Properties

Label 325.2.m.d.49.10
Level $325$
Weight $2$
Character 325.49
Analytic conductor $2.595$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(49,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 16 x^{18} + 172 x^{16} + 1018 x^{14} + 4330 x^{12} + 9943 x^{10} + 16225 x^{8} + 14698 x^{6} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.10
Root \(-1.31626 + 2.27983i\) of defining polynomial
Character \(\chi\) \(=\) 325.49
Dual form 325.2.m.d.199.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.31626 + 2.27983i) q^{2} +(2.33745 - 1.34953i) q^{3} +(-2.46508 + 4.26964i) q^{4} +(6.15337 + 3.55265i) q^{6} +(1.37037 - 2.37354i) q^{7} -7.71370 q^{8} +(2.14244 - 3.71081i) q^{9} +(-1.59372 + 0.920132i) q^{11} +13.3067i q^{12} +(0.149035 + 3.60247i) q^{13} +7.21503 q^{14} +(-5.22307 - 9.04662i) q^{16} +(-3.30556 - 1.90847i) q^{17} +11.2800 q^{18} +(-4.91151 - 2.83566i) q^{19} -7.39738i q^{21} +(-4.19549 - 2.42227i) q^{22} +(-0.120718 + 0.0696968i) q^{23} +(-18.0304 + 10.4098i) q^{24} +(-8.01684 + 5.08156i) q^{26} -3.46794i q^{27} +(6.75612 + 11.7019i) q^{28} +(0.583497 + 1.01065i) q^{29} -5.69034i q^{31} +(6.03614 - 10.4549i) q^{32} +(-2.48348 + 4.30152i) q^{33} -10.0481i q^{34} +(10.5626 + 18.2949i) q^{36} +(1.23046 + 2.13121i) q^{37} -14.9299i q^{38} +(5.20999 + 8.21945i) q^{39} +(8.01584 - 4.62795i) q^{41} +(16.8648 - 9.73687i) q^{42} +(1.81644 + 1.04872i) q^{43} -9.07280i q^{44} +(-0.317794 - 0.183478i) q^{46} -3.66621 q^{47} +(-24.4173 - 14.0973i) q^{48} +(-0.255809 - 0.443075i) q^{49} -10.3021 q^{51} +(-15.7486 - 8.24405i) q^{52} +9.97820i q^{53} +(7.90632 - 4.56471i) q^{54} +(-10.5706 + 18.3088i) q^{56} -15.3072 q^{57} +(-1.53607 + 2.66055i) q^{58} +(-2.19087 - 1.26490i) q^{59} +(4.17536 - 7.23193i) q^{61} +(12.9730 - 7.48996i) q^{62} +(-5.87185 - 10.1703i) q^{63} +10.8882 q^{64} -13.0756 q^{66} +(2.99082 + 5.18026i) q^{67} +(16.2969 - 9.40904i) q^{68} +(-0.188115 + 0.325825i) q^{69} +(-7.58786 - 4.38085i) q^{71} +(-16.5261 + 28.6241i) q^{72} +10.7918 q^{73} +(-3.23920 + 5.61046i) q^{74} +(24.2145 - 13.9803i) q^{76} +5.04367i q^{77} +(-11.8813 + 22.6968i) q^{78} +9.64672 q^{79} +(1.74723 + 3.02630i) q^{81} +(21.1018 + 12.1832i) q^{82} -15.6113 q^{83} +(31.5842 + 18.2351i) q^{84} +5.52156i q^{86} +(2.72779 + 1.57489i) q^{87} +(12.2934 - 7.09762i) q^{88} +(-2.91690 + 1.68407i) q^{89} +(8.75486 + 4.58296i) q^{91} -0.687233i q^{92} +(-7.67925 - 13.3009i) q^{93} +(-4.82569 - 8.35833i) q^{94} -32.5837i q^{96} +(-0.156577 + 0.271200i) q^{97} +(0.673423 - 1.16640i) q^{98} +7.88531i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 12 q^{4} + 18 q^{6} + 16 q^{9} - 18 q^{11} + 16 q^{14} - 24 q^{16} - 84 q^{24} - 34 q^{26} - 14 q^{29} - 6 q^{36} - 16 q^{39} + 24 q^{41} + 78 q^{46} + 2 q^{49} + 32 q^{51} + 18 q^{54} - 42 q^{56}+ \cdots - 10 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.31626 + 2.27983i 0.930736 + 1.61208i 0.782066 + 0.623195i \(0.214166\pi\)
0.148670 + 0.988887i \(0.452501\pi\)
\(3\) 2.33745 1.34953i 1.34953 0.779149i 0.361343 0.932433i \(-0.382318\pi\)
0.988182 + 0.153284i \(0.0489849\pi\)
\(4\) −2.46508 + 4.26964i −1.23254 + 2.13482i
\(5\) 0 0
\(6\) 6.15337 + 3.55265i 2.51210 + 1.45036i
\(7\) 1.37037 2.37354i 0.517950 0.897116i −0.481833 0.876263i \(-0.660029\pi\)
0.999783 0.0208523i \(-0.00663797\pi\)
\(8\) −7.71370 −2.72720
\(9\) 2.14244 3.71081i 0.714146 1.23694i
\(10\) 0 0
\(11\) −1.59372 + 0.920132i −0.480523 + 0.277430i −0.720635 0.693315i \(-0.756149\pi\)
0.240111 + 0.970745i \(0.422816\pi\)
\(12\) 13.3067i 3.84133i
\(13\) 0.149035 + 3.60247i 0.0413349 + 0.999145i
\(14\) 7.21503 1.92830
\(15\) 0 0
\(16\) −5.22307 9.04662i −1.30577 2.26166i
\(17\) −3.30556 1.90847i −0.801716 0.462871i 0.0423549 0.999103i \(-0.486514\pi\)
−0.844071 + 0.536232i \(0.819847\pi\)
\(18\) 11.2800 2.65873
\(19\) −4.91151 2.83566i −1.12678 0.650545i −0.183655 0.982991i \(-0.558793\pi\)
−0.943123 + 0.332445i \(0.892126\pi\)
\(20\) 0 0
\(21\) 7.39738i 1.61424i
\(22\) −4.19549 2.42227i −0.894481 0.516429i
\(23\) −0.120718 + 0.0696968i −0.0251715 + 0.0145328i −0.512533 0.858668i \(-0.671293\pi\)
0.487361 + 0.873200i \(0.337959\pi\)
\(24\) −18.0304 + 10.4098i −3.68043 + 2.12490i
\(25\) 0 0
\(26\) −8.01684 + 5.08156i −1.57223 + 0.996576i
\(27\) 3.46794i 0.667406i
\(28\) 6.75612 + 11.7019i 1.27679 + 2.21146i
\(29\) 0.583497 + 1.01065i 0.108353 + 0.187672i 0.915103 0.403220i \(-0.132109\pi\)
−0.806750 + 0.590892i \(0.798776\pi\)
\(30\) 0 0
\(31\) 5.69034i 1.02201i −0.859576 0.511007i \(-0.829273\pi\)
0.859576 0.511007i \(-0.170727\pi\)
\(32\) 6.03614 10.4549i 1.06705 1.84818i
\(33\) −2.48348 + 4.30152i −0.432319 + 0.748799i
\(34\) 10.0481i 1.72324i
\(35\) 0 0
\(36\) 10.5626 + 18.2949i 1.76043 + 3.04915i
\(37\) 1.23046 + 2.13121i 0.202286 + 0.350369i 0.949265 0.314479i \(-0.101830\pi\)
−0.746979 + 0.664848i \(0.768496\pi\)
\(38\) 14.9299i 2.42194i
\(39\) 5.20999 + 8.21945i 0.834265 + 1.31617i
\(40\) 0 0
\(41\) 8.01584 4.62795i 1.25186 0.722764i 0.280384 0.959888i \(-0.409538\pi\)
0.971479 + 0.237124i \(0.0762048\pi\)
\(42\) 16.8648 9.73687i 2.60229 1.50243i
\(43\) 1.81644 + 1.04872i 0.277004 + 0.159929i 0.632066 0.774914i \(-0.282207\pi\)
−0.355062 + 0.934843i \(0.615540\pi\)
\(44\) 9.07280i 1.36778i
\(45\) 0 0
\(46\) −0.317794 0.183478i −0.0468561 0.0270524i
\(47\) −3.66621 −0.534772 −0.267386 0.963590i \(-0.586160\pi\)
−0.267386 + 0.963590i \(0.586160\pi\)
\(48\) −24.4173 14.0973i −3.52433 2.03477i
\(49\) −0.255809 0.443075i −0.0365442 0.0632964i
\(50\) 0 0
\(51\) −10.3021 −1.44258
\(52\) −15.7486 8.24405i −2.18394 1.14324i
\(53\) 9.97820i 1.37061i 0.728256 + 0.685305i \(0.240331\pi\)
−0.728256 + 0.685305i \(0.759669\pi\)
\(54\) 7.90632 4.56471i 1.07591 0.621179i
\(55\) 0 0
\(56\) −10.5706 + 18.3088i −1.41255 + 2.44662i
\(57\) −15.3072 −2.02749
\(58\) −1.53607 + 2.66055i −0.201696 + 0.349347i
\(59\) −2.19087 1.26490i −0.285227 0.164676i 0.350560 0.936540i \(-0.385991\pi\)
−0.635787 + 0.771864i \(0.719324\pi\)
\(60\) 0 0
\(61\) 4.17536 7.23193i 0.534600 0.925954i −0.464583 0.885530i \(-0.653796\pi\)
0.999183 0.0404240i \(-0.0128709\pi\)
\(62\) 12.9730 7.48996i 1.64757 0.951226i
\(63\) −5.87185 10.1703i −0.739784 1.28134i
\(64\) 10.8882 1.36103
\(65\) 0 0
\(66\) −13.0756 −1.60950
\(67\) 2.99082 + 5.18026i 0.365387 + 0.632869i 0.988838 0.148993i \(-0.0476033\pi\)
−0.623451 + 0.781862i \(0.714270\pi\)
