Properties

Label 325.10.a.a.1.2
Level $325$
Weight $10$
Character 325.1
Self dual yes
Analytic conductor $167.387$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,10,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(167.386646753\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1602x^{2} + 1544x + 342272 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-15.3567\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.35673 q^{2} -42.6243 q^{3} -457.879 q^{4} +313.575 q^{6} -892.010 q^{7} +7135.13 q^{8} -17866.2 q^{9} +O(q^{10})\) \(q-7.35673 q^{2} -42.6243 q^{3} -457.879 q^{4} +313.575 q^{6} -892.010 q^{7} +7135.13 q^{8} -17866.2 q^{9} -27149.8 q^{11} +19516.8 q^{12} +28561.0 q^{13} +6562.27 q^{14} +181943. q^{16} +34643.4 q^{17} +131437. q^{18} +428885. q^{19} +38021.3 q^{21} +199734. q^{22} -2.03704e6 q^{23} -304130. q^{24} -210115. q^{26} +1.60051e6 q^{27} +408432. q^{28} -5.26400e6 q^{29} -4.15910e6 q^{31} -4.99169e6 q^{32} +1.15724e6 q^{33} -254862. q^{34} +8.18054e6 q^{36} +7.58854e6 q^{37} -3.15519e6 q^{38} -1.21739e6 q^{39} -4.92536e6 q^{41} -279712. q^{42} -1.71882e7 q^{43} +1.24313e7 q^{44} +1.49859e7 q^{46} +2.95568e7 q^{47} -7.75518e6 q^{48} -3.95579e7 q^{49} -1.47665e6 q^{51} -1.30775e7 q^{52} +2.72331e7 q^{53} -1.17745e7 q^{54} -6.36461e6 q^{56} -1.82809e7 q^{57} +3.87258e7 q^{58} -1.13602e8 q^{59} -3.76868e7 q^{61} +3.05973e7 q^{62} +1.59368e7 q^{63} -5.64321e7 q^{64} -8.51352e6 q^{66} -1.90094e8 q^{67} -1.58625e7 q^{68} +8.68273e7 q^{69} +6.87130e7 q^{71} -1.27477e8 q^{72} -3.61495e8 q^{73} -5.58268e7 q^{74} -1.96377e8 q^{76} +2.42179e7 q^{77} +8.95603e6 q^{78} -1.42229e8 q^{79} +2.83439e8 q^{81} +3.62346e7 q^{82} +5.80240e7 q^{83} -1.74091e7 q^{84} +1.26449e8 q^{86} +2.24374e8 q^{87} -1.93718e8 q^{88} -8.59928e8 q^{89} -2.54767e7 q^{91} +9.32716e8 q^{92} +1.77279e8 q^{93} -2.17442e8 q^{94} +2.12767e8 q^{96} -1.46970e9 q^{97} +2.91017e8 q^{98} +4.85064e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 33 q^{2} + 163 q^{3} + 1429 q^{4} - 4529 q^{6} + 11241 q^{7} + 45543 q^{8} - 29953 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 33 q^{2} + 163 q^{3} + 1429 q^{4} - 4529 q^{6} + 11241 q^{7} + 45543 q^{8} - 29953 q^{9} - 40140 q^{11} + 155479 q^{12} + 114244 q^{13} - 277653 q^{14} + 726609 q^{16} - 78717 q^{17} - 1691026 q^{18} + 209664 q^{19} + 1138431 q^{21} - 1364090 q^{22} + 4257444 q^{23} + 3561573 q^{24} + 942513 q^{26} + 2077801 q^{27} - 4035181 q^{28} - 1647936 q^{29} - 11366002 q^{31} + 29458959 q^{32} + 14413222 q^{33} + 26257659 q^{34} - 11587714 q^{36} - 4636891 q^{37} - 25172466 q^{38} + 4655443 q^{39} + 13859538 q^{41} - 