Properties

Label 3267.2.a.t.1.3
Level $3267$
Weight $2$
Character 3267.1
Self dual yes
Analytic conductor $26.087$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3267,2,Mod(1,3267)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3267, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3267.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3267 = 3^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3267.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,0,5,-2,0,-7,-3,0,4,0,0,-4,13,0,5,-1,0,-2,-22,0,0,5,0,5, -2,0,-15,-3,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.0871263404\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 297)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.08613\) of defining polynomial
Character \(\chi\) \(=\) 3267.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.08613 q^{2} +2.35194 q^{4} -1.35194 q^{5} +0.0861302 q^{7} +0.734191 q^{8} -2.82032 q^{10} -0.648061 q^{13} +0.179679 q^{14} -3.17226 q^{16} -3.43807 q^{17} -4.82032 q^{19} -3.17968 q^{20} +5.82032 q^{23} -3.17226 q^{25} -1.35194 q^{26} +0.202573 q^{28} -4.79001 q^{29} +0.648061 q^{31} -8.08613 q^{32} -7.17226 q^{34} -0.116443 q^{35} +11.4003 q^{37} -10.0558 q^{38} -0.992582 q^{40} -8.96227 q^{41} -9.61033 q^{43} +12.1419 q^{46} +3.87614 q^{47} -6.99258 q^{49} -6.61775 q^{50} -1.52420 q^{52} -7.46838 q^{53} +0.0632360 q^{56} -9.99258 q^{58} -6.69646 q^{59} +12.2281 q^{61} +1.35194 q^{62} -10.5242 q^{64} +0.876139 q^{65} -4.99258 q^{67} -8.08613 q^{68} -0.242915 q^{70} -7.46838 q^{71} +4.87614 q^{73} +23.7826 q^{74} -11.3371 q^{76} -10.8458 q^{79} +4.28870 q^{80} -18.6965 q^{82} -1.94418 q^{83} +4.64806 q^{85} -20.0484 q^{86} -5.04840 q^{89} -0.0558176 q^{91} +13.6890 q^{92} +8.08613 q^{94} +6.51678 q^{95} +15.5726 q^{97} -14.5874 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 5 q^{4} - 2 q^{5} - 7 q^{7} - 3 q^{8} + 4 q^{10} - 4 q^{13} + 13 q^{14} + 5 q^{16} - q^{17} - 2 q^{19} - 22 q^{20} + 5 q^{23} + 5 q^{25} - 2 q^{26} - 15 q^{28} - 3 q^{29} + 4 q^{31} - 17 q^{32}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.08613 1.47512 0.737558 0.675283i \(-0.235979\pi\)
0.737558 + 0.675283i \(0.235979\pi\)
\(3\) 0 0
\(4\) 2.35194 1.17597
\(5\) −1.35194 −0.604606 −0.302303 0.953212i \(-0.597755\pi\)
−0.302303 + 0.953212i \(0.597755\pi\)
\(6\) 0 0
\(7\) 0.0861302 0.0325542 0.0162771 0.999868i \(-0.494819\pi\)
0.0162771 + 0.999868i \(0.494819\pi\)
\(8\) 0.734191 0.259576
\(9\) 0 0
\(10\) −2.82032 −0.891864
\(11\) 0 0
\(12\) 0 0
\(13\) −0.648061 −0.179740 −0.0898699 0.995954i \(-0.528645\pi\)
−0.0898699 + 0.995954i \(0.528645\pi\)
\(14\) 0.179679 0.0480212
\(15\) 0 0
\(16\) −3.17226 −0.793065
\(17\) −3.43807 −0.833854 −0.416927 0.908940i \(-0.636893\pi\)
−0.416927 + 0.908940i \(0.636893\pi\)
\(18\) 0 0
\(19\) −4.82032 −1.10586 −0.552929 0.833229i \(-0.686490\pi\)
−0.552929 + 0.833229i \(0.686490\pi\)
\(20\) −3.17968 −0.710998
\(21\) 0 0
\(22\) 0 0
\(23\) 5.82032 1.21362 0.606810 0.794847i \(-0.292449\pi\)
0.606810 + 0.794847i \(0.292449\pi\)
\(24\) 0 0
\(25\) −3.17226 −0.634452
\(26\) −1.35194 −0.265137
\(27\) 0 0
\(28\) 0.202573 0.0382827
\(29\) −4.79001 −0.889482 −0.444741 0.895659i \(-0.646704\pi\)
−0.444741 + 0.895659i \(0.646704\pi\)
\(30\) 0 0
\(31\) 0.648061 0.116395 0.0581976 0.998305i \(-0.481465\pi\)
0.0581976 + 0.998305i \(0.481465\pi\)
\(32\) −8.08613 −1.42944
\(33\) 0 0
\(34\) −7.17226 −1.23003
\(35\) −0.116443 −0.0196824
\(36\) 0 0
\(37\) 11.4003 1.87420 0.937102 0.349056i \(-0.113498\pi\)
0.937102 + 0.349056i \(0.113498\pi\)
\(38\) −10.0558 −1.63127
\(39\) 0 0
\(40\) −0.992582 −0.156941
\(41\) −8.96227 −1.39967 −0.699836 0.714304i \(-0.746743\pi\)
−0.699836 + 0.714304i \(0.746743\pi\)
\(42\) 0 0
\(43\) −9.61033 −1.46556 −0.732781 0.680465i \(-0.761778\pi\)
−0.732781 + 0.680465i \(0.761778\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 12.1419 1.79023
\(47\) 3.87614 0.565393 0.282696 0.959209i \(-0.408771\pi\)
0.282696 + 0.959209i \(0.408771\pi\)
\(48\) 0 0
\(49\) −6.99258 −0.998940
\(50\) −6.61775 −0.935891
\(51\) 0 0
\(52\) −1.52420 −0.211368
\(53\) −7.46838 −1.02586 −0.512931 0.858430i \(-0.671440\pi\)
−0.512931 + 0.858430i \(0.671440\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.0632360 0.00845027
\(57\) 0 0
\(58\) −9.99258 −1.31209
\(59\) −6.69646 −0.871805 −0.435902 0.899994i \(-0.643571\pi\)
−0.435902 + 0.899994i \(0.643571\pi\)
\(60\) 0 0
\(61\) 12.2281 1.56564 0.782822 0.622245i \(-0.213779\pi\)
0.782822 + 0.622245i \(0.213779\pi\)
\(62\) 1.35194 0.171696