\(68\) 16.2969 9.40904i 1.97629 1.14101i
\(69\) −0.188115 + 0.325825i −0.0226464 + 0.0392248i
\(70\) 0 0
\(71\) −7.58786 4.38085i −0.900513 0.519912i −0.0231467 0.999732i \(-0.507368\pi\)
−0.877367 + 0.479820i \(0.840702\pi\)
\(72\) −16.5261 + 28.6241i −1.94762 + 3.37338i
\(73\) 10.7918 1.26309 0.631544 0.775340i \(-0.282422\pi\)
0.631544 + 0.775340i \(0.282422\pi\)
\(74\) −3.23920 + 5.61046i −0.376549 + 0.652202i
\(75\) 0 0
\(76\) 24.2145 13.9803i 2.77760 1.60365i
\(77\) 5.04367i 0.574780i
\(78\) −11.8813 + 22.6968i −1.34529 + 2.56991i
\(79\) 9.64672 1.08534 0.542670 0.839946i \(-0.317413\pi\)
0.542670 + 0.839946i \(0.317413\pi\)
\(80\) 0 0
\(81\) 1.74723 + 3.02630i 0.194137 + 0.336255i
\(82\) 21.1018 + 12.1832i 2.33031 + 1.34540i
\(83\) −15.6113 −1.71356 −0.856779 0.515684i \(-0.827538\pi\)
−0.856779 + 0.515684i \(0.827538\pi\)
\(84\) 31.5842 + 18.2351i 3.44611 + 1.98961i
\(85\) 0 0
\(86\) 5.52156i 0.595405i
\(87\) 2.72779 + 1.57489i 0.292450 + 0.168846i
\(88\) 12.2934 7.09762i 1.31049 0.756609i
\(89\) −2.91690 + 1.68407i −0.309190 + 0.178511i −0.646564 0.762860i \(-0.723795\pi\)
0.337374 + 0.941371i \(0.390461\pi\)
\(90\) 0 0
\(91\) 8.75486 + 4.58296i 0.917758 + 0.480425i
\(92\) 0.687233i 0.0716490i
\(93\) −7.67925 13.3009i −0.796302 1.37923i
\(94\) −4.82569 8.35833i −0.497731 0.862096i
\(95\) 0 0
\(96\) 32.5837i 3.32556i
\(97\) −0.156577 + 0.271200i −0.0158980 + 0.0275362i −0.873865 0.486169i \(-0.838394\pi\)
0.857967 + 0.513705i \(0.171727\pi\)
\(98\) 0.673423 1.16640i 0.0680260 0.117824i
\(99\) 7.88531i 0.792503i
\(100\) 0 0
\(101\) 7.91794 + 13.7143i 0.787864 + 1.36462i 0.927273 + 0.374386i \(0.122146\pi\)
−0.139409 + 0.990235i \(0.544520\pi\)
\(102\) −13.5602 23.4870i −1.34266 2.32556i
\(103\) 7.37659i 0.726837i −0.931626 0.363418i \(-0.881610\pi\)
0.931626 0.363418i \(-0.118390\pi\)
\(104\) −1.14961 27.7884i −0.112729 2.72487i
\(105\) 0 0
\(106\) −22.7486 + 13.1339i −2.20954 + 1.27568i
\(107\) −8.34292 + 4.81679i −0.806540 + 0.465656i −0.845753 0.533575i \(-0.820848\pi\)
0.0392127 + 0.999231i \(0.487515\pi\)
\(108\) 14.8069 + 8.54876i 1.42479 + 0.822604i
\(109\) 8.73514i 0.836674i −0.908292 0.418337i \(-0.862613\pi\)
0.908292 0.418337i \(-0.137387\pi\)
\(110\) 0 0
\(111\) 5.75225 + 3.32106i 0.545979 + 0.315221i
\(112\) −28.6301 −2.70529
\(113\) 15.8213 + 9.13443i 1.48834 + 0.859295i 0.999911 0.0133068i \(-0.00423583\pi\)
0.488432 + 0.872602i \(0.337569\pi\)
\(114\) −20.1482 34.8978i −1.88706 3.26848i
\(115\) 0 0
\(116\) −5.75347 −0.534196
\(117\) 13.6874 + 7.16503i 1.26540 + 0.662407i
\(118\) 6.65974i 0.613079i
\(119\) −9.05966 + 5.23060i −0.830497 + 0.479488i
\(120\) 0 0
\(121\) −3.80671 + 6.59342i −0.346065 + 0.599402i
\(122\) 21.9834 1.99028
\(123\) 12.4911 21.6352i 1.12628 1.95078i
\(124\) 24.2957 + 14.0271i 2.18182 + 1.25967i
\(125\) 0 0
\(126\) 15.4578 26.7736i 1.37709 2.38518i
\(127\) 9.64353 5.56769i 0.855725 0.494053i −0.00685350 0.999977i \(-0.502182\pi\)
0.862578 + 0.505924i \(0.168848\pi\)
\(128\) 2.25944 + 3.91346i 0.199708 + 0.345904i
\(129\) 5.66111 0.498433
\(130\) 0 0
\(131\) 4.16563 0.363953 0.181976 0.983303i \(-0.441751\pi\)
0.181976 + 0.983303i \(0.441751\pi\)
\(132\) −12.2440 21.2072i −1.06570 1.84585i
\(133\) −13.4611 + 7.77179i −1.16723 + 0.673900i
\(134\) −7.87340 + 13.6371i −0.680158 + 1.17807i
\(135\) 0 0
\(136\) 25.4981 + 14.7213i 2.18644 + 1.26234i
\(137\) −0.200396 + 0.347097i −0.0171210 + 0.0296545i −0.874459 0.485099i \(-0.838783\pi\)
0.857338 + 0.514754i \(0.172117\pi\)
\(138\) −0.990434 −0.0843114
\(139\) −5.57346 + 9.65351i −0.472735 + 0.818800i −0.999513 0.0312024i \(-0.990066\pi\)
0.526779 + 0.850003i \(0.323400\pi\)
\(140\) 0 0
\(141\) −8.56957 + 4.94764i −0.721688 + 0.416667i
\(142\) 23.0654i 1.93560i
\(143\) −3.55227 5.60418i −0.297056 0.468645i
\(144\) −44.7604 −3.73003
\(145\) 0 0
\(146\) 14.2048 + 24.6035i 1.17560 + 2.03620i
\(147\) −1.19588 0.690442i −0.0986346 0.0569467i
\(148\) −12.1327 −0.997300
\(149\) −15.4824 8.93879i −1.26837 0.732294i −0.293691 0.955900i \(-0.594884\pi\)
−0.974680 + 0.223606i \(0.928217\pi\)
\(150\) 0 0
\(151\) 6.29273i 0.512095i −0.966664 0.256048i \(-0.917580\pi\)
0.966664 0.256048i \(-0.0824204\pi\)
\(152\) 37.8859 + 21.8734i 3.07295 + 1.77417i
\(153\) −14.1639 + 8.17754i −1.14508 + 0.661115i
\(154\) −11.4987 + 6.63879i −0.926593 + 0.534969i
\(155\) 0 0
\(156\) −47.9372 + 1.98317i −3.83804 + 0.158781i
\(157\) 16.1516i 1.28904i −0.764589 0.644518i \(-0.777058\pi\)
0.764589 0.644518i \(-0.222942\pi\)
\(158\) 12.6976 + 21.9929i 1.01017 + 1.74966i
\(159\) 13.4658 + 23.3235i 1.06791 + 1.84967i
\(160\) 0 0
\(161\) 0.382041i 0.0301090i
\(162\) −4.59963 + 7.96679i −0.361381 + 0.625930i
\(163\) −11.9167 + 20.6404i −0.933390 + 1.61668i −0.155910 + 0.987771i \(0.549831\pi\)
−0.777480 + 0.628908i \(0.783502\pi\)
\(164\) 45.6330i 3.56334i
\(165\) 0 0
\(166\) −20.5485 35.5910i −1.59487 2.76240i
\(167\) 0.558448 + 0.967261i 0.0432140 + 0.0748489i 0.886823 0.462108i \(-0.152907\pi\)
−0.843609 + 0.536957i \(0.819574\pi\)
\(168\) 57.0611i 4.40236i
\(169\) −12.9556 + 1.07379i −0.996583 + 0.0825992i
\(170\) 0 0
\(171\) −21.0452 + 12.1505i −1.60937 + 0.929169i
\(172\) −8.95533 + 5.17036i −0.682838 + 0.394236i
\(173\) 1.86266 + 1.07541i 0.141615 + 0.0817616i 0.569134 0.822245i \(-0.307279\pi\)
−0.427518 + 0.904007i \(0.640612\pi\)
\(174\) 8.29185i 0.628604i
\(175\) 0 0
\(176\) 16.6482 + 9.61183i 1.25490 + 0.724519i
\(177\) −6.82805 −0.513228
\(178\) −7.67878 4.43335i −0.575549 0.332293i
\(179\) 1.08264 + 1.87518i 0.0809199 + 0.140157i 0.903645 0.428282i \(-0.140881\pi\)
−0.822725 + 0.568439i \(0.807548\pi\)
\(180\) 0 0
\(181\) −19.8242 −1.47352 −0.736759 0.676155i \(-0.763645\pi\)
−0.736759 + 0.676155i \(0.763645\pi\)
\(182\) 1.07529 + 25.9919i 0.0797061 + 1.92665i
\(183\) 22.5390i 1.66613i
\(184\) 0.931186 0.537620i 0.0686479 0.0396339i
\(185\) 0 0
\(186\) 20.2158 35.0148i 1.48229 2.56741i
\(187\) 7.02416 0.513658
\(188\) 9.03750 15.6534i 0.659127 1.14164i
\(189\) −8.23132 4.75235i −0.598740 0.345683i
\(190\) 0 0
\(191\) 1.38158 2.39297i 0.0999677 0.173149i −0.811703 0.584070i \(-0.801459\pi\)
0.911671 + 0.410921i \(0.134793\pi\)
\(192\) 25.4506 14.6939i 1.83674 1.06044i
\(193\) −0.611391 1.05896i −0.0440089 0.0762257i 0.843182 0.537628i \(-0.180680\pi\)
−0.887191 + 0.461403i \(0.847346\pi\)
\(194\) −0.824386 −0.0591875
\(195\) 0 0
\(196\) 2.52236 0.180169