75564923 q^{42} + 33368081 q^{43} + 66489222 q^{44} + 71369332 q^{46} + 3943005 q^{47} + 620787 q^{48} + 23294923 q^{49} - 19664471 q^{51} + 40813669 q^{52} + 171019326 q^{53} - 64946915 q^{54} - 281552967 q^{56} + 47829030 q^{57} - 79964734 q^{58} - 63389388 q^{59} + 77050190 q^{61} + 95878740 q^{62} + 155695476 q^{63} + 768962465 q^{64} - 42396374 q^{66} + 41174072 q^{67} + 717615423 q^{68} + 546642556 q^{69} + 252460989 q^{71} - 562579254 q^{72} - 594415068 q^{73} - 957058539 q^{74} - 326897170 q^{76} - 561950454 q^{77} - 129352769 q^{78} + 115998984 q^{79} + 437803700 q^{81} + 875148240 q^{82} + 79577862 q^{83} + 108899441 q^{84} - 589924887 q^{86} + 1087526510 q^{87} + 2327564370 q^{88} - 1152240276 q^{89} + 321054201 q^{91} + 4213481460 q^{92} - 1618266556 q^{93} + 1859909503 q^{94} + 3171454029 q^{96} - 1049098084 q^{97} - 420532254 q^{98} + 2132181050 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −7.35673 −0.325124 −0.162562 0.986698i \(-0.551976\pi\)
−0.162562 + 0.986698i \(0.551976\pi\)
\(3\) −42.6243 −0.303817 −0.151908 0.988395i \(-0.548542\pi\)
−0.151908 + 0.988395i \(0.548542\pi\)
\(4\) −457.879 −0.894294
\(5\) 0 0
\(6\) 313.575 0.0987782
\(7\) −892.010 −0.140420 −0.0702099 0.997532i \(-0.522367\pi\)
−0.0702099 + 0.997532i \(0.522367\pi\)
\(8\) 7135.13 0.615881
\(9\) −17866.2 −0.907695
\(10\) 0 0
\(11\) −27149.8 −0.559114 −0.279557 0.960129i \(-0.590188\pi\)
−0.279557 + 0.960129i \(0.590188\pi\)
\(12\) 19516.8 0.271702
\(13\) 28561.0 0.277350
\(14\) 6562.27 0.0456539
\(15\) 0 0
\(16\) 181943. 0.694056
\(17\) 34643.4 0.100601 0.0503003 0.998734i \(-0.483982\pi\)
0.0503003 + 0.998734i \(0.483982\pi\)
\(18\) 131437. 0.295114
\(19\) 428885. 0.755004 0.377502 0.926009i \(-0.376783\pi\)
0.377502 + 0.926009i \(0.376783\pi\)
\(20\) 0 0
\(21\) 38021.3 0.0426619
\(22\) 199734. 0.181782
\(23\) −2.03704e6 −1.51783 −0.758916 0.651188i \(-0.774271\pi\)
−0.758916 + 0.651188i \(0.774271\pi\)
\(24\) −304130. −0.187115
\(25\) 0 0
\(26\) −210115. −0.0901733
\(27\) 1.60051e6 0.579590
\(28\) 408432. 0.125577
\(29\) −5.26400e6 −1.38205 −0.691026 0.722830i \(-0.742841\pi\)
−0.691026 + 0.722830i \(0.742841\pi\)
\(30\) 0 0
\(31\) −4.15910e6 −0.808856 −0.404428 0.914570i \(-0.632529\pi\)
−0.404428 + 0.914570i \(0.632529\pi\)
\(32\) −4.99169e6 −0.841536
\(33\) 1.15724e6 0.169868
\(34\) −254862. −0.0327077
\(35\) 0 0
\(36\) 8.18054e6 0.811747
\(37\) 7.58854e6 0.665657 0.332829 0.942987i \(-0.391997\pi\)
0.332829 + 0.942987i \(0.391997\pi\)
\(38\) −3.15519e6 −0.245470
\(39\) −1.21739e6 −0.0842636
\(40\) 0 0
\(41\) −4.92536e6 −0.272214 −0.136107 0.990694i \(-0.543459\pi\)