\(63\) 0 0
\(64\) −10.5242 −1.31552
\(65\) 0.876139 0.108672
\(66\) 0 0
\(67\) −4.99258 −0.609941 −0.304970 0.952362i \(-0.598647\pi\)
−0.304970 + 0.952362i \(0.598647\pi\)
\(68\) −8.08613 −0.980587
\(69\) 0 0
\(70\) −0.242915 −0.0290339
\(71\) −7.46838 −0.886334 −0.443167 0.896439i \(-0.646145\pi\)
−0.443167 + 0.896439i \(0.646145\pi\)
\(72\) 0 0
\(73\) 4.87614 0.570709 0.285354 0.958422i \(-0.407889\pi\)
0.285354 + 0.958422i \(0.407889\pi\)
\(74\) 23.7826 2.76467
\(75\) 0 0
\(76\) −11.3371 −1.30045
\(77\) 0 0
\(78\) 0 0
\(79\) −10.8458 −1.22025 −0.610125 0.792305i \(-0.708881\pi\)
−0.610125 + 0.792305i \(0.708881\pi\)
\(80\) 4.28870 0.479492
\(81\) 0 0
\(82\) −18.6965 −2.06468
\(83\) −1.94418 −0.213402 −0.106701 0.994291i \(-0.534029\pi\)
−0.106701 + 0.994291i \(0.534029\pi\)
\(84\) 0 0
\(85\) 4.64806 0.504153
\(86\) −20.0484 −2.16187
\(87\) 0 0
\(88\) 0 0
\(89\) −5.04840 −0.535129 −0.267565 0.963540i \(-0.586219\pi\)
−0.267565 + 0.963540i \(0.586219\pi\)
\(90\) 0 0
\(91\) −0.0558176 −0.00585127
\(92\) 13.6890 1.42718
\(93\) 0 0
\(94\) 8.08613 0.834021
\(95\) 6.51678 0.668608
\(96\) 0 0
\(97\) 15.5726 1.58116 0.790579 0.612360i \(-0.209780\pi\)
0.790579 + 0.612360i \(0.209780\pi\)
\(98\) −14.5874 −1.47355
\(99\) 0 0
\(100\) −7.46096 −0.746096
\(101\) −2.56193 −0.254922 −0.127461 0.991844i \(-0.540683\pi\)
−0.127461 + 0.991844i \(0.540683\pi\)
\(102\) 0 0
\(103\) 14.9926 1.47726 0.738631 0.674109i \(-0.235472\pi\)
0.738631 + 0.674109i \(0.235472\pi\)
\(104\) −0.475800 −0.0466561
\(105\) 0 0
\(106\) −15.5800 −1.51327
\(107\) 6.47580 0.626039 0.313020 0.949747i \(-0.398659\pi\)
0.313020 + 0.949747i \(0.398659\pi\)
\(108\) 0 0
\(109\) −0.172260 −0.0164996 −0.00824978 0.999966i \(-0.502626\pi\)
−0.00824978 + 0.999966i \(0.502626\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.273227 −0.0258176
\(113\) −17.5242 −1.64854 −0.824269 0.566198i \(-0.808414\pi\)
−0.824269 + 0.566198i \(0.808414\pi\)
\(114\) 0 0
\(115\) −7.86872 −0.733762
\(116\) −11.2658 −1.04600
\(117\) 0 0
\(118\) −13.9697 −1.28601
\(119\) −0.296122 −0.0271454
\(120\) 0 0
\(121\) 0 0
\(122\) 25.5094 2.30951
\(123\) 0 0
\(124\) 1.52420 0.136877
\(125\) 11.0484 0.988199
\(126\) 0 0
\(127\) −8.47580 −0.752106 −0.376053 0.926598i \(-0.622719\pi\)
−0.376053 + 0.926598i \(0.622719\pi\)
\(128\) −5.78259 −0.511114
\(129\) 0 0
\(130\) 1.82774 0.160303
\(131\) −1.46838 −0.128293 −0.0641466 0.997940i \(-0.520433\pi\)
−0.0641466 + 0.997940i \(0.520433\pi\)
\(132\) 0 0
\(133\) −0.415175 −0.0360003
\(134\) −10.4152 −0.899734
\(135\) 0 0
\(136\) −2.52420 −0.216448
\(137\) 12.8761 1.10008 0.550041 0.835137i \(-0.314612\pi\)
0.550041 + 0.835137i \(0.314612\pi\)
\(138\) 0 0
\(139\) 13.0787 1.10932 0.554661 0.832076i \(-0.312848\pi\)
0.554661 + 0.832076i \(0.312848\pi\)
\(140\) −0.273866 −0.0231459
\(141\) 0 0
\(142\) −15.5800 −1.30745
\(143\) 0 0
\(144\) 0 0
\(145\) 6.47580 0.537786
\(146\) 10.1723 0.841862
\(147\) 0 0
\(148\) 26.8129 2.20401
\(149\) 8.22808 0.674070 0.337035 0.941492i \(-0.390576\pi\)
0.337035 + 0.941492i \(0.390576\pi\)
\(150\) 0 0
\(151\) −3.94418 −0.320973 −0.160487 0.987038i \(-0.551306\pi\)
−0.160487 + 0.987038i \(0.551306\pi\)
\(152\) −3.53904 −0.287054
\(153\) 0 0
\(154\) 0 0
\(155\) −0.876139 −0.0703732
\(156\) 0 0
\(157\) −5.53162 −0.441471 −0.220736 0.975334i \(-0.570846\pi\)
−0.220736 + 0.975334i \(0.570846\pi\)
\(158\) −22.6258 −1.80001
\(159\) 0 0
\(160\) 10.9320 0.864247
\(161\) 0.501305 0.0395084
\(162\) 0 0
\(163\) 7.64064 0.598461 0.299231 0.954181i \(-0.403270\pi\)
0.299231 + 0.954181i \(0.403270\pi\)
\(164\) −21.0787 −1.64597
\(165\) 0 0
\(166\) −4.05582 −0.314792
\(167\) −21.1042 −1.63309 −0.816547 0.577279i \(-0.804114\pi\)
−0.816547 + 0.577279i \(0.804114\pi\)
\(168\) 0 0
\(169\) −12.5800 −0.967694
\(170\) 9.69646 0.743685
\(171\) 0 0
\(172\) −22.6029 −1.72346
\(173\) 23.0894 1.75545 0.877727 0.479162i \(-0.159059\pi\)
0.877727 + 0.479162i \(0.159059\pi\)
\(174\) 0 0
\(175\) −0.273227 −0.0206541
\(176\) 0 0
\(177\) 0 0
\(178\) −10.5316 −0.789378
\(179\) −21.5168 −1.60824 −0.804120 0.594467i \(-0.797363\pi\)
−0.804120 + 0.594467i \(0.797363\pi\)
\(180\) 0 0
\(181\) −13.2329 −0.983593 −0.491796 0.870710i \(-0.663660\pi\)
−0.491796 + 0.870710i \(0.663660\pi\)
\(182\) −0.116443 −0.00863131
\(183\) 0 0
\(184\) 4.27323 0.315027
\(185\) −15.4126 −1.13315
\(186\) 0 0
\(187\) 0 0
\(188\) 9.11644 0.664885
\(189\) 0 0
\(190\) 13.5949 0.986274
\(191\) 21.8761 1.58290 0.791451 0.611233i \(-0.209326\pi\)
0.791451 + 0.611233i \(0.209326\pi\)