\(197\) 8.42195 + 14.5872i 0.600039 + 1.03930i 0.992815 + 0.119663i \(0.0381815\pi\)
−0.392776 + 0.919634i \(0.628485\pi\)
\(198\) −17.9771 + 10.3791i −1.27758 + 0.737611i
\(199\) 11.5992 20.0904i 0.822245 1.42417i −0.0817623 0.996652i \(-0.526055\pi\)
0.904007 0.427518i \(-0.140612\pi\)
\(200\) 0 0
\(201\) 13.9818 + 8.07238i 0.986199 + 0.569382i
\(202\) −20.8441 + 36.1031i −1.46659 + 2.54020i
\(203\) 3.19842 0.224485
\(204\) 25.3955 43.9862i 1.77804 3.07965i
\(205\) 0 0
\(206\) 16.8174 9.70951i 1.17172 0.676493i
\(207\) 0.597285i 0.0415141i
\(208\) 31.8118 20.1642i 2.20575 1.39814i
\(209\) 10.4367 0.721924
\(210\) 0 0
\(211\) −13.4892 23.3639i −0.928632 1.60844i −0.785614 0.618717i \(-0.787653\pi\)
−0.143017 0.989720i \(-0.545680\pi\)
\(212\) −42.6033 24.5970i −2.92601 1.68933i
\(213\) −23.6483 −1.62035
\(214\) −21.9629 12.6803i −1.50135 0.866806i
\(215\) 0 0
\(216\) 26.7507i 1.82015i
\(217\) −13.5063 7.79785i −0.916865 0.529352i
\(218\) 19.9146 11.4977i 1.34879 0.778723i
\(219\) 25.2253 14.5638i 1.70457 0.984134i
\(220\) 0 0
\(221\) 6.38255 12.1926i 0.429336 0.820164i
\(222\) 17.4855i 1.17355i
\(223\) 0.440345 + 0.762699i 0.0294877 + 0.0510741i 0.880393 0.474246i \(-0.157279\pi\)
−0.850905 + 0.525320i \(0.823946\pi\)
\(224\) −16.5434 28.6541i −1.10535 1.91453i
\(225\) 0 0
\(226\) 48.0931i 3.19911i
\(227\) 1.73934 3.01263i 0.115444 0.199955i −0.802513 0.596635i \(-0.796504\pi\)
0.917957 + 0.396679i \(0.129838\pi\)
\(228\) 37.7334 65.3562i 2.49896 4.32832i
\(229\) 7.25190i 0.479219i −0.970869 0.239610i \(-0.922981\pi\)
0.970869 0.239610i \(-0.0770194\pi\)
\(230\) 0 0
\(231\) 6.80657 + 11.7893i 0.447839 + 0.775680i
\(232\) −4.50092 7.79583i −0.295500 0.511821i
\(233\) 14.3236i 0.938371i 0.883100 + 0.469185i \(0.155452\pi\)
−0.883100 + 0.469185i \(0.844548\pi\)
\(234\) 1.68112 + 40.6359i 0.109898 + 2.65645i
\(235\) 0 0
\(236\) 10.8013 6.23615i 0.703107 0.405939i
\(237\) 22.5487 13.0185i 1.46469 0.845642i
\(238\) −23.8497 13.7696i −1.54595 0.892553i
\(239\) 3.62106i 0.234227i 0.993119 + 0.117114i \(0.0373642\pi\)
−0.993119 + 0.117114i \(0.962636\pi\)
\(240\) 0 0
\(241\) 2.36360 + 1.36462i 0.152253 + 0.0879031i 0.574191 0.818721i \(-0.305317\pi\)
−0.421938 + 0.906625i \(0.638650\pi\)
\(242\) −20.0425 −1.28838
\(243\) 17.1781 + 9.91779i 1.10198 + 0.636227i
\(244\) 20.5852 + 35.6545i 1.31783 + 2.28255i
\(245\) 0 0
\(246\) 65.7659 4.19308
\(247\) 9.48340 18.1162i 0.603414 1.15270i
\(248\) 43.8935i 2.78724i
\(249\) −36.4905 + 21.0678i −2.31249 + 1.33512i
\(250\) 0 0
\(251\) −5.54338 + 9.60142i −0.349895 + 0.606036i −0.986231 0.165376i \(-0.947116\pi\)
0.636335 + 0.771413i \(0.280450\pi\)
\(252\) 57.8983 3.64725
\(253\) 0.128261 0.222154i 0.00806368 0.0139667i
\(254\) 25.3868 + 14.6571i 1.59291 + 0.919666i
\(255\) 0 0
\(256\) 4.94020 8.55667i 0.308762 0.534792i
\(257\) −25.3401 + 14.6301i −1.58067 + 0.912601i −0.585910 + 0.810376i \(0.699263\pi\)
−0.994761 + 0.102224i \(0.967404\pi\)
\(258\) 7.45149 + 12.9064i 0.463909 + 0.803514i
\(259\) 6.74470 0.419095
\(260\) 0 0
\(261\) 5.00043 0.309519
\(262\) 5.48305 + 9.49692i 0.338744 + 0.586722i
\(263\) 12.4749 7.20239i 0.769235 0.444118i −0.0633665 0.997990i \(-0.520184\pi\)
0.832602 + 0.553872i \(0.186850\pi\)
\(264\) 19.1568 33.1806i 1.17902 2.04213i
\(265\) 0 0
\(266\) −35.4367 20.4594i −2.17276 1.25445i
\(267\) −4.54539 + 7.87285i −0.278173 + 0.481810i
\(268\) −29.4905 −1.80142
\(269\) 6.56252 11.3666i 0.400124 0.693035i −0.593616 0.804748i \(-0.702300\pi\)
0.993741 + 0.111713i \(0.0356337\pi\)
\(270\) 0 0
\(271\) −1.64683 + 0.950797i −0.100038 + 0.0577568i −0.549184 0.835701i \(-0.685061\pi\)
0.449147 + 0.893458i \(0.351728\pi\)
\(272\) 39.8722i 2.41761i
\(273\) 26.6488 1.10247i 1.61286 0.0667245i
\(274\) −1.05509 −0.0637406
\(275\) 0 0
\(276\) −0.927438 1.60637i −0.0558252 0.0966921i
\(277\) 24.7847 + 14.3095i 1.48917 + 0.859772i 0.999923 0.0123732i \(-0.00393863\pi\)
0.489246 + 0.872146i \(0.337272\pi\)
\(278\) −29.3445 −1.75996
\(279\) −21.1158 12.1912i −1.26417 0.729868i
\(280\) 0 0
\(281\) 0.841175i 0.0501803i 0.999685 + 0.0250901i \(0.00798728\pi\)
−0.999685 + 0.0250901i \(0.992013\pi\)
\(282\) −22.5596 13.0248i −1.34340 0.775614i
\(283\) 2.83957 1.63943i 0.168795 0.0974538i −0.413223 0.910630i \(-0.635597\pi\)
0.582018 + 0.813176i \(0.302264\pi\)
\(284\) 37.4094 21.5983i 2.21984 1.28162i
\(285\) 0 0
\(286\) 8.10087 15.4751i 0.479014 0.915063i
\(287\) 25.3679i 1.49742i
\(288\) −25.8641 44.7979i −1.52406 2.63974i
\(289\) −1.21552 2.10534i −0.0715010 0.123843i
\(290\) 0 0
\(291\) 0.845221i 0.0495477i
\(292\) −26.6027 + 46.0772i −1.55681 + 2.69647i
\(293\) 4.20020 7.27496i 0.245378 0.425008i −0.716860 0.697217i \(-0.754421\pi\)
0.962238 + 0.272210i \(0.0877545\pi\)
\(294\) 3.63521i 0.212010i
\(295\) 0 0
\(296\) −9.49136 16.4395i −0.551674 0.955528i
\(297\) 3.19097 + 5.52692i 0.185159 + 0.320704i
\(298\) 47.0631i 2.72629i
\(299\) −0.269072 0.424497i −0.0155608 0.0245493i
\(300\) 0 0
\(301\) 4.97838 2.87427i 0.286949 0.165670i
\(302\) 14.3464 8.28287i 0.825540 0.476626i
\(303\) 37.0155 + 21.3709i 2.12649 + 1.22773i
\(304\) 59.2434i 3.39784i
\(305\) 0 0
\(306\) −37.2868 21.5275i −2.13154 1.23065i
\(307\) 32.8251 1.87343 0.936714 0.350095i \(-0.113851\pi\)
0.936714 + 0.350095i \(0.113851\pi\)
\(308\) −21.5347 12.4331i −1.22705 0.708439i
\(309\) −9.95489 17.2424i −0.566314 0.980885i
\(310\) 0 0
\(311\) 18.5990 1.05465 0.527327 0.849662i \(-0.323194\pi\)
0.527327 + 0.849662i \(0.323194\pi\)
\(312\) −40.1883 63.4024i −2.27521 3.58945i
\(313\) 6.55565i 0.370547i −0.982687 0.185274i \(-0.940683\pi\)
0.982687 0.185274i \(-0.0593172\pi\)
\(314\) 36.8228 21.2597i 2.07803 1.19975i
\(315\) 0 0
\(316\) −23.7799 + 41.1880i −1.33772 + 2.31701i
\(317\) −28.3918 −1.59464 −0.797321 0.603555i \(-0.793750\pi\)
−0.797321 + 0.603555i \(0.793750\pi\)
\(318\) −35.4491 + 61.3996i −1.98788 + 3.44312i
\(319\) −1.85986 1.07379i −0.104132 0.0601207i
\(320\) 0 0
\(321\) −13.0008 + 22.5180i −0.725631 + 1.25683i
\(322\) −0.870988 + 0.502865i −0.0485382 + 0.0280236i
\(323\) 10.8235 + 18.7469i 0.602237 + 1.04311i
\(324\) −17.2283 −0.957127
\(325\) 0 0
\(326\) −62.7420 −3.47496
\(327\) −11.7883 20.4179i −0.651894 1.12911i
\(328\) −61.8317 + 35.6986i −3.41409 + 1.97112i
\(329\) −5.02405 + 8.70191i −0.276985 + 0.479752i
\(330\) 0 0
\(331\) −2.08424 1.20334i −0.114560 0.0661413i 0.441625 0.897200i \(-0.354402\pi\)