−0.136107 + 0.990694i \(0.543459\pi\)
\(42\) −279712. −0.0138704
\(43\) −1.71882e7 −0.766696 −0.383348 0.923604i \(-0.625229\pi\)
−0.383348 + 0.923604i \(0.625229\pi\)
\(44\) 1.24313e7 0.500012
\(45\) 0 0
\(46\) 1.49859e7 0.493484
\(47\) 2.95568e7 0.883522 0.441761 0.897133i \(-0.354354\pi\)
0.441761 + 0.897133i \(0.354354\pi\)
\(48\) −7.75518e6 −0.210866
\(49\) −3.95579e7 −0.980282
\(50\) 0 0
\(51\) −1.47665e6 −0.0305642
\(52\) −1.30775e7 −0.248033
\(53\) 2.72331e7 0.474084 0.237042 0.971499i \(-0.423822\pi\)
0.237042 + 0.971499i \(0.423822\pi\)
\(54\) −1.17745e7 −0.188439
\(55\) 0 0
\(56\) −6.36461e6 −0.0864819
\(57\) −1.82809e7 −0.229383
\(58\) 3.87258e7 0.449339
\(59\) −1.13602e8 −1.22054 −0.610272 0.792192i \(-0.708940\pi\)
−0.610272 + 0.792192i \(0.708940\pi\)
\(60\) 0 0
\(61\) −3.76868e7 −0.348502 −0.174251 0.984701i \(-0.555750\pi\)
−0.174251 + 0.984701i \(0.555750\pi\)
\(62\) 3.05973e7 0.262979
\(63\) 1.59368e7 0.127458
\(64\) −5.64321e7 −0.420452
\(65\) 0 0
\(66\) −8.51352e6 −0.0552283
\(67\) −1.90094e8 −1.15247 −0.576237 0.817283i \(-0.695479\pi\)
−0.576237 + 0.817283i \(0.695479\pi\)
\(68\) −1.58625e7 −0.0899666
\(69\) 8.68273e7 0.461143
\(70\) 0 0
\(71\) 6.87130e7 0.320905 0.160453 0.987044i \(-0.448705\pi\)
0.160453 + 0.987044i \(0.448705\pi\)
\(72\) −1.27477e8 −0.559033
\(73\) −3.61495e8 −1.48987 −0.744937 0.667135i \(-0.767520\pi\)
−0.744937 + 0.667135i \(0.767520\pi\)
\(74\) −5.58268e7 −0.216421
\(75\) 0 0
\(76\) −1.96377e8 −0.675196
\(77\) 2.42179e7 0.0785107
\(78\) 8.95603e6 0.0273962
\(79\) −1.42229e8 −0.410834 −0.205417 0.978675i \(-0.565855\pi\)
−0.205417 + 0.978675i \(0.565855\pi\)
\(80\) 0 0
\(81\) 2.83439e8 0.731606
\(82\) 3.62346e7 0.0885035
\(83\) 5.80240e7 0.134201 0.0671006 0.997746i \(-0.478625\pi\)
0.0671006 + 0.997746i \(0.478625\pi\)
\(84\) −1.74091e7 −0.0381523
\(85\) 0 0
\(86\) 1.26449e8 0.249272
\(87\) 2.24374e8 0.419891
\(88\) −1.93718e8 −0.344348
\(89\) −8.59928e8 −1.45280 −0.726402 0.687270i \(-0.758809\pi\)
−0.726402 + 0.687270i \(0.758809\pi\)
\(90\) 0 0
\(91\) −2.54767e7 −0.0389454
\(92\) 9.32716e8 1.35739
\(93\) 1.77279e8 0.245744
\(94\) −2.17442e8 −0.287255
\(95\) 0 0
\(96\) 2.12767e8 0.255673
\(97\) −1.46970e9 −1.68560 −0.842802 0.538223i \(-0.819096\pi\)
−0.842802 + 0.538223i \(0.819096\pi\)
\(98\) 2.91017e8 0.318714
\(99\) 4.85064e8 0.507505
\(100\) 0 0
\(101\) −4.15100e8 −0.396923 −0.198462 0.980109i \(-0.563595\pi\)
−0.198462 + 0.980109i \(0.563595\pi\)
\(102\) 1.08633e7 0.00993716
\(103\) −1.86377e9 −1.63164 −0.815821 0.578305i \(-0.803714\pi\)
−0.815821 + 0.578305i \(0.803714\pi\)
\(104\) 2.03786e8 0.170815
\(105\) 0 0