\(192\) 0 0
\(193\) 6.82032 0.490937 0.245469 0.969405i \(-0.421058\pi\)
0.245469 + 0.969405i \(0.421058\pi\)
\(194\) 32.4865 2.33239
\(195\) 0 0
\(196\) −16.4461 −1.17472
\(197\) −6.85063 −0.488087 −0.244044 0.969764i \(-0.578474\pi\)
−0.244044 + 0.969764i \(0.578474\pi\)
\(198\) 0 0
\(199\) 17.3371 1.22899 0.614497 0.788919i \(-0.289359\pi\)
0.614497 + 0.788919i \(0.289359\pi\)
\(200\) −2.32905 −0.164688
\(201\) 0 0
\(202\) −5.34452 −0.376039
\(203\) −0.412564 −0.0289563
\(204\) 0 0
\(205\) 12.1164 0.846249
\(206\) 31.2765 2.17914
\(207\) 0 0
\(208\) 2.05582 0.142545
\(209\) 0 0
\(210\) 0 0
\(211\) −24.0713 −1.65714 −0.828568 0.559888i \(-0.810844\pi\)
−0.828568 + 0.559888i \(0.810844\pi\)
\(212\) −17.5652 −1.20638
\(213\) 0 0
\(214\) 13.5094 0.923481
\(215\) 12.9926 0.886087
\(216\) 0 0
\(217\) 0.0558176 0.00378915
\(218\) −0.359358 −0.0243388
\(219\) 0 0
\(220\) 0 0
\(221\) 2.22808 0.149877
\(222\) 0 0
\(223\) −2.28870 −0.153263 −0.0766315 0.997059i \(-0.524416\pi\)
−0.0766315 + 0.997059i \(0.524416\pi\)
\(224\) −0.696460 −0.0465342
\(225\) 0 0
\(226\) −36.5578 −2.43179
\(227\) −24.9926 −1.65882 −0.829408 0.558643i \(-0.811322\pi\)
−0.829408 + 0.558643i \(0.811322\pi\)
\(228\) 0 0
\(229\) −2.06804 −0.136660 −0.0683301 0.997663i \(-0.521767\pi\)
−0.0683301 + 0.997663i \(0.521767\pi\)
\(230\) −16.4152 −1.08238
\(231\) 0 0
\(232\) −3.51678 −0.230888
\(233\) 0.992582 0.0650262 0.0325131 0.999471i \(-0.489649\pi\)
0.0325131 + 0.999471i \(0.489649\pi\)
\(234\) 0 0
\(235\) −5.24030 −0.341840
\(236\) −15.7497 −1.02522
\(237\) 0 0
\(238\) −0.617748 −0.0400427
\(239\) −10.5726 −0.683885 −0.341942 0.939721i \(-0.611085\pi\)
−0.341942 + 0.939721i \(0.611085\pi\)
\(240\) 0 0
\(241\) 29.3929 1.89336 0.946682 0.322169i \(-0.104412\pi\)
0.946682 + 0.322169i \(0.104412\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 28.7597 1.84115
\(245\) 9.45355 0.603965
\(246\) 0 0
\(247\) 3.12386 0.198767
\(248\) 0.475800 0.0302134
\(249\) 0 0
\(250\) 23.0484 1.45771
\(251\) −3.35936 −0.212041 −0.106020 0.994364i \(-0.533811\pi\)
−0.106020 + 0.994364i \(0.533811\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −17.6816 −1.10944
\(255\) 0 0
\(256\) 8.98516 0.561573
\(257\) −9.46357 −0.590322 −0.295161 0.955448i \(-0.595373\pi\)
−0.295161 + 0.955448i \(0.595373\pi\)
\(258\) 0 0
\(259\) 0.981913 0.0610131
\(260\) 2.06063 0.127795
\(261\) 0 0
\(262\) −3.06324 −0.189247
\(263\) 22.6890 1.39907 0.699533 0.714600i \(-0.253391\pi\)
0.699533 + 0.714600i \(0.253391\pi\)
\(264\) 0 0
\(265\) 10.0968 0.620241
\(266\) −0.866110 −0.0531046
\(267\) 0 0
\(268\) −11.7422 −0.717272
\(269\) 4.64806 0.283397 0.141699 0.989910i \(-0.454744\pi\)
0.141699 + 0.989910i \(0.454744\pi\)
\(270\) 0 0
\(271\) 13.3626 0.811721 0.405860 0.913935i \(-0.366972\pi\)
0.405860 + 0.913935i \(0.366972\pi\)
\(272\) 10.9065 0.661301
\(273\) 0 0
\(274\) 26.8613 1.62275
\(275\) 0 0
\(276\) 0 0
\(277\) 9.40776 0.565257 0.282629 0.959229i \(-0.408794\pi\)
0.282629 + 0.959229i \(0.408794\pi\)
\(278\) 27.2839 1.63638
\(279\) 0 0
\(280\) −0.0854912 −0.00510908
\(281\) −28.8310 −1.71991 −0.859956 0.510368i \(-0.829509\pi\)
−0.859956 + 0.510368i \(0.829509\pi\)
\(282\) 0 0
\(283\) 17.3519 1.03147 0.515733 0.856749i \(-0.327520\pi\)
0.515733 + 0.856749i \(0.327520\pi\)
\(284\) −17.5652 −1.04230
\(285\) 0 0
\(286\) 0 0
\(287\) −0.771922 −0.0455651
\(288\) 0 0
\(289\) −5.17968 −0.304687
\(290\) 13.5094 0.793297
\(291\) 0 0
\(292\) 11.4684 0.671136
\(293\) −5.52420 −0.322727 −0.161364 0.986895i \(-0.551589\pi\)
−0.161364 + 0.986895i \(0.551589\pi\)
\(294\) 0 0
\(295\) 9.05321 0.527098
\(296\) 8.37003 0.486498
\(297\) 0 0
\(298\) 17.1648 0.994333
\(299\) −3.77192 −0.218136
\(300\) 0 0
\(301\) −0.827740 −0.0477101
\(302\) −8.22808 −0.473473
\(303\) 0 0
\(304\) 15.2913 0.877017
\(305\) −16.5316 −0.946598
\(306\) 0 0
\(307\) 24.2436 1.38365 0.691826 0.722064i \(-0.256806\pi\)
0.691826 + 0.722064i \(0.256806\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1.82774 −0.103809
\(311\) −1.05582 −0.0598699 −0.0299350 0.999552i \(-0.509530\pi\)
−0.0299350 + 0.999552i \(0.509530\pi\)
\(312\) 0 0
\(313\) 13.0484 0.737539 0.368770 0.929521i \(-0.379779\pi\)
0.368770 + 0.929521i \(0.379779\pi\)
\(314\) −11.5397 −0.651222
\(315\) 0 0
\(316\) −25.5087 −1.43498
\(317\) 14.2691 0.801430 0.400715 0.916203i \(-0.368762\pi\)
0.400715 + 0.916203i \(0.368762\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 14.2281 0.795374
\(321\) 0 0
\(322\) 1.04579 0.0582795
\(323\) 16.5726 0.922124