−0.556185 + 0.831058i \(0.687735\pi\)
\(332\) 38.4830 66.6545i 2.11203 3.65814i
\(333\) 10.5447 0.577846
\(334\) −1.47013 + 2.54633i −0.0804417 + 0.139329i
\(335\) 0 0
\(336\) −66.9213 + 38.6370i −3.65086 + 2.10782i
\(337\) 3.33555i 0.181699i 0.995865 + 0.0908496i \(0.0289582\pi\)
−0.995865 + 0.0908496i \(0.971042\pi\)
\(338\) −19.5010 28.1231i −1.06071 1.52970i
\(339\) 49.3086 2.67808
\(340\) 0 0
\(341\) 5.23586 + 9.06878i 0.283538 + 0.491102i
\(342\) −55.4019 31.9863i −2.99579 1.72962i
\(343\) 17.7829 0.960188
\(344\) −14.0115 8.08952i −0.755447 0.436158i
\(345\) 0 0
\(346\) 5.66206i 0.304394i
\(347\) 17.3593 + 10.0224i 0.931897 + 0.538031i 0.887411 0.460979i \(-0.152502\pi\)
0.0444861 + 0.999010i \(0.485835\pi\)
\(348\) −13.4484 + 7.76445i −0.720911 + 0.416218i
\(349\) −12.8911 + 7.44270i −0.690047 + 0.398399i −0.803630 0.595130i \(-0.797101\pi\)
0.113583 + 0.993529i \(0.463767\pi\)
\(350\) 0 0
\(351\) 12.4932 0.516846i 0.666836 0.0275872i
\(352\) 22.2162i 1.18413i
\(353\) −9.58417 16.6003i −0.510114 0.883543i −0.999931 0.0117179i \(-0.996270\pi\)
0.489818 0.871825i \(-0.337063\pi\)
\(354\) −8.98749 15.5668i −0.477680 0.827365i
\(355\) 0 0
\(356\) 16.6055i 0.880088i
\(357\) −14.1176 + 24.4525i −0.747185 + 1.29416i
\(358\) −2.85006 + 4.93645i −0.150630 + 0.260899i
\(359\) 15.1897i 0.801683i −0.916147 0.400842i \(-0.868718\pi\)
0.916147 0.400842i \(-0.131282\pi\)
\(360\) 0 0
\(361\) 6.58195 + 11.4003i 0.346419 + 0.600014i
\(362\) −26.0937 45.1957i −1.37146 2.37543i
\(363\) 20.5490i 1.07854i
\(364\) −41.1490 + 26.0827i −2.15679 + 1.36711i
\(365\) 0 0
\(366\) 51.3850 29.6672i 2.68594 1.55073i
\(367\) −3.69540 + 2.13354i −0.192898 + 0.111370i −0.593339 0.804953i \(-0.702190\pi\)
0.400440 + 0.916323i \(0.368857\pi\)
\(368\) 1.26104 + 0.728063i 0.0657364 + 0.0379529i
\(369\) 39.6603i 2.06463i
\(370\) 0 0
\(371\) 23.6837 + 13.6738i 1.22960 + 0.709908i
\(372\) 75.7199 3.92589
\(373\) −11.8675 6.85171i −0.614476 0.354768i 0.160239 0.987078i \(-0.448773\pi\)
−0.774715 + 0.632310i \(0.782107\pi\)
\(374\) 9.24562 + 16.0139i 0.478080 + 0.828059i
\(375\) 0 0
\(376\) 28.2800 1.45843
\(377\) −3.55386 + 2.25265i −0.183033 + 0.116018i
\(378\) 25.0213i 1.28696i
\(379\) 16.5632 9.56275i 0.850792 0.491205i −0.0101257 0.999949i \(-0.503223\pi\)
0.860918 + 0.508744i \(0.169890\pi\)
\(380\) 0 0
\(381\) 15.0275 26.0284i 0.769882 1.33347i
\(382\) 7.27408 0.372174
\(383\) −4.95147 + 8.57619i −0.253008 + 0.438223i −0.964353 0.264621i \(-0.914753\pi\)
0.711344 + 0.702844i \(0.248087\pi\)
\(384\) 10.5626 + 6.09833i 0.539022 + 0.311204i
\(385\) 0 0
\(386\) 1.60950 2.78773i 0.0819213 0.141892i
\(387\) 7.78322 4.49364i 0.395643 0.228425i
\(388\) −0.771951 1.33706i −0.0391899 0.0678789i
\(389\) 19.3750 0.982350 0.491175 0.871061i \(-0.336568\pi\)
0.491175 + 0.871061i \(0.336568\pi\)
\(390\) 0 0
\(391\) 0.532056 0.0269072
\(392\) 1.97324 + 3.41774i 0.0996635 + 0.172622i
\(393\) 9.73693 5.62162i 0.491163 0.283573i
\(394\) −22.1709 + 38.4012i −1.11696 + 1.93462i
\(395\) 0 0
\(396\) −33.6674 19.4379i −1.69185 0.976791i
\(397\) 9.78940 16.9557i 0.491316 0.850984i −0.508634 0.860983i \(-0.669849\pi\)
0.999950 + 0.00999849i \(0.00318267\pi\)
\(398\) 61.0702 3.06117
\(399\) −20.9765 + 36.3323i −1.05014 + 1.81889i
\(400\) 0 0
\(401\) −27.1719 + 15.6877i −1.35690 + 0.783406i −0.989205 0.146541i \(-0.953186\pi\)
−0.367694 + 0.929947i \(0.619852\pi\)
\(402\) 42.5014i 2.11978i
\(403\) 20.4993 0.848060i 1.02114 0.0422449i
\(404\) −78.0734 −3.88429
\(405\) 0 0
\(406\) 4.20995 + 7.29185i 0.208936 + 0.361889i
\(407\) −3.92199 2.26436i −0.194406 0.112240i
\(408\) 79.4672 3.93421
\(409\) 16.8069 + 9.70347i 0.831048 + 0.479806i 0.854211 0.519926i \(-0.174041\pi\)
−0.0231636 + 0.999732i \(0.507374\pi\)
\(410\) 0 0
\(411\) 1.08176i 0.0533593i
\(412\) 31.4954 + 18.1839i 1.55167 + 0.895855i
\(413\) −6.00459 + 3.46675i −0.295466 + 0.170588i
\(414\) −1.36171 + 0.786182i −0.0669242 + 0.0386387i
\(415\) 0 0
\(416\) 38.5630 + 20.1868i 1.89071 + 0.989742i
\(417\) 30.0861i 1.47332i
\(418\) 13.7375 + 23.7940i 0.671921 + 1.16380i
\(419\) 4.07630 + 7.06036i 0.199140 + 0.344921i 0.948250 0.317525i \(-0.102852\pi\)
−0.749110 + 0.662446i \(0.769518\pi\)
\(420\) 0 0
\(421\) 15.3225i 0.746771i −0.927676 0.373385i \(-0.878197\pi\)
0.927676 0.373385i \(-0.121803\pi\)
\(422\) 35.5105 61.5059i 1.72862 2.99406i
\(423\) −7.85463 + 13.6046i −0.381905 + 0.661479i
\(424\) 76.9688i 3.73793i
\(425\) 0 0
\(426\) −31.1273 53.9141i −1.50812 2.61214i
\(427\) −11.4435 19.8208i −0.553792 0.959195i
\(428\) 47.4950i 2.29576i
\(429\) −15.8662 8.30560i −0.766029 0.400998i
\(430\) 0 0
\(431\) 12.4274 7.17495i 0.598606 0.345605i −0.169887 0.985464i \(-0.554340\pi\)
0.768493 + 0.639858i \(0.221007\pi\)
\(432\) −31.3732 + 18.1133i −1.50944 + 0.871477i
\(433\) −13.2409 7.64462i −0.636316 0.367377i 0.146878 0.989155i \(-0.453077\pi\)
−0.783194 + 0.621778i \(0.786411\pi\)
\(434\) 41.0560i 1.97075i
\(435\) 0 0
\(436\) 37.2959 + 21.5328i 1.78615 + 1.03123i
\(437\) 0.790547 0.0378170
\(438\) 66.4061 + 38.3396i 3.17301 + 1.83194i
\(439\) −0.394002 0.682432i −0.0188047 0.0325707i 0.856470 0.516197i \(-0.172653\pi\)
−0.875275 + 0.483626i \(0.839319\pi\)
\(440\) 0 0
\(441\) −2.19222 −0.104392
\(442\) 36.1981 1.49753i 1.72177 0.0712301i
\(443\) 16.1718i 0.768343i −0.923262 0.384172i \(-0.874487\pi\)
0.923262 0.384172i \(-0.125513\pi\)
\(444\) −28.3595 + 16.3734i −1.34588 + 0.777045i
\(445\) 0 0
\(446\) −1.15922 + 2.00782i −0.0548905 + 0.0950731i
\(447\) −48.2525 −2.28227
\(448\) 14.9208 25.8436i 0.704943 1.22100i
\(449\) 5.14701 + 2.97163i 0.242903 + 0.140240i 0.616510 0.787347i \(-0.288546\pi\)
−0.373607 + 0.927587i \(0.621879\pi\)
\(450\) 0 0
\(451\) −8.51665 + 14.7513i −0.401033 + 0.694610i
\(452\) −78.0015 + 45.0342i −3.66888 + 2.11823i
\(453\) −8.49221 14.7089i −0.398999 0.691086i
\(454\) 9.15770 0.429792
\(455\) 0 0
\(456\) 118.075 5.52937
\(457\) −4.32602 7.49289i −0.202363 0.350503i 0.746926 0.664907i \(-0.231529\pi\)
−0.949289 + 0.314404i \(0.898195\pi\)
\(458\) 16.5331 9.54539i 0.772541 0.446027i
\(459\) −6.61845 + 11.4635i −0.308923 + 0.535070i
\(460\) 0 0
\(461\) −0.600268 0.346565i −0.0279573 0.0161411i 0.485956 0.873983i \(-0.338471\pi\)
−0.513913 + 0.857842i \(0.671805\pi\)
\(462\) −17.9184 + 31.0356i −0.833640 + 1.44391i
\(463\) −33.6025 −1.56164 −0.780821 0.624754i \(-0.785199\pi\)