\(106\) −2.00346e8 −0.154136
\(107\) 7.50777e8 0.553712 0.276856 0.960911i \(-0.410707\pi\)
0.276856 + 0.960911i \(0.410707\pi\)
\(108\) −7.32838e8 −0.518324
\(109\) 2.07010e9 1.40467 0.702333 0.711849i \(-0.252142\pi\)
0.702333 + 0.711849i \(0.252142\pi\)
\(110\) 0 0
\(111\) −3.23456e8 −0.202238
\(112\) −1.62295e8 −0.0974592
\(113\) 2.10155e9 1.21251 0.606257 0.795268i \(-0.292670\pi\)
0.606257 + 0.795268i \(0.292670\pi\)
\(114\) 1.34488e8 0.0745780
\(115\) 0 0
\(116\) 2.41027e9 1.23596
\(117\) −5.10276e8 −0.251749
\(118\) 8.35741e8 0.396828
\(119\) −3.09023e7 −0.0141263
\(120\) 0 0
\(121\) −1.62083e9 −0.687392
\(122\) 2.77251e8 0.113306
\(123\) 2.09940e8 0.0827033
\(124\) 1.90436e9 0.723356
\(125\) 0 0
\(126\) −1.17243e8 −0.0414398
\(127\) 4.77696e9 1.62943 0.814713 0.579865i \(-0.196895\pi\)
0.814713 + 0.579865i \(0.196895\pi\)
\(128\) 2.97090e9 0.978235
\(129\) 7.32636e8 0.232935
\(130\) 0 0
\(131\) −4.62884e9 −1.37326 −0.686628 0.727009i \(-0.740910\pi\)
−0.686628 + 0.727009i \(0.740910\pi\)
\(132\) −5.29877e8 −0.151912
\(133\) −3.82569e8 −0.106018
\(134\) 1.39847e9 0.374697
\(135\) 0 0
\(136\) 2.47186e8 0.0619581
\(137\) −3.85972e9 −0.936080 −0.468040 0.883707i \(-0.655040\pi\)
−0.468040 + 0.883707i \(0.655040\pi\)
\(138\) −6.38765e8 −0.149929
\(139\) −8.38068e9 −1.90420 −0.952100 0.305786i \(-0.901081\pi\)
−0.952100 + 0.305786i \(0.901081\pi\)
\(140\) 0 0
\(141\) −1.25984e9 −0.268429
\(142\) −5.05503e8 −0.104334
\(143\) −7.75427e8 −0.155070
\(144\) −3.25062e9 −0.629991
\(145\) 0 0
\(146\) 2.65942e9 0.484394
\(147\) 1.68613e9 0.297826
\(148\) −3.47463e9 −0.595293
\(149\) 3.96089e9 0.658347 0.329174 0.944269i \(-0.393230\pi\)
0.329174 + 0.944269i \(0.393230\pi\)
\(150\) 0 0
\(151\) 1.11419e10 1.74407 0.872036 0.489442i \(-0.162799\pi\)
0.872036 + 0.489442i \(0.162799\pi\)
\(152\) 3.06015e9 0.464993
\(153\) −6.18946e8 −0.0913148
\(154\) −1.78165e8 −0.0255257
\(155\) 0 0
\(156\) 5.57418e8 0.0753564
\(157\) 7.39104e9 0.970861 0.485430 0.874275i \(-0.338663\pi\)
0.485430 + 0.874275i \(0.338663\pi\)
\(158\) 1.04634e9 0.133572
\(159\) −1.16079e9 −0.144035
\(160\) 0 0
\(161\) 1.81706e9 0.213134
\(162\) −2.08519e9 −0.237863
\(163\) 7.32911e8 0.0813218 0.0406609 0.999173i \(-0.487054\pi\)
0.0406609 + 0.999173i \(0.487054\pi\)
\(164\) 2.25522e9 0.243440
\(165\) 0 0
\(166\) −4.26867e8 −0.0436321
\(167\) 1.23516e10 1.22885 0.614427 0.788974i \(-0.289387\pi\)
0.614427 + 0.788974i \(0.289387\pi\)
\(168\) 2.71287e8 0.0262747
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −7.66252e9 −0.685314
\(172\) 7.87012e9 0.685651
\(173\) −1.12727e10 −0.956794 −0.478397 0.878144i \(-0.658782\pi\)