\(324\) 0 0
\(325\) 2.05582 0.114036
\(326\) 15.9394 0.882800
\(327\) 0 0
\(328\) −6.58002 −0.363321
\(329\) 0.333853 0.0184059
\(330\) 0 0
\(331\) 7.80810 0.429172 0.214586 0.976705i \(-0.431160\pi\)
0.214586 + 0.976705i \(0.431160\pi\)
\(332\) −4.57260 −0.250954
\(333\) 0 0
\(334\) −44.0261 −2.40900
\(335\) 6.74967 0.368774
\(336\) 0 0
\(337\) 20.5726 1.12066 0.560330 0.828269i \(-0.310674\pi\)
0.560330 + 0.828269i \(0.310674\pi\)
\(338\) −26.2436 −1.42746
\(339\) 0 0
\(340\) 10.9320 0.592869
\(341\) 0 0
\(342\) 0 0
\(343\) −1.20518 −0.0650738
\(344\) −7.05582 −0.380424
\(345\) 0 0
\(346\) 48.1675 2.58950
\(347\) −2.06063 −0.110620 −0.0553101 0.998469i \(-0.517615\pi\)
−0.0553101 + 0.998469i \(0.517615\pi\)
\(348\) 0 0
\(349\) −3.99519 −0.213858 −0.106929 0.994267i \(-0.534102\pi\)
−0.106929 + 0.994267i \(0.534102\pi\)
\(350\) −0.569988 −0.0304671
\(351\) 0 0
\(352\) 0 0
\(353\) −9.58002 −0.509893 −0.254946 0.966955i \(-0.582058\pi\)
−0.254946 + 0.966955i \(0.582058\pi\)
\(354\) 0 0
\(355\) 10.0968 0.535882
\(356\) −11.8735 −0.629296
\(357\) 0 0
\(358\) −44.8868 −2.37234
\(359\) −20.2281 −1.06760 −0.533799 0.845612i \(-0.679236\pi\)
−0.533799 + 0.845612i \(0.679236\pi\)
\(360\) 0 0
\(361\) 4.23550 0.222921
\(362\) −27.6055 −1.45091
\(363\) 0 0
\(364\) −0.131280 −0.00688092
\(365\) −6.59224 −0.345054
\(366\) 0 0
\(367\) 29.2207 1.52531 0.762653 0.646808i \(-0.223896\pi\)
0.762653 + 0.646808i \(0.223896\pi\)
\(368\) −18.4636 −0.962480
\(369\) 0 0
\(370\) −32.1526 −1.67153
\(371\) −0.643253 −0.0333960
\(372\) 0 0
\(373\) 12.5120 0.647845 0.323923 0.946084i \(-0.394998\pi\)
0.323923 + 0.946084i \(0.394998\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 2.84583 0.146762
\(377\) 3.10422 0.159875
\(378\) 0 0
\(379\) −13.7719 −0.707416 −0.353708 0.935356i \(-0.615079\pi\)
−0.353708 + 0.935356i \(0.615079\pi\)
\(380\) 15.3271 0.786262
\(381\) 0 0
\(382\) 45.6365 2.33497
\(383\) −9.22066 −0.471154 −0.235577 0.971856i \(-0.575698\pi\)
−0.235577 + 0.971856i \(0.575698\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 14.2281 0.724190
\(387\) 0 0
\(388\) 36.6258 1.85939
\(389\) −17.0484 −0.864388 −0.432194 0.901781i \(-0.642260\pi\)
−0.432194 + 0.901781i \(0.642260\pi\)
\(390\) 0 0
\(391\) −20.0107 −1.01198
\(392\) −5.13389 −0.259301
\(393\) 0 0
\(394\) −14.2913 −0.719986
\(395\) 14.6629 0.737770
\(396\) 0 0
\(397\) −17.3929 −0.872926 −0.436463 0.899722i \(-0.643769\pi\)
−0.436463 + 0.899722i \(0.643769\pi\)
\(398\) 36.1675 1.81291
\(399\) 0 0
\(400\) 10.0632 0.503162
\(401\) −12.2839 −0.613428 −0.306714 0.951802i \(-0.599230\pi\)
−0.306714 + 0.951802i \(0.599230\pi\)
\(402\) 0 0
\(403\) −0.419983 −0.0209208
\(404\) −6.02551 −0.299780
\(405\) 0 0
\(406\) −0.860663 −0.0427140
\(407\) 0 0
\(408\) 0 0
\(409\) −20.2329 −1.00045 −0.500226 0.865895i \(-0.666750\pi\)
−0.500226 + 0.865895i \(0.666750\pi\)
\(410\) 25.2765 1.24832
\(411\) 0 0
\(412\) 35.2616 1.73722
\(413\) −0.576767 −0.0283809
\(414\) 0 0
\(415\) 2.62842 0.129024
\(416\) 5.24030 0.256927
\(417\) 0 0
\(418\) 0 0
\(419\) 15.8129 0.772511 0.386255 0.922392i \(-0.373768\pi\)
0.386255 + 0.922392i \(0.373768\pi\)
\(420\) 0 0
\(421\) 15.1723 0.739451 0.369725 0.929141i \(-0.379452\pi\)
0.369725 + 0.929141i \(0.379452\pi\)
\(422\) −50.2159 −2.44447
\(423\) 0 0
\(424\) −5.48322 −0.266289
\(425\) 10.9065 0.529041
\(426\) 0 0
\(427\) 1.05321 0.0509682
\(428\) 15.2307 0.736203
\(429\) 0 0
\(430\) 27.1042 1.30708
\(431\) 32.1526 1.54874 0.774369 0.632735i \(-0.218068\pi\)
0.774369 + 0.632735i \(0.218068\pi\)
\(432\) 0 0
\(433\) −26.0436 −1.25158 −0.625788 0.779994i \(-0.715222\pi\)
−0.625788 + 0.779994i \(0.715222\pi\)
\(434\) 0.116443 0.00558943
\(435\) 0 0
\(436\) −0.405146 −0.0194030
\(437\) −28.0558 −1.34209
\(438\) 0 0
\(439\) 11.6103 0.554131 0.277065 0.960851i \(-0.410638\pi\)
0.277065 + 0.960851i \(0.410638\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 4.64806 0.221086
\(443\) −0.232886 −0.0110647 −0.00553236 0.999985i \(-0.501761\pi\)
−0.00553236 + 0.999985i \(0.501761\pi\)
\(444\) 0 0
\(445\) 6.82513 0.323542
\(446\) −4.77453 −0.226081
\(447\) 0 0
\(448\) −0.906451 −0.0428258
\(449\) 9.64545 0.455197 0.227598 0.973755i \(-0.426913\pi\)
0.227598 + 0.973755i \(0.426913\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −41.2159 −1.93863
\(453\) 0 0
\(454\) −52.1378 −2.44695
\(455\) 0.0754620 0.00353771
\(456\) 0 0
\(457\) −20.9171 −0.978462 −0.489231 0.872154i \(-0.662722\pi\)
−0.489231 + 0.872154i \(0.662722\pi\)
\(458\) −4.31421 −0.201590