−0.780821 + 0.624754i \(0.785199\pi\)
\(464\) 6.09530 10.5574i 0.282967 0.490113i
\(465\) 0 0
\(466\) −32.6554 + 18.8536i −1.51273 + 0.873375i
\(467\) 2.48505i 0.114995i 0.998346 + 0.0574973i \(0.0183120\pi\)
−0.998346 + 0.0574973i \(0.981688\pi\)
\(468\) −64.3326 + 40.7779i −2.97377 + 1.88496i
\(469\) 16.3941 0.757009
\(470\) 0 0
\(471\) −21.7970 37.7534i −1.00435 1.73959i
\(472\) 16.8997 + 9.75704i 0.777872 + 0.449104i
\(473\) −3.85985 −0.177476
\(474\) 59.3598 + 34.2714i 2.72649 + 1.57414i
\(475\) 0 0
\(476\) 51.5753i 2.36395i
\(477\) 37.0272 + 21.3777i 1.69536 + 0.978816i
\(478\) −8.25541 + 4.76626i −0.377593 + 0.218004i
\(479\) 29.0171 16.7530i 1.32583 0.765465i 0.341174 0.940000i \(-0.389175\pi\)
0.984651 + 0.174535i \(0.0558421\pi\)
\(480\) 0 0
\(481\) −7.49424 + 4.75030i −0.341708 + 0.216595i
\(482\) 7.18479i 0.327258i
\(483\) 0.515574 + 0.893000i 0.0234594 + 0.0406329i
\(484\) −18.7677 32.5066i −0.853077 1.47757i
\(485\) 0 0
\(486\) 52.2176i 2.36864i
\(487\) 0.0101571 0.0175926i 0.000460263 0.000797199i −0.865795 0.500399i \(-0.833187\pi\)
0.866255 + 0.499601i \(0.166520\pi\)
\(488\) −32.2074 + 55.7849i −1.45796 + 2.52526i
\(489\) 64.3277i 2.90900i
\(490\) 0 0
\(491\) −5.50075 9.52758i −0.248245 0.429974i 0.714794 0.699335i \(-0.246521\pi\)
−0.963039 + 0.269362i \(0.913187\pi\)
\(492\) 61.5829 + 106.665i 2.77637 + 4.80882i
\(493\) 4.45434i 0.200613i
\(494\) 53.7844 2.22508i 2.41987 0.100111i
\(495\) 0 0
\(496\) −51.4783 + 29.7210i −2.31145 + 1.33451i
\(497\) −20.7963 + 12.0068i −0.932842 + 0.538576i
\(498\) −96.0619 55.4613i −4.30464 2.48528i
\(499\) 8.95832i 0.401030i −0.979691 0.200515i \(-0.935739\pi\)
0.979691 0.200515i \(-0.0642615\pi\)
\(500\) 0 0
\(501\) 2.61069 + 1.50728i 0.116637 + 0.0673403i
\(502\) −29.1861 −1.30264
\(503\) −17.4732 10.0881i −0.779090 0.449808i 0.0570180 0.998373i \(-0.481841\pi\)
−0.836108 + 0.548566i \(0.815174\pi\)
\(504\) 45.2937 + 78.4509i 2.01754 + 3.49448i
\(505\) 0 0
\(506\) 0.675297 0.0300206
\(507\) −28.8339 + 19.9938i −1.28056 + 0.887956i
\(508\) 54.8992i 2.43576i
\(509\) −1.99934 + 1.15432i −0.0886193 + 0.0511644i −0.543655 0.839309i \(-0.682960\pi\)
0.455035 + 0.890473i \(0.349627\pi\)
\(510\) 0 0
\(511\) 14.7888 25.6149i 0.654216 1.13314i
\(512\) 35.0481 1.54892
\(513\) −9.83391 + 17.0328i −0.434178 + 0.752018i
\(514\) −66.7083 38.5140i −2.94238 1.69878i
\(515\) 0 0
\(516\) −13.9551 + 24.1709i −0.614338 + 1.06406i
\(517\) 5.84290 3.37340i 0.256970 0.148362i
\(518\) 8.87778 + 15.3768i 0.390067 + 0.675616i
\(519\) 5.80515 0.254818
\(520\) 0 0
\(521\) −9.00049 −0.394319 −0.197159 0.980371i \(-0.563172\pi\)
−0.197159 + 0.980371i \(0.563172\pi\)
\(522\) 6.58186 + 11.4001i 0.288080 + 0.498970i
\(523\) 34.8743 20.1347i 1.52495 0.880428i 0.525383 0.850866i \(-0.323922\pi\)
0.999563 0.0295625i \(-0.00941141\pi\)
\(524\) −10.2686 + 17.7857i −0.448586 + 0.776974i
\(525\) 0 0
\(526\) 32.8404 + 18.9604i 1.43191 + 0.826714i
\(527\) −10.8598 + 18.8097i −0.473061 + 0.819365i
\(528\) 51.8856 2.25803
\(529\) −11.4903 + 19.9018i −0.499578 + 0.865294i
\(530\) 0 0
\(531\) −9.38760 + 5.41993i −0.407387 + 0.235205i
\(532\) 76.6323i 3.32243i
\(533\) 17.8667 + 28.1871i 0.773892 + 1.22092i
\(534\) −23.9317 −1.03562
\(535\) 0 0
\(536\) −23.0703 39.9589i −0.996485 1.72596i
\(537\) 5.06120 + 2.92209i 0.218407 + 0.126097i
\(538\) 34.5519 1.48964
\(539\) 0.815375 + 0.470757i 0.0351207 + 0.0202769i
\(540\) 0 0
\(541\) 18.4257i 0.792185i −0.918211 0.396092i \(-0.870366\pi\)
0.918211 0.396092i \(-0.129634\pi\)
\(542\) −4.33531 2.50299i −0.186217 0.107513i
\(543\) −46.3379 + 26.7532i −1.98855 + 1.14809i
\(544\) −39.9056 + 23.0395i −1.71094 + 0.987811i
\(545\) 0 0
\(546\) 37.5902 + 59.3036i 1.60871 + 2.53796i
\(547\) 31.9538i 1.36625i −0.730303 0.683123i \(-0.760621\pi\)
0.730303 0.683123i \(-0.239379\pi\)
\(548\) −0.987985 1.71124i −0.0422046 0.0731006i
\(549\) −17.8909 30.9879i −0.763564 1.32253i
\(550\) 0 0
\(551\) 6.61840i 0.281953i
\(552\) 1.45106 2.51332i 0.0617614 0.106974i
\(553\) 13.2195 22.8969i 0.562152 0.973676i
\(554\) 75.3399i 3.20089i
\(555\) 0 0
\(556\) −27.4780 47.5933i −1.16533 2.01841i
\(557\) 10.3377 + 17.9054i 0.438022 + 0.758677i 0.997537 0.0701438i \(-0.0223458\pi\)
−0.559515 + 0.828820i \(0.689012\pi\)
\(558\) 64.1871i 2.71726i
\(559\) −3.50727 + 6.69996i −0.148342 + 0.283378i
\(560\) 0 0
\(561\) 16.4186 9.47929i 0.693194 0.400216i
\(562\) −1.91773 + 1.10720i −0.0808948 + 0.0467046i
\(563\) −29.3459 16.9429i −1.23678 0.714056i −0.268346 0.963322i \(-0.586477\pi\)
−0.968435 + 0.249266i \(0.919811\pi\)
\(564\) 48.7853i 2.05423i
\(565\) 0 0
\(566\) 7.47523 + 4.31582i 0.314207 + 0.181408i
\(567\) 9.57741 0.402213
\(568\) 58.5305 + 33.7926i 2.45588 + 1.41790i
\(569\) −16.4578 28.5058i −0.689949 1.19503i −0.971854 0.235584i \(-0.924300\pi\)
0.281905 0.959442i \(-0.409034\pi\)
\(570\) 0 0
\(571\) −33.3623 −1.39617 −0.698085 0.716015i \(-0.745964\pi\)
−0.698085 + 0.716015i \(0.745964\pi\)
\(572\) 32.6845 1.35217i 1.36661 0.0565369i
\(573\) 7.45792i 0.311559i
\(574\) 57.8345 33.3908i 2.41397 1.39370i
\(575\) 0 0
\(576\) 23.3273 40.4041i 0.971971 1.68350i
\(577\) −6.68771 −0.278413 −0.139206 0.990263i \(-0.544455\pi\)
−0.139206 + 0.990263i \(0.544455\pi\)
\(578\) 3.19987 5.54234i 0.133097 0.230531i
\(579\) −2.85819 1.65018i −0.118782 0.0685790i
\(580\) 0 0
\(581\) −21.3931 + 37.0540i −0.887537 + 1.53726i
\(582\) −1.92696 + 1.11253i −0.0798750 + 0.0461158i
\(583\) −9.18126 15.9024i −0.380249 0.658611i
\(584\) −83.2449 −3.44470
\(585\) 0 0
\(586\) 22.1142 0.913530
\(587\) 11.7081 + 20.2791i 0.483247 + 0.837008i 0.999815 0.0192383i \(-0.00612413\pi\)
−0.516568 + 0.856246i \(0.672791\pi\)
\(588\) 5.89588 3.40399i 0.243142 0.140378i
\(589\) −16.1359 + 27.9481i −0.664867 + 1.15158i
\(590\) 0 0
\(591\) 39.3717 + 22.7313i 1.61954 + 0.935039i
\(592\) 12.8535 22.2629i 0.528276 0.915001i
\(593\) 7.21585 0.296319 0.148160 0.988963i \(-0.452665\pi\)
0.148160 + 0.988963i \(0.452665\pi\)
\(594\) −8.40028 + 14.5497i −0.344668 + 0.596982i
\(595\) 0 0
\(596\) 76.3309 44.0697i 3.12663 1.80516i
\(597\) 62.6136i 2.56260i
\(598\) 0.613612 1.17219i 0.0250925 0.0479343i
\(599\) −37.7682 −1.54317 −0.771584 0.636127i \(-0.780535\pi\)
−0.771584 + 0.636127i \(0.780535\pi\)
\(600\) 0 0
\(601\) 14.1912 + 24.5800i 0.578873 + 1.00264i 0.995609 + 0.0936099i \(0.0298406\pi\)
−0.416736 + 0.909028i \(0.636826\pi\)
\(602\) 13.1057 + 7.56656i 0.534147 + 0.308390i
