378\) 0 0
\(379\) −0.549834 −0.0282431 −0.0141215 0.999900i \(-0.504495\pi\)
−0.0141215 + 0.999900i \(0.504495\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14.8087 −0.756692 −0.378346 0.925664i \(-0.623507\pi\)
−0.378346 + 0.925664i \(0.623507\pi\)
\(384\) 0 0
\(385\) −3.45017 −0.175837
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −27.7128 −1.40510 −0.702548 0.711637i \(-0.747954\pi\)
−0.702548 + 0.711637i \(0.747954\pi\)
\(390\) 0 0
\(391\) −9.09967 −0.460190
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.51946 0.378345
\(396\) 0 0
\(397\) −19.7251 −0.989974 −0.494987 0.868901i \(-0.664827\pi\)
−0.494987 + 0.868901i \(0.664827\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 27.7128 1.38391 0.691956 0.721940i \(-0.256749\pi\)
0.691956 + 0.721940i \(0.256749\pi\)
\(402\) 0 0
\(403\) −6.27492 −0.312576
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 27.7128 1.37367
\(408\) 0 0
\(409\) 21.3746 1.05691 0.528453 0.848963i \(-0.322772\pi\)
0.528453 + 0.848963i \(0.322772\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.55505 0.470173
\(414\) 0 0
\(415\) 5.17525 0.254043
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 21.7370 1.06192 0.530960 0.847397i \(-0.321832\pi\)
0.530960 + 0.847397i \(0.321832\pi\)
\(420\) 0 0
\(421\) 14.5498 0.709116 0.354558 0.935034i \(-0.384631\pi\)
0.354558 + 0.935034i \(0.384631\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 22.6893 1.10059
\(426\) 0 0
\(427\) 2.00000 0.0967868
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −35.5934 −1.71447 −0.857236 0.514924i \(-0.827820\pi\)
−0.857236 + 0.514924i \(0.827820\pi\)
\(432\) 0 0
\(433\) 23.6495 1.13652 0.568261 0.822848i \(-0.307616\pi\)
0.568261 + 0.822848i \(0.307616\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.98793 −0.142932
\(438\) 0 0
\(439\) 0.549834 0.0262422 0.0131211 0.999914i \(-0.495823\pi\)
0.0131211 + 0.999914i \(0.495823\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.91613 −0.471130 −0.235565 0.971859i \(-0.575694\pi\)
−0.235565 + 0.971859i \(0.575694\pi\)
\(444\) 0 0
\(445\) −23.3746 −1.10806
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 24.3638 1.14980 0.574899 0.818224i \(-0.305041\pi\)
0.574899 + 0.818224i \(0.305041\pi\)
\(450\) 0 0
\(451\) 18.1993 0.856973
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.31342 0.0615743
\(456\) 0 0
\(457\) −15.6495 −0.732053 −0.366026 0.930604i \(-0.619282\pi\)
−0.366026 + 0.930604i \(0.619282\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 22.6893 1.05675 0.528373 0.849012i \(-0.322802\pi\)
0.528373 + 0.849012i \(0.322802\pi\)
\(462\) 0 0
\(463\) −21.6495 −1.00614 −0.503069 0.864246i \(-0.667796\pi\)
−0.503069 + 0.864246i \(0.667796\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −32.2443 −1.49209 −0.746045 0.665895i \(-0.768050\pi\)
−0.746045 + 0.665895i \(0.768050\pi\)
\(468\) 0 0
\(469\) 0.549834 0.0253890
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 28.4350 1.30744
\(474\) 0 0
\(475\) 7.45017 0.341837
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.94027 −0.180036 −0.0900178 0.995940i \(-0.528692\pi\)
−0.0900178 + 0.995940i \(0.528692\pi\)
\(480\) 0 0
\(481\) −10.5498 −0.481031
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5.61478 0.254954
\(486\) 0 0
\(487\) −29.6495 −1.34355 −0.671774 0.740757i \(-0.734467\pi\)
−0.671774 + 0.740757i \(0.734467\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −18.1578 −0.819448 −0.409724 0.912209i \(-0.634375\pi\)
−0.409724 + 0.912209i \(0.634375\pi\)
\(492\) 0 0
\(493\) −57.0997 −2.57164