\(459\) 0 0
\(460\) −18.5068 −0.862882
\(461\) 27.9293 1.30080 0.650400 0.759592i \(-0.274601\pi\)
0.650400 + 0.759592i \(0.274601\pi\)
\(462\) 0 0
\(463\) 37.6406 1.74931 0.874655 0.484747i \(-0.161088\pi\)
0.874655 + 0.484747i \(0.161088\pi\)
\(464\) 15.1952 0.705417
\(465\) 0 0
\(466\) 2.07065 0.0959212
\(467\) −30.6210 −1.41697 −0.708485 0.705725i \(-0.750621\pi\)
−0.708485 + 0.705725i \(0.750621\pi\)
\(468\) 0 0
\(469\) −0.430012 −0.0198561
\(470\) −10.9320 −0.504254
\(471\) 0 0
\(472\) −4.91648 −0.226299
\(473\) 0 0
\(474\) 0 0
\(475\) 15.2913 0.701614
\(476\) −0.696460 −0.0319222
\(477\) 0 0
\(478\) −22.0558 −1.00881
\(479\) 7.54384 0.344687 0.172344 0.985037i \(-0.444866\pi\)
0.172344 + 0.985037i \(0.444866\pi\)
\(480\) 0 0
\(481\) −7.38811 −0.336869
\(482\) 61.3175 2.79293
\(483\) 0 0
\(484\) 0 0
\(485\) −21.0532 −0.955977
\(486\) 0 0
\(487\) 43.0484 1.95071 0.975355 0.220643i \(-0.0708156\pi\)
0.975355 + 0.220643i \(0.0708156\pi\)
\(488\) 8.97774 0.406403
\(489\) 0 0
\(490\) 19.7213 0.890919
\(491\) −28.1723 −1.27140 −0.635698 0.771938i \(-0.719288\pi\)
−0.635698 + 0.771938i \(0.719288\pi\)
\(492\) 0 0
\(493\) 16.4684 0.741699
\(494\) 6.51678 0.293204
\(495\) 0 0
\(496\) −2.05582 −0.0923089
\(497\) −0.643253 −0.0288539
\(498\) 0 0
\(499\) −25.6210 −1.14695 −0.573477 0.819222i \(-0.694406\pi\)
−0.573477 + 0.819222i \(0.694406\pi\)
\(500\) 25.9852 1.16209
\(501\) 0 0
\(502\) −7.00806 −0.312785
\(503\) −8.06063 −0.359406 −0.179703 0.983721i \(-0.557514\pi\)
−0.179703 + 0.983721i \(0.557514\pi\)
\(504\) 0 0
\(505\) 3.46357 0.154127
\(506\) 0 0
\(507\) 0 0
\(508\) −19.9346 −0.884453
\(509\) −29.3977 −1.30303 −0.651516 0.758635i \(-0.725867\pi\)
−0.651516 + 0.758635i \(0.725867\pi\)
\(510\) 0 0
\(511\) 0.419983 0.0185789
\(512\) 30.3094 1.33950
\(513\) 0 0
\(514\) −19.7422 −0.870793
\(515\) −20.2691 −0.893161
\(516\) 0 0
\(517\) 0 0
\(518\) 2.04840 0.0900015
\(519\) 0 0
\(520\) 0.643253 0.0282085
\(521\) 42.6842 1.87003 0.935015 0.354608i \(-0.115386\pi\)
0.935015 + 0.354608i \(0.115386\pi\)
\(522\) 0 0
\(523\) 20.8310 0.910876 0.455438 0.890268i \(-0.349483\pi\)
0.455438 + 0.890268i \(0.349483\pi\)
\(524\) −3.45355 −0.150869
\(525\) 0 0
\(526\) 47.3323 2.06379
\(527\) −2.22808 −0.0970566
\(528\) 0 0
\(529\) 10.8761 0.472876
\(530\) 21.0632 0.914929
\(531\) 0 0
\(532\) −0.976467 −0.0423352
\(533\) 5.80810 0.251577
\(534\) 0 0
\(535\) −8.75489 −0.378507
\(536\) −3.66551 −0.158326
\(537\) 0 0
\(538\) 9.69646 0.418044
\(539\) 0 0
\(540\) 0 0
\(541\) −10.2691 −0.441501 −0.220751 0.975330i \(-0.570851\pi\)
−0.220751 + 0.975330i \(0.570851\pi\)
\(542\) 27.8761 1.19738
\(543\) 0 0
\(544\) 27.8007 1.19194
\(545\) 0.232886 0.00997572
\(546\) 0 0
\(547\) 2.31421 0.0989484 0.0494742 0.998775i \(-0.484245\pi\)
0.0494742 + 0.998775i \(0.484245\pi\)
\(548\) 30.2839 1.29366
\(549\) 0 0
\(550\) 0 0
\(551\) 23.0894 0.983641
\(552\) 0 0
\(553\) −0.934153 −0.0397242
\(554\) 19.6258 0.833821
\(555\) 0 0
\(556\) 30.7603 1.30453
\(557\) −6.50131 −0.275469 −0.137735 0.990469i \(-0.543982\pi\)
−0.137735 + 0.990469i \(0.543982\pi\)
\(558\) 0 0
\(559\) 6.22808 0.263420
\(560\) 0.369387 0.0156094
\(561\) 0 0
\(562\) −60.1452 −2.53707
\(563\) 1.70127 0.0716999 0.0358499 0.999357i \(-0.488586\pi\)
0.0358499 + 0.999357i \(0.488586\pi\)
\(564\) 0 0
\(565\) 23.6917 0.996715
\(566\) 36.1984 1.52153
\(567\) 0 0
\(568\) −5.48322 −0.230071
\(569\) −16.8809 −0.707686 −0.353843 0.935305i \(-0.615125\pi\)
−0.353843 + 0.935305i \(0.615125\pi\)
\(570\) 0 0
\(571\) −25.9500 −1.08598 −0.542988 0.839741i \(-0.682707\pi\)
−0.542988 + 0.839741i \(0.682707\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −1.61033 −0.0672139
\(575\) −18.4636 −0.769984
\(576\) 0 0
\(577\) −12.6406 −0.526237 −0.263118 0.964764i \(-0.584751\pi\)
−0.263118 + 0.964764i \(0.584751\pi\)
\(578\) −10.8055 −0.449449
\(579\) 0 0
\(580\) 15.2307 0.632420
\(581\) −0.167453 −0.00694711
\(582\) 0 0
\(583\) 0 0
\(584\) 3.58002 0.148142
\(585\) 0 0
\(586\) −11.5242 −0.476060
\(587\) −38.9655 −1.60828 −0.804140 0.594441i \(-0.797374\pi\)
−0.804140 + 0.594441i \(0.797374\pi\)
\(588\) 0 0
\(589\) −3.12386 −0.128716
\(590\) 18.8862 0.777531
\(591\) 0 0
\(592\) −36.1648 −1.48637
\(593\) −14.1271 −0.580131 −0.290065 0.957007i \(-0.593677\pi\)
−0.290065 + 0.957007i \(0.593677\pi\)
\(594\) 0 0
\(595\) 0.400338 0.0164123
\(596\) 19.3519 0.792686
\(597\) 0 0
\(598\) −7.86872 −0.321776
\(599\) 20.1648 0.823913 0.411957 0.911203i \(-0.364846\pi\)
0.411957 + 0.911203i \(0.364846\pi\)