\(603\) 25.6306 1.04376
\(604\) 26.8677 + 15.5121i 1.09323 + 0.631178i
\(605\) 0 0
\(606\) 112.519i 4.57076i
\(607\) 23.0801 + 13.3253i 0.936792 + 0.540857i 0.888953 0.457998i \(-0.151433\pi\)
0.0478390 + 0.998855i \(0.484767\pi\)
\(608\) −59.2931 + 34.2329i −2.40465 + 1.38833i
\(609\) 7.47614 4.31635i 0.302948 0.174907i
\(610\) 0 0
\(611\) −0.546394 13.2074i −0.0221048 0.534315i
\(612\) 80.6331i 3.25940i
\(613\) 2.30095 + 3.98537i 0.0929346 + 0.160967i 0.908745 0.417352i \(-0.137042\pi\)
−0.815810 + 0.578320i \(0.803709\pi\)
\(614\) 43.2064 + 74.8356i 1.74367 + 3.02012i
\(615\) 0 0
\(616\) 38.9054i 1.56754i
\(617\) 13.9270 24.1223i 0.560680 0.971126i −0.436757 0.899579i \(-0.643873\pi\)
0.997437 0.0715470i \(-0.0227936\pi\)
\(618\) 26.2064 45.3909i 1.05418 1.82589i
\(619\) 30.3338i 1.21922i −0.792703 0.609608i \(-0.791327\pi\)
0.792703 0.609608i \(-0.208673\pi\)
\(620\) 0 0
\(621\) 0.241705 + 0.418645i 0.00969928 + 0.0167996i
\(622\) 24.4812 + 42.4026i 0.981605 + 1.70019i
\(623\) 9.23117i 0.369839i
\(624\) 47.1462 90.0636i 1.88736 3.60543i
\(625\) 0 0
\(626\) 14.9458 8.62894i 0.597353 0.344882i
\(627\) 24.3953 14.0846i 0.974255 0.562486i
\(628\) 68.9614 + 39.8149i 2.75186 + 1.58879i
\(629\) 9.39313i 0.374529i
\(630\) 0 0
\(631\) −2.94868 1.70242i −0.117385 0.0677723i 0.440158 0.897920i \(-0.354922\pi\)
−0.557543 + 0.830148i \(0.688256\pi\)
\(632\) −74.4118 −2.95994
\(633\) −63.0603 36.4079i −2.50642 1.44708i
\(634\) −37.3710 64.7285i −1.48419 2.57070i
\(635\) 0 0
\(636\) −132.777 −5.26496
\(637\) 1.55804 0.987579i 0.0617318 0.0391293i
\(638\) 5.65354i 0.223826i
\(639\) −32.5130 + 18.7714i −1.28620 + 0.742586i
\(640\) 0 0
\(641\) −3.54843 + 6.14606i −0.140155 + 0.242755i −0.927555 0.373687i \(-0.878093\pi\)
0.787400 + 0.616442i \(0.211427\pi\)
\(642\) −68.4495 −2.70148
\(643\) −13.4485 + 23.2936i −0.530359 + 0.918608i 0.469014 + 0.883191i \(0.344609\pi\)
−0.999373 + 0.0354176i \(0.988724\pi\)
\(644\) −1.63118 0.941761i −0.0642774 0.0371106i
\(645\) 0 0
\(646\) −28.4931 + 49.3516i −1.12105 + 1.94171i
\(647\) −1.51516 + 0.874779i −0.0595672 + 0.0343911i −0.529488 0.848318i \(-0.677616\pi\)
0.469921 + 0.882709i \(0.344283\pi\)
\(648\) −13.4776 23.3440i −0.529452 0.917037i
\(649\) 4.65550 0.182744
\(650\) 0 0
\(651\) −42.0936 −1.64978
\(652\) −58.7513 101.760i −2.30088 3.98524i
\(653\) 0.701221 0.404850i 0.0274409 0.0158430i −0.486217 0.873838i \(-0.661623\pi\)
0.513658 + 0.857995i \(0.328290\pi\)
\(654\) 31.0329 53.7505i 1.21348 2.10181i
\(655\) 0 0
\(656\) −83.7346 48.3442i −3.26929 1.88752i
\(657\) 23.1208 40.0464i 0.902029 1.56236i
\(658\) −26.4518 −1.03120
\(659\) −19.4927 + 33.7623i −0.759327 + 1.31519i 0.183867 + 0.982951i \(0.441138\pi\)
−0.943194 + 0.332242i \(0.892195\pi\)
\(660\) 0 0
\(661\) −13.5955 + 7.84937i −0.528804 + 0.305305i −0.740529 0.672024i \(-0.765425\pi\)
0.211725 + 0.977329i \(0.432092\pi\)
\(662\) 6.33561i 0.246240i
\(663\) −1.53537 37.1130i −0.0596290 1.44135i
\(664\) 120.420 4.67322
\(665\) 0 0
\(666\) 13.8796 + 24.0401i 0.537822 + 0.931535i
\(667\) −0.140878 0.0813358i −0.00545481 0.00314934i
\(668\) −5.50648 −0.213052
\(669\) 2.05856 + 1.18851i 0.0795887 + 0.0459506i
\(670\) 0 0
\(671\) 15.3675i 0.593257i
\(672\) −77.3388 44.6516i −2.98341 1.72247i
\(673\) −28.6251 + 16.5267i −1.10342 + 0.637057i −0.937116 0.349018i \(-0.886515\pi\)
−0.166300 + 0.986075i \(0.553182\pi\)
\(674\) −7.60449 + 4.39045i −0.292914 + 0.169114i
\(675\) 0 0
\(676\) 27.3518 57.9627i 1.05199 2.22933i
\(677\) 9.32729i 0.358477i −0.983806 0.179238i \(-0.942637\pi\)
0.983806 0.179238i \(-0.0573634\pi\)
\(678\) 64.9029 + 112.415i 2.49258 + 4.31728i
\(679\) 0.429137 + 0.743287i 0.0164688 + 0.0285247i
\(680\) 0 0
\(681\) 9.38914i 0.359793i
\(682\) −13.7835 + 23.8737i −0.527798 + 0.914173i
\(683\) −10.2351 + 17.7277i −0.391634 + 0.678331i −0.992665 0.120895i \(-0.961424\pi\)
0.601031 + 0.799226i \(0.294757\pi\)
\(684\) 119.807i 4.58095i
\(685\) 0 0
\(686\) 23.4069 + 40.5420i 0.893681 + 1.54790i
\(687\) −9.78663 16.9509i −0.373383 0.646719i
\(688\) 21.9102i 0.835318i
\(689\) −35.9462 + 1.48710i −1.36944 + 0.0566541i
\(690\) 0 0
\(691\) −3.86449 + 2.23116i −0.147012 + 0.0848774i −0.571702 0.820462i \(-0.693717\pi\)
0.424690 + 0.905339i \(0.360383\pi\)
\(692\) −9.18320 + 5.30192i −0.349093 + 0.201549i
\(693\) 18.7161 + 10.8058i 0.710967 + 0.410477i
\(694\) 52.7684i 2.00306i
\(695\) 0 0
\(696\) −21.0413 12.1482i −0.797569 0.460477i
\(697\) −35.3291 −1.33819
\(698\) −33.9362 19.5931i −1.28450 0.741608i
\(699\) 19.3301 + 33.4807i 0.731130 + 1.26635i
\(700\) 0 0
\(701\) 41.2801 1.55913 0.779564 0.626323i \(-0.215441\pi\)
0.779564 + 0.626323i \(0.215441\pi\)
\(702\) 17.6226 + 27.8020i 0.665121 + 1.04932i
\(703\) 13.9566i 0.526384i
\(704\) −17.3527 + 10.0186i −0.654005 + 0.377590i
\(705\) 0 0
\(706\) 25.2305 43.7005i 0.949562 1.64469i
\(707\) 43.4019 1.63230
\(708\) 16.8317 29.1533i 0.632573 1.09565i
\(709\) 24.3714 + 14.0708i 0.915287 + 0.528441i 0.882128 0.471009i \(-0.156110\pi\)
0.0331583 + 0.999450i \(0.489443\pi\)
\(710\) 0 0
\(711\) 20.6675 35.7971i 0.775091 1.34250i
\(712\) 22.5000 12.9904i 0.843225 0.486836i
\(713\) 0.396598 + 0.686929i 0.0148527 + 0.0257257i
\(714\) −74.3299 −2.78173
\(715\) 0 0
\(716\) −10.6751 −0.398948
\(717\) 4.88672 + 8.46404i 0.182498 + 0.316096i
\(718\) 34.6300 19.9936i 1.29238 0.746156i
\(719\) 5.50910 9.54204i 0.205455 0.355858i −0.744823 0.667262i \(-0.767466\pi\)
0.950278 + 0.311404i \(0.100799\pi\)
\(720\) 0 0
\(721\) −17.5087 10.1086i −0.652057 0.376465i
\(722\) −17.3271 + 30.0114i −0.644848 + 1.11691i
\(723\) 7.36637 0.273958
\(724\) 48.8681 84.6421i 1.81617 3.14570i
\(725\) 0 0
\(726\) −46.8482 + 27.0478i −1.73870 + 1.00384i
\(727\) 21.0896i 0.782168i 0.920355 + 0.391084i \(0.127900\pi\)
−0.920355 + 0.391084i \(0.872100\pi\)
\(728\) −67.5323 35.3516i −2.50291 1.31022i
\(729\) 43.0538 1.59459
\(730\) 0 0
\(731\) −4.00290 6.93322i −0.148053 0.256435i
\(732\) 96.2334 + 55.5604i 3.55689 + 2.05357i
\(733\) 9.50914 0.351228 0.175614 0.984459i \(-0.443809\pi\)
0.175614 + 0.984459i \(0.443809\pi\)
\(734\) −9.72820 5.61658i −0.359075 0.207312i
\(735\) 0 0
\(736\) 1.68280i 0.0620288i
\(737\) −9.53305 5.50391i −0.351154 0.202739i
\(738\) 90.4188 52.2033i 3.32836 1.92163i
\(739\) 2.97018 1.71484i 0.109260 0.0630813i −0.444374 0.895841i \(-0.646574\pi\)
0.553634 + 0.832760i \(0.313241\pi\)