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.25370 0.235660
\(498\) 0 0
\(499\) 28.0000 1.25345 0.626726 0.779240i \(-0.284395\pi\)
0.626726 + 0.779240i \(0.284395\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.62685 0.117125 0.0585627 0.998284i \(-0.481348\pi\)
0.0585627 + 0.998284i \(0.481348\pi\)
\(504\) 0 0
\(505\) 12.5498 0.558460
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −42.8826 −1.90074 −0.950370 0.311122i \(-0.899295\pi\)
−0.950370 + 0.311122i \(0.899295\pi\)
\(510\) 0 0
\(511\) 0.274917 0.0121616
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 17.2054 0.758161
\(516\) 0 0
\(517\) −3.45017 −0.151738
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −34.6410 −1.51765 −0.758825 0.651294i \(-0.774226\pi\)
−0.758825 + 0.651294i \(0.774226\pi\)
\(522\) 0 0
\(523\) 37.6495 1.64630 0.823149 0.567826i \(-0.192215\pi\)
0.823149 + 0.567826i \(0.192215\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −43.4739 −1.89375
\(528\) 0 0
\(529\) −21.2749 −0.924996
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.92820 −0.300094
\(534\) 0 0
\(535\) −12.5498 −0.542577
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.62685 0.113146
\(540\) 0 0
\(541\) 15.6495 0.672825 0.336412 0.941715i \(-0.390786\pi\)
0.336412 + 0.941715i \(0.390786\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 25.0860 1.07456
\(546\) 0 0
\(547\) −13.1752 −0.563333 −0.281666 0.959512i \(-0.590887\pi\)
−0.281666 + 0.959512i \(0.590887\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −18.7490 −0.798735
\(552\) 0 0
\(553\) −5.72508 −0.243455
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.6175 1.25493 0.627467 0.778643i \(-0.284092\pi\)
0.627467 + 0.778643i \(0.284092\pi\)
\(558\) 0 0
\(559\) −10.8248 −0.457838
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.34901 0.141144 0.0705721 0.997507i \(-0.477518\pi\)
0.0705721 + 0.997507i \(0.477518\pi\)
\(564\) 0 0
\(565\) −17.7251 −0.745700
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −16.1222 −0.675877 −0.337938 0.941168i \(-0.609730\pi\)
−0.337938 + 0.941168i \(0.609730\pi\)
\(570\) 0 0
\(571\) −5.17525 −0.216577 −0.108289 0.994119i \(-0.534537\pi\)
−0.108289 + 0.994119i \(0.534537\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.30136 −0.179379
\(576\) 0 0
\(577\) −24.1993 −1.00743 −0.503716 0.863869i \(-0.668034\pi\)
−0.503716 + 0.863869i \(0.668034\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.94027 −0.163470
\(582\) 0 0
\(583\) 28.5498 1.18241
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14.4477 −0.596319 −0.298159 0.954516i \(-0.596373\pi\)
−0.298159 + 0.954516i \(0.596373\pi\)
\(588\) 0 0
\(589\) −14.2749 −0.588188
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.28929 0.299335 0.149668 0.988736i \(-0.452180\pi\)
0.149668 + 0.988736i \(0.452180\pi\)
\(594\) 0 0
\(595\) 9.09967 0.373050
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 26.3994 1.07865 0.539325 0.842098i \(-0.318679\pi\)
0.539325 + 0.842098i \(0.318679\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −5.38460 −0.218915
\(606\) 0 0
\(607\) −25.6495 −1.04108 −0.520541 0.853837i \(-0.674270\pi\)
−0.520541 + 0.853837i \(0.674270\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.31342 0.0531355
\(612\) 0 0
\(613\) −5.45017 −0.220130 −0.110065 0.993924i \(-0.535106\pi\)
−0.110065 + 0.993924i \(0.535106\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.722166 0.0290733 0.0145366 0.999894i \(-0.495373\pi\)
0.0145366 + 0.999894i \(0.495373\pi\)
\(618\) 0 0
\(619\) −44.0000 −1.76851 −0.884255 0.467005i \(-0.845333\pi\)