\(600\) 0 0
\(601\) 34.0410 1.38856 0.694280 0.719705i \(-0.255723\pi\)
0.694280 + 0.719705i \(0.255723\pi\)
\(602\) −1.72677 −0.0703780
\(603\) 0 0
\(604\) −9.27648 −0.377455
\(605\) 0 0
\(606\) 0 0
\(607\) 2.57260 0.104419 0.0522093 0.998636i \(-0.483374\pi\)
0.0522093 + 0.998636i \(0.483374\pi\)
\(608\) 38.9777 1.58076
\(609\) 0 0
\(610\) −34.4871 −1.39634
\(611\) −2.51197 −0.101624
\(612\) 0 0
\(613\) −44.0410 −1.77880 −0.889399 0.457131i \(-0.848877\pi\)
−0.889399 + 0.457131i \(0.848877\pi\)
\(614\) 50.5752 2.04105
\(615\) 0 0
\(616\) 0 0
\(617\) −33.1042 −1.33273 −0.666363 0.745628i \(-0.732150\pi\)
−0.666363 + 0.745628i \(0.732150\pi\)
\(618\) 0 0
\(619\) −29.6358 −1.19116 −0.595582 0.803294i \(-0.703079\pi\)
−0.595582 + 0.803294i \(0.703079\pi\)
\(620\) −2.06063 −0.0827567
\(621\) 0 0
\(622\) −2.20257 −0.0883151
\(623\) −0.434820 −0.0174207
\(624\) 0 0
\(625\) 0.924538 0.0369815
\(626\) 27.2207 1.08796
\(627\) 0 0
\(628\) −13.0100 −0.519157
\(629\) −39.1952 −1.56281
\(630\) 0 0
\(631\) −8.93196 −0.355576 −0.177788 0.984069i \(-0.556894\pi\)
−0.177788 + 0.984069i \(0.556894\pi\)
\(632\) −7.96291 −0.316747
\(633\) 0 0
\(634\) 29.7671 1.18220
\(635\) 11.4588 0.454727
\(636\) 0 0
\(637\) 4.53162 0.179549
\(638\) 0 0
\(639\) 0 0
\(640\) 7.81771 0.309022
\(641\) −39.1042 −1.54452 −0.772262 0.635304i \(-0.780875\pi\)
−0.772262 + 0.635304i \(0.780875\pi\)
\(642\) 0 0
\(643\) −24.6284 −0.971250 −0.485625 0.874167i \(-0.661408\pi\)
−0.485625 + 0.874167i \(0.661408\pi\)
\(644\) 1.17904 0.0464607
\(645\) 0 0
\(646\) 34.5726 1.36024
\(647\) −20.5774 −0.808981 −0.404491 0.914542i \(-0.632551\pi\)
−0.404491 + 0.914542i \(0.632551\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 4.28870 0.168217
\(651\) 0 0
\(652\) 17.9703 0.703772
\(653\) 4.68904 0.183496 0.0917482 0.995782i \(-0.470755\pi\)
0.0917482 + 0.995782i \(0.470755\pi\)
\(654\) 0 0
\(655\) 1.98516 0.0775667
\(656\) 28.4307 1.11003
\(657\) 0 0
\(658\) 0.696460 0.0271508
\(659\) 40.2887 1.56943 0.784713 0.619860i \(-0.212811\pi\)
0.784713 + 0.619860i \(0.212811\pi\)
\(660\) 0 0
\(661\) −9.98777 −0.388479 −0.194240 0.980954i \(-0.562224\pi\)
−0.194240 + 0.980954i \(0.562224\pi\)
\(662\) 16.2887 0.633078
\(663\) 0 0
\(664\) −1.42740 −0.0553939
\(665\) 0.561292 0.0217660
\(666\) 0 0
\(667\) −27.8794 −1.07949
\(668\) −49.6358 −1.92047
\(669\) 0 0
\(670\) 14.0807 0.543984
\(671\) 0 0
\(672\) 0 0
\(673\) 6.58744 0.253927 0.126963 0.991907i \(-0.459477\pi\)
0.126963 + 0.991907i \(0.459477\pi\)
\(674\) 42.9171 1.65311
\(675\) 0 0
\(676\) −29.5874 −1.13798
\(677\) 18.9016 0.726449 0.363225 0.931702i \(-0.381676\pi\)
0.363225 + 0.931702i \(0.381676\pi\)
\(678\) 0 0
\(679\) 1.34127 0.0514733
\(680\) 3.41256 0.130866
\(681\) 0 0
\(682\) 0 0
\(683\) −9.15742 −0.350399 −0.175200 0.984533i \(-0.556057\pi\)
−0.175200 + 0.984533i \(0.556057\pi\)
\(684\) 0 0
\(685\) −17.4078 −0.665116
\(686\) −2.51417 −0.0959915
\(687\) 0 0
\(688\) 30.4865 1.16229
\(689\) 4.83997 0.184388
\(690\) 0 0
\(691\) −14.4051 −0.547998 −0.273999 0.961730i \(-0.588346\pi\)
−0.273999 + 0.961730i \(0.588346\pi\)
\(692\) 54.3048 2.06436
\(693\) 0 0
\(694\) −4.29873 −0.163178
\(695\) −17.6816 −0.670702
\(696\) 0 0
\(697\) 30.8129 1.16712
\(698\) −8.33449 −0.315465
\(699\) 0 0
\(700\) −0.642614 −0.0242885
\(701\) −42.0155 −1.58690 −0.793451 0.608634i \(-0.791718\pi\)
−0.793451 + 0.608634i \(0.791718\pi\)
\(702\) 0 0
\(703\) −54.9533 −2.07260
\(704\) 0 0
\(705\) 0 0
\(706\) −19.9852 −0.752152
\(707\) −0.220660 −0.00829876
\(708\) 0 0
\(709\) −12.0894 −0.454026 −0.227013 0.973892i \(-0.572896\pi\)
−0.227013 + 0.973892i \(0.572896\pi\)
\(710\) 21.0632 0.790489
\(711\) 0 0
\(712\) −3.70649 −0.138907
\(713\) 3.77192 0.141260
\(714\) 0 0
\(715\) 0 0
\(716\) −50.6062 −1.89124
\(717\) 0 0
\(718\) −42.1984 −1.57483
\(719\) 5.48322 0.204490 0.102245 0.994759i \(-0.467398\pi\)
0.102245 + 0.994759i \(0.467398\pi\)
\(720\) 0 0
\(721\) 1.29131 0.0480910
\(722\) 8.83580 0.328834
\(723\) 0 0
\(724\) −31.1229 −1.15668
\(725\) 15.1952 0.564334
\(726\) 0 0
\(727\) −21.6816 −0.804127 −0.402063 0.915612i \(-0.631707\pi\)
−0.402063 + 0.915612i \(0.631707\pi\)
\(728\) −0.0409808 −0.00151885
\(729\) 0 0
\(730\) −13.7523 −0.508995
\(731\) 33.0410 1.22206
\(732\) 0 0
\(733\) −26.9171 −0.994206 −0.497103 0.867691i \(-0.665603\pi\)
−0.497103 + 0.867691i \(0.665603\pi\)
\(734\) 60.9581 2.25000
\(735\) 0 0
\(736\) −47.0639 −1.73480
\(737\) 0 0
\(738\) 0 0
\(739\) 2.62256 0.0964723 0.0482361 0.998836i \(-0.484640\pi\)