\(740\) 0 0
\(741\) −2.28131 55.1437i −0.0838060 2.02575i
\(742\) 71.9930i 2.64295i
\(743\) −15.7635 27.3032i −0.578307 1.00166i −0.995674 0.0929188i \(-0.970380\pi\)
0.417367 0.908738i \(-0.362953\pi\)
\(744\) 59.2354 + 102.599i 2.17168 + 3.76145i
\(745\) 0 0
\(746\) 36.0745i 1.32078i
\(747\) −33.4461 + 57.9304i −1.22373 + 2.11956i
\(748\) −17.3151 + 29.9907i −0.633103 + 1.09657i
\(749\) 26.4031i 0.964747i
\(750\) 0 0
\(751\) 4.49261 + 7.78143i 0.163938 + 0.283948i 0.936278 0.351261i \(-0.114247\pi\)
−0.772340 + 0.635210i \(0.780914\pi\)
\(752\) 19.1489 + 33.1668i 0.698288 + 1.20947i
\(753\) 29.9238i 1.09048i
\(754\) −9.81347 5.13712i −0.357386 0.187083i
\(755\) 0 0
\(756\) 40.5817 23.4299i 1.47594 0.852136i
\(757\) −29.0485 + 16.7711i −1.05578 + 0.609558i −0.924263 0.381756i \(-0.875320\pi\)
−0.131521 + 0.991313i \(0.541986\pi\)
\(758\) 43.6028 + 25.1741i 1.58373 + 0.914365i
\(759\) 0.692364i 0.0251312i
\(760\) 0 0
\(761\) −39.0273 22.5324i −1.41474 0.816800i −0.418909 0.908028i \(-0.637587\pi\)
−0.995830 + 0.0912283i \(0.970921\pi\)
\(762\) 79.1203 2.86623
\(763\) −20.7332 11.9703i −0.750593 0.433355i
\(764\) 6.81141 + 11.7977i 0.246428 + 0.426826i
\(765\) 0 0
\(766\) −26.0697 −0.941935
\(767\) 4.23024 8.08105i 0.152745 0.291790i
\(768\) 26.6677i 0.962287i
\(769\) 13.7521 7.93979i 0.495914 0.286316i −0.231110 0.972928i \(-0.574236\pi\)
0.727025 + 0.686611i \(0.240903\pi\)
\(770\) 0 0
\(771\) −39.4874 + 68.3942i −1.42210 + 2.46316i
\(772\) 6.02851 0.216971
\(773\) −8.35573 + 14.4726i −0.300535 + 0.520542i −0.976257 0.216615i \(-0.930498\pi\)
0.675722 + 0.737156i \(0.263832\pi\)
\(774\) 20.4895 + 11.8296i 0.736479 + 0.425206i
\(775\) 0 0
\(776\) 1.20779 2.09195i 0.0433571 0.0750968i
\(777\) 15.7654 9.10214i 0.565580 0.326538i
\(778\) 25.5025 + 44.1716i 0.914309 + 1.58363i
\(779\) −52.4931 −1.88076
\(780\) 0 0
\(781\) 16.1239 0.576957
\(782\) 0.700324 + 1.21300i 0.0250435 + 0.0433767i
\(783\) 3.50487 2.02354i 0.125254 0.0723153i
\(784\) −2.67222 + 4.62842i −0.0954364 + 0.165301i
\(785\) 0 0
\(786\) 25.6327 + 14.7990i 0.914287 + 0.527864i
\(787\) −24.7034 + 42.7875i −0.880580 + 1.52521i −0.0298831 + 0.999553i \(0.509513\pi\)
−0.850697 + 0.525656i \(0.823820\pi\)
\(788\) −83.0430 −2.95829
\(789\) 19.4396 33.6704i 0.692068 1.19870i
\(790\) 0 0
\(791\) 43.3620 25.0350i 1.54177 0.890144i
\(792\) 60.8249i 2.16132i
\(793\) 26.6751 + 13.9638i 0.947260 + 0.495868i
\(794\) 51.5416 1.82914
\(795\) 0 0
\(796\) 57.1858 + 99.0488i 2.02690 + 3.51069i
\(797\) −16.8118 9.70631i −0.595505 0.343815i 0.171766 0.985138i \(-0.445053\pi\)
−0.767271 + 0.641323i \(0.778386\pi\)
\(798\) −110.442 −3.90960
\(799\) 12.1189 + 6.99684i 0.428735 + 0.247530i
\(800\) 0 0
\(801\) 14.4321i 0.509932i
\(802\) −71.5305 41.2981i −2.52583 1.45829i
\(803\) −17.1991 + 9.92991i −0.606943 + 0.350419i
\(804\) −68.9324 + 39.7981i −2.43106 + 1.40357i
\(805\) 0 0
\(806\) 28.9158 + 45.6185i 1.01852 + 1.60684i
\(807\) 35.4252i 1.24702i
\(808\) −61.0766 105.788i −2.14867 3.72160i
\(809\) 11.0486 + 19.1368i 0.388450 + 0.672814i 0.992241 0.124328i \(-0.0396774\pi\)
−0.603792 + 0.797142i \(0.706344\pi\)
\(810\) 0 0
\(811\) 13.7950i 0.484407i −0.970225 0.242203i \(-0.922130\pi\)
0.970225 0.242203i \(-0.0778702\pi\)
\(812\) −7.88436 + 13.6561i −0.276687 + 0.479236i
\(813\) −2.56625 + 4.44487i −0.0900022 + 0.155888i
\(814\) 11.9220i 0.417865i
\(815\) 0 0
\(816\) 53.8085 + 93.1991i 1.88368 + 3.26262i
\(817\) −5.94764 10.3016i −0.208082 0.360408i
\(818\) 51.0891i 1.78629i
\(819\) 35.7632 22.6689i 1.24967 0.792116i
\(820\) 0 0
\(821\) −20.2706 + 11.7032i −0.707450 + 0.408446i −0.810116 0.586270i \(-0.800596\pi\)
0.102666 + 0.994716i \(0.467263\pi\)
\(822\) −2.46623 + 1.42388i −0.0860195 + 0.0496634i
\(823\) −13.7244 7.92379i −0.478402 0.276206i 0.241348 0.970439i \(-0.422410\pi\)
−0.719750 + 0.694233i \(0.755744\pi\)
\(824\) 56.9008i 1.98223i
\(825\) 0 0
\(826\) −15.8072 9.12628i −0.550002 0.317544i
\(827\) 4.85361 0.168777 0.0843883 0.996433i \(-0.473106\pi\)
0.0843883 + 0.996433i \(0.473106\pi\)
\(828\) −2.55019 1.47235i −0.0886253 0.0511678i
\(829\) 7.58395 + 13.1358i 0.263401 + 0.456225i 0.967144 0.254231i \(-0.0818223\pi\)
−0.703742 + 0.710455i \(0.748489\pi\)
\(830\) 0 0
\(831\) 77.2440 2.67956
\(832\) 1.62273 + 39.2244i 0.0562579 + 1.35986i
\(833\) 1.95281i 0.0676610i
\(834\) −68.5911 + 39.6011i −2.37512 + 1.37127i
\(835\) 0 0
\(836\) −25.7274 + 44.5611i −0.889800 + 1.54118i
\(837\) −19.7338 −0.682099
\(838\) −10.7309 + 18.5865i −0.370694 + 0.642061i
\(839\) −37.8349 21.8440i −1.30620 0.754138i −0.324744 0.945802i \(-0.605278\pi\)
−0.981461 + 0.191664i \(0.938612\pi\)
\(840\) 0 0
\(841\) 13.8191 23.9353i 0.476519 0.825356i
\(842\) 34.9326 20.1683i 1.20386 0.695046i
\(843\) 1.13519 + 1.96620i 0.0390979 + 0.0677196i
\(844\) 133.007 4.57830
\(845\) 0 0
\(846\) −41.3549 −1.42181
\(847\) 10.4332 + 18.0708i 0.358488 + 0.620920i
\(848\) 90.2690 52.1168i 3.09985 1.78970i
\(849\) 4.42490 7.66415i 0.151862 0.263033i
\(850\) 0 0
\(851\) −0.297077 0.171518i −0.0101837 0.00587955i
\(852\) 58.2949 100.970i 1.99715 3.45917i
\(853\) −5.18588 −0.177561 −0.0887806 0.996051i \(-0.528297\pi\)
−0.0887806 + 0.996051i \(0.528297\pi\)
\(854\) 30.1253 52.1786i 1.03087 1.78552i
\(855\) 0 0
\(856\) 64.3547 37.1552i 2.19960 1.26994i
\(857\) 12.8688i 0.439589i 0.975546 + 0.219795i \(0.0705387\pi\)
−0.975546 + 0.219795i \(0.929461\pi\)
\(858\) −1.94873 47.1046i −0.0665286 1.60812i
\(859\) −15.7252 −0.536538 −0.268269 0.963344i \(-0.586452\pi\)
−0.268269 + 0.963344i \(0.586452\pi\)
\(860\) 0 0
\(861\) −34.2347 59.2962i −1.16671 2.02081i
\(862\) 32.7153 + 18.8882i 1.11429 + 0.643335i
\(863\) 16.0465 0.546230 0.273115 0.961981i \(-0.411946\pi\)
0.273115 + 0.961981i \(0.411946\pi\)
\(864\) −36.2570 20.9330i −1.23349 0.712154i
\(865\) 0 0
\(866\) 40.2492i 1.36772i
\(867\) −5.68241 3.28074i −0.192985 0.111420i
\(868\) 66.5880 38.4446i 2.26015 1.30490i
\(869\) −15.3741 + 8.87626i −0.521532 + 0.301106i
\(870\) 0 0
\(871\) −18.2160 + 11.5464i −0.617225 + 0.391235i
\(872\) 67.3802i 2.28178i
\(873\) 0.670915 + 1.16206i 0.0227070 + 0.0393297i
\(874\) 1.04056 + 1.80231i 0.0351976 + 0.0609641i
\(875\) 0 0
\(876\) 143.604i 4.85193i
\(877\) 2.74017 4.74612i 0.0925290 0.160265i −0.816046 0.577987i \(-0.803838\pi\)
0.908575 + 0.417723i \(0.137172\pi\)
\(878\) 1.03722 1.79652i 0.0350044 0.0606295i