−0.884255 + 0.467005i \(0.845333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 17.7967 0.713009
\(624\) 0 0
\(625\) 2.09967 0.0839868
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −73.0914 −2.91434
\(630\) 0 0
\(631\) −12.5498 −0.499601 −0.249801 0.968297i \(-0.580365\pi\)
−0.249801 + 0.968297i \(0.580365\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.25370 0.208487
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −43.8350 −1.73138 −0.865689 0.500582i \(-0.833119\pi\)
−0.865689 + 0.500582i \(0.833119\pi\)
\(642\) 0 0
\(643\) 10.9003 0.429867 0.214934 0.976629i \(-0.431047\pi\)
0.214934 + 0.976629i \(0.431047\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −13.1342 −0.516360 −0.258180 0.966097i \(-0.583123\pi\)
−0.258180 + 0.966097i \(0.583123\pi\)
\(648\) 0 0
\(649\) −25.0997 −0.985248
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −27.7128 −1.08449 −0.542243 0.840222i \(-0.682425\pi\)
−0.542243 + 0.840222i \(0.682425\pi\)
\(654\) 0 0
\(655\) 25.0997 0.980725
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.03559 0.0792953 0.0396477 0.999214i \(-0.487376\pi\)
0.0396477 + 0.999214i \(0.487376\pi\)
\(660\) 0 0
\(661\) −24.2749 −0.944185 −0.472092 0.881549i \(-0.656501\pi\)
−0.472092 + 0.881549i \(0.656501\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.98793 0.115867
\(666\) 0 0
\(667\) 10.8248 0.419136
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.25370 −0.202817
\(672\) 0 0
\(673\) −17.9244 −0.690936 −0.345468 0.938431i \(-0.612280\pi\)
−0.345468 + 0.938431i \(0.612280\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 42.5216 1.63424 0.817118 0.576470i \(-0.195570\pi\)
0.817118 + 0.576470i \(0.195570\pi\)
\(678\) 0 0
\(679\) −4.27492 −0.164056
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.4591 0.859374 0.429687 0.902978i \(-0.358624\pi\)
0.429687 + 0.902978i \(0.358624\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −10.8685 −0.414056
\(690\) 0 0
\(691\) −29.7251 −1.13080 −0.565398 0.824818i \(-0.691277\pi\)
−0.565398 + 0.824818i \(0.691277\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 26.9906 1.02381
\(696\) 0 0
\(697\) −48.0000 −1.81813
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.7732 0.482436 0.241218 0.970471i \(-0.422453\pi\)
0.241218 + 0.970471i \(0.422453\pi\)
\(702\) 0 0
\(703\) −24.0000 −0.905177
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9.55505 −0.359355
\(708\) 0 0
\(709\) 11.0997 0.416857 0.208428 0.978038i \(-0.433165\pi\)
0.208428 + 0.978038i \(0.433165\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.24163 0.308651
\(714\) 0 0
\(715\) −3.45017 −0.129029
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.62685 −0.0979649 −0.0489825 0.998800i \(-0.515598\pi\)
−0.0489825 + 0.998800i \(0.515598\pi\)
\(720\) 0 0
\(721\) −13.0997 −0.487857
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −26.9906 −1.00241
\(726\) 0 0
\(727\) −15.4502 −0.573015 −0.286507 0.958078i \(-0.592494\pi\)
−0.286507 + 0.958078i \(0.592494\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −74.9961 −2.77383
\(732\) 0 0
\(733\) 5.92442 0.218823 0.109412 0.993997i \(-0.465103\pi\)
0.109412 + 0.993997i \(0.465103\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.44433 −0.0532026
\(738\) 0 0
\(739\) 7.45017 0.274059 0.137029 0.990567i \(-0.456245\pi\)
0.137029 + 0.990567i \(0.456245\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 38.2202 1.40216 0.701082 0.713081i \(-0.252701\pi\)
0.701082 + 0.713081i \(0.252701\pi\)
\(744\) 0 0
\(745\) −10.3505 −0.379213
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.55505 0.349134
\(750\) 0 0