0.0482361 + 0.998836i \(0.484640\pi\)
\(740\) −36.2494 −1.33255
\(741\) 0 0
\(742\) −1.34191 −0.0492631
\(743\) 43.3929 1.59193 0.795966 0.605341i \(-0.206963\pi\)
0.795966 + 0.605341i \(0.206963\pi\)
\(744\) 0 0
\(745\) −11.1239 −0.407547
\(746\) 26.1016 0.955648
\(747\) 0 0
\(748\) 0 0
\(749\) 0.557762 0.0203802
\(750\) 0 0
\(751\) −43.0288 −1.57014 −0.785071 0.619406i \(-0.787373\pi\)
−0.785071 + 0.619406i \(0.787373\pi\)
\(752\) −12.2961 −0.448393
\(753\) 0 0
\(754\) 6.47580 0.235835
\(755\) 5.33229 0.194062
\(756\) 0 0
\(757\) 39.0968 1.42100 0.710499 0.703699i \(-0.248469\pi\)
0.710499 + 0.703699i \(0.248469\pi\)
\(758\) −28.7300 −1.04352
\(759\) 0 0
\(760\) 4.78456 0.173554
\(761\) 23.0074 0.834018 0.417009 0.908902i \(-0.363078\pi\)
0.417009 + 0.908902i \(0.363078\pi\)
\(762\) 0 0
\(763\) −0.0148368 −0.000537129 0
\(764\) 51.4513 1.86144
\(765\) 0 0
\(766\) −19.2355 −0.695007
\(767\) 4.33971 0.156698
\(768\) 0 0
\(769\) −47.1452 −1.70010 −0.850050 0.526703i \(-0.823428\pi\)
−0.850050 + 0.526703i \(0.823428\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 16.0410 0.577328
\(773\) −40.2643 −1.44820 −0.724102 0.689693i \(-0.757746\pi\)
−0.724102 + 0.689693i \(0.757746\pi\)
\(774\) 0 0
\(775\) −2.05582 −0.0738471
\(776\) 11.4333 0.410430
\(777\) 0 0
\(778\) −35.5652 −1.27507
\(779\) 43.2010 1.54784
\(780\) 0 0
\(781\) 0 0
\(782\) −41.7449 −1.49279
\(783\) 0 0
\(784\) 22.1823 0.792225
\(785\) 7.47841 0.266916
\(786\) 0 0
\(787\) 18.6938 0.666364 0.333182 0.942863i \(-0.391878\pi\)
0.333182 + 0.942863i \(0.391878\pi\)
\(788\) −16.1123 −0.573976
\(789\) 0 0
\(790\) 30.5887 1.08830
\(791\) −1.50936 −0.0536668
\(792\) 0 0
\(793\) −7.92454 −0.281409
\(794\) −36.2839 −1.28767
\(795\) 0 0
\(796\) 40.7758 1.44526
\(797\) 14.8203 0.524963 0.262481 0.964937i \(-0.415459\pi\)
0.262481 + 0.964937i \(0.415459\pi\)
\(798\) 0 0
\(799\) −13.3264 −0.471455
\(800\) 25.6513 0.906911
\(801\) 0 0
\(802\) −25.6258 −0.904879
\(803\) 0 0
\(804\) 0 0
\(805\) −0.677734 −0.0238870
\(806\) −0.876139 −0.0308607
\(807\) 0 0
\(808\) −1.88095 −0.0661715
\(809\) 8.88681 0.312443 0.156222 0.987722i \(-0.450069\pi\)
0.156222 + 0.987722i \(0.450069\pi\)
\(810\) 0 0
\(811\) 16.6177 0.583528 0.291764 0.956490i \(-0.405758\pi\)
0.291764 + 0.956490i \(0.405758\pi\)
\(812\) −0.970326 −0.0340518
\(813\) 0 0
\(814\) 0 0
\(815\) −10.3297 −0.361833
\(816\) 0 0
\(817\) 46.3249 1.62070
\(818\) −42.2084 −1.47578
\(819\) 0 0
\(820\) 28.4971 0.995163
\(821\) 24.7852 0.865009 0.432505 0.901632i \(-0.357630\pi\)
0.432505 + 0.901632i \(0.357630\pi\)
\(822\) 0 0
\(823\) −35.3175 −1.23109 −0.615545 0.788102i \(-0.711064\pi\)
−0.615545 + 0.788102i \(0.711064\pi\)
\(824\) 11.0074 0.383462
\(825\) 0 0
\(826\) −1.20321 −0.0418651
\(827\) −39.6720 −1.37953 −0.689765 0.724033i \(-0.742286\pi\)
−0.689765 + 0.724033i \(0.742286\pi\)
\(828\) 0 0
\(829\) 28.8081 1.00055 0.500273 0.865868i \(-0.333233\pi\)
0.500273 + 0.865868i \(0.333233\pi\)
\(830\) 5.48322 0.190325
\(831\) 0 0
\(832\) 6.82032 0.236452
\(833\) 24.0410 0.832971
\(834\) 0 0
\(835\) 28.5316 0.987377
\(836\) 0 0
\(837\) 0 0
\(838\) 32.9878 1.13954
\(839\) 36.7784 1.26973 0.634866 0.772622i \(-0.281055\pi\)
0.634866 + 0.772622i \(0.281055\pi\)
\(840\) 0 0
\(841\) −6.05582 −0.208821
\(842\) 31.6513 1.09078
\(843\) 0 0
\(844\) −56.6142 −1.94874
\(845\) 17.0074 0.585073
\(846\) 0 0
\(847\) 0 0
\(848\) 23.6917 0.813575
\(849\) 0 0
\(850\) 22.7523 0.780397
\(851\) 66.3536 2.27457
\(852\) 0 0
\(853\) −0.531618 −0.0182023 −0.00910113 0.999959i \(-0.502897\pi\)
−0.00910113 + 0.999959i \(0.502897\pi\)
\(854\) 2.19713 0.0751841
\(855\) 0 0
\(856\) 4.75447 0.162505
\(857\) 26.5274 0.906160 0.453080 0.891470i \(-0.350325\pi\)
0.453080 + 0.891470i \(0.350325\pi\)
\(858\) 0 0
\(859\) −8.64806 −0.295068 −0.147534 0.989057i \(-0.547134\pi\)
−0.147534 + 0.989057i \(0.547134\pi\)
\(860\) 30.5578 1.04201
\(861\) 0 0
\(862\) 67.0745 2.28457
\(863\) −2.95902 −0.100726 −0.0503631 0.998731i \(-0.516038\pi\)
−0.0503631 + 0.998731i \(0.516038\pi\)
\(864\) 0 0
\(865\) −31.2154 −1.06136
\(866\) −54.3303 −1.84622
\(867\) 0 0
\(868\) 0.131280 0.00445592
\(869\) 0 0
\(870\) 0 0
\(871\) 3.23550 0.109631
\(872\) −0.126472 −0.00428288
\(873\) 0 0
\(874\) −58.5281 −1.97974
\(875\) 0.951601 0.0321700
\(876\) 0 0
\(877\) 47.1910 1.59353 0.796763 0.604292i \(-0.206544\pi\)
0.796763 + 0.604292i \(0.206544\pi\)
\(878\) 24.2207 0.817408
\(879\) 0 0
\(880\) 0 0
\(881\) 22.8055 0.768336 0.384168 0.923263i \(-0.374488\pi\)
0.384168 + 0.923263i \(0.374488\pi\)