\(879\) 22.6731i 0.764745i
\(880\) 0 0
\(881\) −4.78231 8.28321i −0.161120 0.279068i 0.774151 0.633002i \(-0.218177\pi\)
−0.935271 + 0.353933i \(0.884844\pi\)
\(882\) −2.88553 4.99789i −0.0971610 0.168288i
\(883\) 32.6927i 1.10020i 0.835100 + 0.550098i \(0.185410\pi\)
−0.835100 + 0.550098i \(0.814590\pi\)
\(884\) 36.3246 + 57.3069i 1.22173 + 1.92744i
\(885\) 0 0
\(886\) 36.8688 21.2862i 1.23863 0.715125i
\(887\) −39.6612 + 22.8984i −1.33169 + 0.768854i −0.985559 0.169331i \(-0.945839\pi\)
−0.346135 + 0.938185i \(0.612506\pi\)
\(888\) −44.3711 25.6177i −1.48900 0.859673i
\(889\) 30.5191i 1.02358i
\(890\) 0 0
\(891\) −5.56919 3.21537i −0.186575 0.107719i
\(892\) −4.34194 −0.145379
\(893\) 18.0066 + 10.3961i 0.602569 + 0.347893i
\(894\) −63.5128 110.007i −2.12419 3.67920i
\(895\) 0 0
\(896\) 12.3850 0.413755
\(897\) −1.20181 0.629120i −0.0401273 0.0210057i
\(898\) 15.6457i 0.522105i
\(899\) 5.75092 3.32030i 0.191804 0.110738i
\(900\) 0 0
\(901\) 19.0430 32.9835i 0.634416 1.09884i
\(902\) −44.8405 −1.49302
\(903\) 7.75779 13.4369i 0.258163 0.447152i
\(904\) −122.041 70.4603i −4.05901 2.34347i
\(905\) 0 0
\(906\) 22.3559 38.7215i 0.742725 1.28644i
\(907\) −10.7434 + 6.20272i −0.356729 + 0.205958i −0.667645 0.744480i \(-0.732698\pi\)
0.310916 + 0.950437i \(0.399364\pi\)
\(908\) 8.57523 + 14.8527i 0.284579 + 0.492905i
\(909\) 67.8547 2.25060
\(910\) 0 0
\(911\) −13.8486 −0.458826 −0.229413 0.973329i \(-0.573681\pi\)
−0.229413 + 0.973329i \(0.573681\pi\)
\(912\) 79.9505 + 138.478i 2.64743 + 4.58548i
\(913\) 24.8799 14.3644i 0.823405 0.475393i
\(914\) 11.3883 19.7252i 0.376693 0.652451i
\(915\) 0 0
\(916\) 30.9630 + 17.8765i 1.02305 + 0.590657i
\(917\) 5.70844 9.88730i 0.188509 0.326508i
\(918\) −34.8464 −1.15010
\(919\) −24.2075 + 41.9287i −0.798533 + 1.38310i 0.122038 + 0.992525i \(0.461057\pi\)
−0.920571 + 0.390575i \(0.872276\pi\)
\(920\) 0 0
\(921\) 76.7269 44.2983i 2.52824 1.45968i
\(922\) 1.82468i 0.0600925i
\(923\) 14.6510 27.9879i 0.482245 0.921234i
\(924\) −67.1149 −2.20792
\(925\) 0 0
\(926\) −44.2297 76.6080i −1.45348 2.51750i
\(927\) −27.3731 15.8039i −0.899051 0.519068i
\(928\) 14.0883 0.462470
\(929\) −16.1983 9.35210i −0.531450 0.306833i 0.210157 0.977668i \(-0.432603\pi\)
−0.741607 + 0.670835i \(0.765936\pi\)
\(930\) 0 0
\(931\) 2.90156i 0.0950946i
\(932\) −61.1567 35.3088i −2.00325 1.15658i
\(933\) 43.4743 25.0999i 1.42328 0.821733i
\(934\) −5.66549 + 3.27097i −0.185381 + 0.107030i
\(935\) 0 0
\(936\) −105.580 55.2688i −3.45100 1.80652i
\(937\) 32.9941i 1.07787i 0.842347 + 0.538935i \(0.181173\pi\)
−0.842347 + 0.538935i \(0.818827\pi\)
\(938\) 21.5789 + 37.3757i 0.704576 + 1.22036i
\(939\) −8.84702 15.3235i −0.288712 0.500063i
\(940\) 0 0
\(941\) 30.1625i 0.983270i 0.870801 + 0.491635i \(0.163601\pi\)
−0.870801 + 0.491635i \(0.836399\pi\)
\(942\) 57.3809 99.3866i 1.86957 3.23819i
\(943\) −0.645106 + 1.11736i −0.0210076 + 0.0363861i
\(944\) 26.4266i 0.860113i
\(945\) 0 0
\(946\) −5.08057 8.79980i −0.165183 0.286106i
\(947\) −5.22013 9.04154i −0.169632 0.293810i 0.768659 0.639659i \(-0.220924\pi\)
−0.938290 + 0.345849i \(0.887591\pi\)
\(948\) 128.366i 4.16915i
\(949\) 1.60836 + 38.8772i 0.0522097 + 1.26201i
\(950\) 0 0
\(951\) −66.3643 + 38.3155i −2.15201 + 1.24246i
\(952\) 69.8834 40.3472i 2.26494 1.30766i
\(953\) 30.5345 + 17.6291i 0.989108 + 0.571062i 0.905008 0.425396i \(-0.139865\pi\)
0.0841005 + 0.996457i \(0.473198\pi\)
\(954\) 112.554i 3.64408i
\(955\) 0 0
\(956\) −15.4606 8.92621i −0.500033 0.288694i
\(957\) −5.79643 −0.187372
\(958\) 76.3881 + 44.1027i 2.46799 + 1.42489i
\(959\) 0.549233 + 0.951299i 0.0177357 + 0.0307191i
\(960\) 0 0
\(961\) −1.37993 −0.0445139
\(962\) −20.6942 10.8330i −0.667209 0.349269i
\(963\) 41.2787i 1.33019i
\(964\) −11.6529 + 6.72781i −0.375315 + 0.216688i
\(965\) 0 0
\(966\) −1.35726 + 2.35084i −0.0436691 + 0.0756370i
\(967\) 36.8535 1.18513 0.592564 0.805523i \(-0.298116\pi\)
0.592564 + 0.805523i \(0.298116\pi\)
\(968\) 29.3638 50.8596i 0.943789 1.63469i
\(969\) 50.5988 + 29.2132i 1.62547 + 0.938465i
\(970\) 0 0
\(971\) −3.00764 + 5.20939i −0.0965199 + 0.167177i −0.910242 0.414077i \(-0.864104\pi\)
0.813722 + 0.581254i \(0.197438\pi\)
\(972\) −84.6908 + 48.8963i −2.71646 + 1.56835i
\(973\) 15.2754 + 26.4577i 0.489706 + 0.848195i
\(974\) 0.0534776 0.00171353
\(975\) 0 0
\(976\) −87.2327 −2.79225
\(977\) 17.8807 + 30.9702i 0.572054 + 0.990826i 0.996355 + 0.0853050i \(0.0271865\pi\)
−0.424301 + 0.905521i \(0.639480\pi\)
\(978\) −146.656 + 84.6720i −4.68955 + 2.70751i
\(979\) 3.09913 5.36786i 0.0990488 0.171558i
\(980\) 0 0
\(981\) −32.4144 18.7145i −1.03491 0.597507i
\(982\) 14.4808 25.0815i 0.462102 0.800384i
\(983\) 3.54764 0.113152 0.0565760 0.998398i \(-0.481982\pi\)
0.0565760 + 0.998398i \(0.481982\pi\)
\(984\) −96.3523 + 166.887i −3.07160 + 5.32016i
\(985\) 0 0
\(986\) 10.1551 5.86307i 0.323405 0.186718i
\(987\) 27.1203i 0.863250i
\(988\) 53.9723 + 85.1485i 1.71709 + 2.70894i
\(989\) −0.292370 −0.00929684
\(990\) 0 0
\(991\) 24.3549 + 42.1839i 0.773658 + 1.34002i 0.935545 + 0.353206i \(0.114909\pi\)
−0.161887 + 0.986809i \(0.551758\pi\)
\(992\) −59.4919 34.3476i −1.88887 1.09054i
\(993\) −6.49573 −0.206136
\(994\) −54.7467 31.6080i −1.73646 1.00254i
\(995\) 0 0
\(996\) 207.735i 6.58234i
\(997\) −29.5962 17.0874i −0.937320 0.541162i −0.0482007 0.998838i \(-0.515349\pi\)
−0.889119 + 0.457676i \(0.848682\pi\)
\(998\) 20.4234 11.7915i 0.646493 0.373253i
\(999\) 7.39092 4.26715i 0.233838 0.135007i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.m.d.49.10 20
5.2 odd 4 325.2.n.e.101.1 10
5.3 odd 4 325.2.n.f.101.5 yes 10
5.4 even 2 inner 325.2.m.d.49.1 20
13.4 even 6 inner 325.2.m.d.199.1 20
65.2 even 12 4225.2.a.bv.1.1 10
65.4 even 6 inner 325.2.m.d.199.10 20
65.17 odd 12 325.2.n.e.251.1 yes 10
65.28 even 12 4225.2.a.bu.1.10 10
65.37 even 12 4225.2.a.bv.1.10 10
65.43 odd 12 325.2.n.f.251.5 yes 10
65.63 even 12 4225.2.a.bu.1.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.m.d.49.1 20 5.4 even 2 inner
325.2.m.d.49.10 20 1.1 even 1 trivial
325.2.m.d.199.1 20 13.4 even 6 inner
325.2.m.d.199.10 20 65.4 even 6 inner
325.2.n.e.101.1 10 5.2 odd 4
325.2.n.e.251.1 yes 10 65.17 odd 12
325.2.n.f.101.5 yes 10 5.3 odd 4
325.2.n.f.251.5 yes 10 65.43 odd 12
4225.2.a.bu.1.1 10 65.63 even 12
4225.2.a.bu.1.10 10 65.28 even 12
4225.2.a.bv.1.1 10 65.2 even 12
4225.2.a.bv.1.10 10 65.37 even 12