\(751\) 12.6254 0.460708 0.230354 0.973107i \(-0.426012\pi\)
0.230354 + 0.973107i \(0.426012\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 45.9244 1.66915 0.834576 0.550893i \(-0.185713\pi\)
0.834576 + 0.550893i \(0.185713\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 25.6772 0.930799 0.465399 0.885101i \(-0.345911\pi\)
0.465399 + 0.885101i \(0.345911\pi\)
\(762\) 0 0
\(763\) −19.0997 −0.691454
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.55505 0.345013
\(768\) 0 0
\(769\) 8.27492 0.298401 0.149201 0.988807i \(-0.452330\pi\)
0.149201 + 0.988807i \(0.452330\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 12.1819 0.438152 0.219076 0.975708i \(-0.429696\pi\)
0.219076 + 0.975708i \(0.429696\pi\)
\(774\) 0 0
\(775\) −20.5498 −0.738172
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −15.7611 −0.564700
\(780\) 0 0
\(781\) −13.8007 −0.493827
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.15838 −0.255493
\(786\) 0 0
\(787\) −36.4743 −1.30017 −0.650083 0.759863i \(-0.725266\pi\)
−0.650083 + 0.759863i \(0.725266\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 13.4953 0.479838
\(792\) 0 0
\(793\) 2.00000 0.0710221
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 26.7605 0.947905 0.473952 0.880551i \(-0.342827\pi\)
0.473952 + 0.880551i \(0.342827\pi\)
\(798\) 0 0
\(799\) 9.09967 0.321923
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.722166 −0.0254847
\(804\) 0 0
\(805\) −1.72508 −0.0608012
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18.7490 0.659180 0.329590 0.944124i \(-0.393089\pi\)
0.329590 + 0.944124i \(0.393089\pi\)
\(810\) 0 0
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 26.2685 0.920145
\(816\) 0 0
\(817\) −24.6254 −0.861534
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 13.1342 0.458388 0.229194 0.973381i \(-0.426391\pi\)
0.229194 + 0.973381i \(0.426391\pi\)
\(822\) 0 0
\(823\) −21.0997 −0.735488 −0.367744 0.929927i \(-0.619870\pi\)
−0.367744 + 0.929927i \(0.619870\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 29.6175 1.02990 0.514951 0.857220i \(-0.327810\pi\)
0.514951 + 0.857220i \(0.327810\pi\)
\(828\) 0 0
\(829\) −23.0997 −0.802285 −0.401142 0.916016i \(-0.631387\pi\)
−0.401142 + 0.916016i \(0.631387\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.92820 −0.240048
\(834\) 0 0
\(835\) 5.17525 0.179097
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −39.1725 −1.35239 −0.676193 0.736724i \(-0.736372\pi\)
−0.676193 + 0.736724i \(0.736372\pi\)
\(840\) 0 0
\(841\) 38.9244 1.34222
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.31342 0.0451832
\(846\) 0 0
\(847\) 4.09967 0.140866
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 13.8564 0.474991
\(852\) 0 0
\(853\) −49.3746 −1.69055 −0.845277 0.534329i \(-0.820564\pi\)
−0.845277 + 0.534329i \(0.820564\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 23.4115 0.799720 0.399860 0.916576i \(-0.369059\pi\)
0.399860 + 0.916576i \(0.369059\pi\)
\(858\) 0 0
\(859\) −20.5498 −0.701151 −0.350576 0.936534i \(-0.614014\pi\)
−0.350576 + 0.936534i \(0.614014\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 10.5074 0.357676 0.178838 0.983879i \(-0.442766\pi\)
0.178838 + 0.983879i \(0.442766\pi\)
\(864\) 0 0
\(865\) −2.19934 −0.0747797
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 15.0389 0.510161
\(870\) 0 0
\(871\) 0.549834 0.0186304
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.8685 0.367422
\(876\) 0 0
\(877\) 25.4502 0.859391 0.429696 0.902974i \(-0.358621\pi\)