\(882\) 0 0
\(883\) −34.9581 −1.17643 −0.588217 0.808703i \(-0.700170\pi\)
−0.588217 + 0.808703i \(0.700170\pi\)
\(884\) 5.24030 0.176250
\(885\) 0 0
\(886\) −0.485830 −0.0163218
\(887\) −42.2739 −1.41942 −0.709709 0.704495i \(-0.751173\pi\)
−0.709709 + 0.704495i \(0.751173\pi\)
\(888\) 0 0
\(889\) −0.730022 −0.0244842
\(890\) 14.2381 0.477262
\(891\) 0 0
\(892\) −5.38289 −0.180233
\(893\) −18.6842 −0.625244
\(894\) 0 0
\(895\) 29.0894 0.972351
\(896\) −0.498056 −0.0166389
\(897\) 0 0
\(898\) 20.1217 0.671469
\(899\) −3.10422 −0.103531
\(900\) 0 0
\(901\) 25.6768 0.855419
\(902\) 0 0
\(903\) 0 0
\(904\) −12.8661 −0.427920
\(905\) 17.8901 0.594686
\(906\) 0 0
\(907\) 7.75709 0.257570 0.128785 0.991673i \(-0.458892\pi\)
0.128785 + 0.991673i \(0.458892\pi\)
\(908\) −58.7810 −1.95072
\(909\) 0 0
\(910\) 0.157424 0.00521854
\(911\) −14.1749 −0.469634 −0.234817 0.972040i \(-0.575449\pi\)
−0.234817 + 0.972040i \(0.575449\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −43.6358 −1.44335
\(915\) 0 0
\(916\) −4.86391 −0.160708
\(917\) −0.126472 −0.00417647
\(918\) 0 0
\(919\) −27.0591 −0.892596 −0.446298 0.894884i \(-0.647258\pi\)
−0.446298 + 0.894884i \(0.647258\pi\)
\(920\) −5.77714 −0.190467
\(921\) 0 0
\(922\) 58.2643 1.91883
\(923\) 4.83997 0.159309
\(924\) 0 0
\(925\) −36.1648 −1.18909
\(926\) 78.5233 2.58044
\(927\) 0 0
\(928\) 38.7326 1.27146
\(929\) 48.3903 1.58763 0.793817 0.608156i \(-0.208091\pi\)
0.793817 + 0.608156i \(0.208091\pi\)
\(930\) 0 0
\(931\) 33.7065 1.10469
\(932\) 2.33449 0.0764688
\(933\) 0 0
\(934\) −63.8794 −2.09020
\(935\) 0 0
\(936\) 0 0
\(937\) 10.1675 0.332156 0.166078 0.986113i \(-0.446890\pi\)
0.166078 + 0.986113i \(0.446890\pi\)
\(938\) −0.897061 −0.0292901
\(939\) 0 0
\(940\) −12.3249 −0.401993
\(941\) −56.4520 −1.84028 −0.920141 0.391587i \(-0.871926\pi\)
−0.920141 + 0.391587i \(0.871926\pi\)
\(942\) 0 0
\(943\) −52.1633 −1.69867
\(944\) 21.2429 0.691398
\(945\) 0 0
\(946\) 0 0
\(947\) 49.6768 1.61428 0.807140 0.590360i \(-0.201014\pi\)
0.807140 + 0.590360i \(0.201014\pi\)
\(948\) 0 0
\(949\) −3.16003 −0.102579
\(950\) 31.8997 1.03496
\(951\) 0 0
\(952\) −0.217410 −0.00704629
\(953\) −16.3897 −0.530913 −0.265457 0.964123i \(-0.585523\pi\)
−0.265457 + 0.964123i \(0.585523\pi\)
\(954\) 0 0
\(955\) −29.5752 −0.957031
\(956\) −24.8661 −0.804227
\(957\) 0 0
\(958\) 15.7374 0.508454
\(959\) 1.10902 0.0358123
\(960\) 0 0
\(961\) −30.5800 −0.986452
\(962\) −15.4126 −0.496921
\(963\) 0 0
\(964\) 69.1304 2.22654
\(965\) −9.22066 −0.296824
\(966\) 0 0
\(967\) −14.8097 −0.476246 −0.238123 0.971235i \(-0.576532\pi\)
−0.238123 + 0.971235i \(0.576532\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −43.9197 −1.41018
\(971\) 2.47099 0.0792979 0.0396490 0.999214i \(-0.487376\pi\)
0.0396490 + 0.999214i \(0.487376\pi\)
\(972\) 0 0
\(973\) 1.12647 0.0361130
\(974\) 89.8046 2.87752
\(975\) 0 0
\(976\) −38.7906 −1.24166
\(977\) 8.93676 0.285912 0.142956 0.989729i \(-0.454339\pi\)
0.142956 + 0.989729i \(0.454339\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 22.2342 0.710244
\(981\) 0 0
\(982\) −58.7710 −1.87546
\(983\) −47.1304 −1.50323 −0.751613 0.659605i \(-0.770724\pi\)
−0.751613 + 0.659605i \(0.770724\pi\)
\(984\) 0 0
\(985\) 9.26164 0.295100
\(986\) 34.3552 1.09409
\(987\) 0 0
\(988\) 7.34713 0.233743
\(989\) −55.9352 −1.77864
\(990\) 0 0
\(991\) −17.1845 −0.545883 −0.272942 0.962031i \(-0.587997\pi\)
−0.272942 + 0.962031i \(0.587997\pi\)
\(992\) −5.24030 −0.166380
\(993\) 0 0
\(994\) −1.34191 −0.0425628
\(995\) −23.4387 −0.743057
\(996\) 0 0
\(997\) −56.7252 −1.79651 −0.898253 0.439479i \(-0.855163\pi\)
−0.898253 + 0.439479i \(0.855163\pi\)
\(998\) −53.4487 −1.69189
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3267.2.a.t.1.3 3
3.2 odd 2 3267.2.a.w.1.1 3
11.10 odd 2 297.2.a.h.1.1 yes 3
33.32 even 2 297.2.a.g.1.3 3
44.43 even 2 4752.2.a.bg.1.2 3
55.54 odd 2 7425.2.a.bm.1.3 3
99.32 even 6 891.2.e.t.298.1 6
99.43 odd 6 891.2.e.q.595.3 6
99.65 even 6 891.2.e.t.595.1 6
99.76 odd 6 891.2.e.q.298.3 6
132.131 odd 2 4752.2.a.bo.1.2 3
165.164 even 2 7425.2.a.bn.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.a.g.1.3 3 33.32 even 2
297.2.a.h.1.1 yes 3 11.10 odd 2
891.2.e.q.298.3 6 99.76 odd 6
891.2.e.q.595.3 6 99.43 odd 6
891.2.e.t.298.1 6 99.32 even 6
891.2.e.t.595.1 6 99.65 even 6
3267.2.a.t.1.3 3 1.1 even 1 trivial
3267.2.a.w.1.1 3 3.2 odd 2
4752.2.a.bg.1.2 3 44.43 even 2
4752.2.a.bo.1.2 3 132.131 odd 2
7425.2.a.bm.1.3 3 55.54 odd 2
7425.2.a.bn.1.1 3 165.164 even 2