Properties

Label 3276.1.fx.d
Level $3276$
Weight $1$
Character orbit 3276.fx
Analytic conductor $1.635$
Analytic rank $0$
Dimension $4$
Projective image $D_{6}$
CM discriminant -52
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3276,1,Mod(415,3276)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3276.415"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3276, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2, 3])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3276.fx (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.63493698139\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.701168832.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12}^{4} q^{2} - \zeta_{12}^{2} q^{4} - \zeta_{12} q^{7} - q^{8} + \zeta_{12}^{2} q^{11} - q^{13} + \zeta_{12}^{5} q^{14} + \zeta_{12}^{4} q^{16} + ( - \zeta_{12}^{3} - \zeta_{12}) q^{17} + (\zeta_{12}^{5} + \zeta_{12}^{3}) q^{19} + \cdots + q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 4 q^{8} + 2 q^{11} - 4 q^{13} - 2 q^{16} + 4 q^{22} - 2 q^{25} - 2 q^{26} + 2 q^{32} + 2 q^{44} + 2 q^{47} + 2 q^{49} - 4 q^{50} + 2 q^{52} - 2 q^{59} - 2 q^{61} + 4 q^{64} + 4 q^{71}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times\).

\(n\) \(1639\) \(2017\) \(2341\) \(2549\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{12}^{4}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
415.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0.500000 0.866025i 0 −0.500000 0.866025i 0 0 −0.866025 0.500000i −1.00000 0 0
415.2 0.500000 0.866025i 0 −0.500000 0.866025i 0 0 0.866025 + 0.500000i −1.00000 0 0
2755.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0 0 −0.866025 + 0.500000i −1.00000 0 0
2755.2 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0 0 0.866025 0.500000i −1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
52.b odd 2 1 CM by \(\Q(\sqrt{-13}) \)
7.c even 3 1 inner
12.b even 2 1 inner
39.d odd 2 1 inner
84.n even 6 1 inner
273.w odd 6 1 inner
364.bl odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3276.1.fx.d yes 4
3.b odd 2 1 3276.1.fx.c 4
4.b odd 2 1 3276.1.fx.c 4
7.c even 3 1 inner 3276.1.fx.d yes 4
12.b even 2 1 inner 3276.1.fx.d yes 4
13.b even 2 1 3276.1.fx.c 4
21.h odd 6 1 3276.1.fx.c 4
28.g odd 6 1 3276.1.fx.c 4
39.d odd 2 1 inner 3276.1.fx.d yes 4
52.b odd 2 1 CM 3276.1.fx.d yes 4
84.n even 6 1 inner 3276.1.fx.d yes 4
91.r even 6 1 3276.1.fx.c 4
156.h even 2 1 3276.1.fx.c 4
273.w odd 6 1 inner 3276.1.fx.d yes 4
364.bl odd 6 1 inner 3276.1.fx.d yes 4
1092.by even 6 1 3276.1.fx.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3276.1.fx.c 4 3.b odd 2 1
3276.1.fx.c 4 4.b odd 2 1
3276.1.fx.c 4 13.b even 2 1
3276.1.fx.c 4 21.h odd 6 1
3276.1.fx.c 4 28.g odd 6 1
3276.1.fx.c 4 91.r even 6 1
3276.1.fx.c 4 156.h even 2 1
3276.1.fx.c 4 1092.by even 6 1
3276.1.fx.d yes 4 1.a even 1 1 trivial
3276.1.fx.d yes 4 7.c even 3 1 inner
3276.1.fx.d yes 4 12.b even 2 1 inner
3276.1.fx.d yes 4 39.d odd 2 1 inner
3276.1.fx.d yes 4 52.b odd 2 1 CM
3276.1.fx.d yes 4 84.n even 6 1 inner
3276.1.fx.d yes 4 273.w odd 6 1 inner
3276.1.fx.d yes 4 364.bl odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3276, [\chi])\):

\( T_{11}^{2} - T_{11} + 1 \) Copy content Toggle raw display
\( T_{17}^{4} + 3T_{17}^{2} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$11$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$13$ \( (T + 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$19$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$59$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$71$ \( (T - 1)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T + 2)^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less