0.429696 + 0.902974i \(0.358621\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −0.952341 −0.0320852 −0.0160426 0.999871i \(-0.505107\pi\)
−0.0160426 + 0.999871i \(0.505107\pi\)
\(882\) 0 0
\(883\) −17.0997 −0.575450 −0.287725 0.957713i \(-0.592899\pi\)
−0.287725 + 0.957713i \(0.592899\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.3638 0.818056 0.409028 0.912522i \(-0.365868\pi\)
0.409028 + 0.912522i \(0.365868\pi\)
\(888\) 0 0
\(889\) −4.00000 −0.134156
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.98793 0.0999873
\(894\) 0 0
\(895\) 33.7251 1.12731
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 51.7155 1.72481
\(900\) 0 0
\(901\) −75.2990 −2.50857
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −19.8323 −0.659247
\(906\) 0 0
\(907\) −0.625414 −0.0207665 −0.0103833 0.999946i \(-0.503305\pi\)
−0.0103833 + 0.999946i \(0.503305\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3.94027 −0.130547 −0.0652735 0.997867i \(-0.520792\pi\)
−0.0652735 + 0.997867i \(0.520792\pi\)
\(912\) 0 0
\(913\) 10.3505 0.342551
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −19.1101 −0.631071
\(918\) 0 0
\(919\) 45.0997 1.48770 0.743850 0.668346i \(-0.232997\pi\)
0.743850 + 0.668346i \(0.232997\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.25370 0.172928
\(924\) 0 0
\(925\) −34.5498 −1.13599
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 41.4383 1.35955 0.679773 0.733422i \(-0.262078\pi\)
0.679773 + 0.733422i \(0.262078\pi\)
\(930\) 0 0
\(931\) −2.27492 −0.0745574
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −23.9034 −0.781726
\(936\) 0 0
\(937\) −25.4502 −0.831421 −0.415710 0.909497i \(-0.636467\pi\)
−0.415710 + 0.909497i \(0.636467\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −21.1457 −0.689330 −0.344665 0.938726i \(-0.612007\pi\)
−0.344665 + 0.938726i \(0.612007\pi\)
\(942\) 0 0
\(943\) 9.09967 0.296326
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −21.7370 −0.706356 −0.353178 0.935556i \(-0.614899\pi\)
−0.353178 + 0.935556i \(0.614899\pi\)
\(948\) 0 0
\(949\) 0.274917 0.00892419
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −50.9934 −1.65184 −0.825919 0.563789i \(-0.809343\pi\)
−0.825919 + 0.563789i \(0.809343\pi\)
\(954\) 0 0
\(955\) 12.5498 0.406103
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 8.37459 0.270148
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.62685 0.0845612
\(966\) 0 0
\(967\) 21.6495 0.696201 0.348101 0.937457i \(-0.386827\pi\)
0.348101 + 0.937457i \(0.386827\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −49.4498 −1.58692 −0.793459 0.608623i \(-0.791722\pi\)
−0.793459 + 0.608623i \(0.791722\pi\)
\(972\) 0 0
\(973\) −20.5498 −0.658797
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −49.4498 −1.58204 −0.791019 0.611792i \(-0.790449\pi\)
−0.791019 + 0.611792i \(0.790449\pi\)
\(978\) 0 0
\(979\) −46.7492 −1.49411
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −50.0410 −1.59606 −0.798030 0.602617i \(-0.794125\pi\)
−0.798030 + 0.602617i \(0.794125\pi\)
\(984\) 0 0
\(985\) −10.3505 −0.329794
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14.2175 0.452090
\(990\) 0 0
\(991\) 12.0000 0.381193 0.190596 0.981669i \(-0.438958\pi\)
0.190596 + 0.981669i \(0.438958\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −17.2054 −0.545448
\(996\) 0 0
\(997\) −29.4502 −0.932696 −0.466348 0.884601i \(-0.654431\pi\)
−0.466348 + 0.884601i \(0.654431\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3276.2.a.s.1.3 yes 4
3.2 odd 2 inner 3276.2.a.s.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3276.2.a.s.1.2 4 3.2 odd 2 inner
3276.2.a.s.1.3 yes 4 1.1 even 1 trivial