−0.478397 + 0.878144i \(0.658782\pi\)
\(174\) −1.65066e9 −0.136517
\(175\) 0 0
\(176\) −4.93971e9 −0.388056
\(177\) 4.84222e9 0.370822
\(178\) 6.32626e9 0.472342
\(179\) −3.32764e9 −0.242269 −0.121134 0.992636i \(-0.538653\pi\)
−0.121134 + 0.992636i \(0.538653\pi\)
\(180\) 0 0
\(181\) 1.56098e10 1.08104 0.540521 0.841330i \(-0.318227\pi\)
0.540521 + 0.841330i \(0.318227\pi\)
\(182\) 1.87425e8 0.0126621
\(183\) 1.60637e9 0.105881
\(184\) −1.45345e10 −0.934805
\(185\) 0 0
\(186\) −1.30419e9 −0.0798974
\(187\) −9.40564e8 −0.0562472
\(188\) −1.35334e10 −0.790129
\(189\) −1.42767e9 −0.0813859
\(190\) 0 0
\(191\) 2.64757e10 1.43945 0.719725 0.694259i \(-0.244268\pi\)
0.719725 + 0.694259i \(0.244268\pi\)
\(192\) 2.40538e9 0.127740
\(193\) 2.67204e9 0.138623 0.0693114 0.997595i \(-0.477920\pi\)
0.0693114 + 0.997595i \(0.477920\pi\)
\(194\) 1.08122e10 0.548031
\(195\) 0 0
\(196\) 1.81127e10 0.876661
\(197\) −1.38233e10 −0.653903 −0.326951 0.945041i \(-0.606021\pi\)
−0.326951 + 0.945041i \(0.606021\pi\)
\(198\) −3.56848e9 −0.165002
\(199\) −1.21811e10 −0.550616 −0.275308 0.961356i \(-0.588780\pi\)
−0.275308 + 0.961356i \(0.588780\pi\)
\(200\) 0 0
\(201\) 8.10261e9 0.350141
\(202\) 3.05378e9 0.129049
\(203\) 4.69554e9 0.194068
\(204\) 6.76128e8 0.0273334
\(205\) 0 0
\(206\) 1.37112e10 0.530486
\(207\) 3.63941e10 1.37773
\(208\) 5.19646e9 0.192497
\(209\) −1.16441e10 −0.422133
\(210\) 0 0
\(211\) −3.16880e9 −0.110058 −0.0550292 0.998485i \(-0.517525\pi\)
−0.0550292 + 0.998485i \(0.517525\pi\)
\(212\) −1.24695e10 −0.423971
\(213\) −2.92885e9 −0.0974963
\(214\) −5.52326e9 −0.180025
\(215\) 0 0
\(216\) 1.14198e10 0.356959
\(217\) 3.70996e9 0.113579
\(218\) −1.52292e10 −0.456691
\(219\) 1.54085e10 0.452648
\(220\) 0 0
\(221\) 9.89451e8 0.0279016
\(222\) 2.37958e9 0.0657524
\(223\) 1.00184e10 0.271285 0.135642 0.990758i \(-0.456690\pi\)
0.135642 + 0.990758i \(0.456690\pi\)
\(224\) 4.45264e9 0.118168
\(225\) 0 0
\(226\) −1.54605e10 −0.394218
\(227\) 5.23965e10 1.30974 0.654871 0.755741i \(-0.272723\pi\)
0.654871 + 0.755741i \(0.272723\pi\)
\(228\) 8.37044e9 0.205136
\(229\) −2.94853e10 −0.708510 −0.354255 0.935149i \(-0.615266\pi\)
−0.354255 + 0.935149i \(0.615266\pi\)
\(230\) 0 0
\(231\) −1.03227e9 −0.0238529
\(232\) −3.75593e10 −0.851180
\(233\) 6.67468e10 1.48364 0.741820 0.670599i \(-0.233963\pi\)
0.741820 + 0.670599i \(0.233963\pi\)
\(234\) 3.75396e9 0.0818499
\(235\) 0 0
\(236\) 5.20161e10 1.09152
\(237\) 6.06241e9 0.124818
\(238\) 2.27340e8 0.00459281
\(239\) −7.42940e10 −1.47286 −0.736432 0.676511i \(-0.763491\pi\)
−0.736432 + 0.676511i \(0.763491\pi\)
\(240\) 0 0
\(241\) 9.01496e10 1.72142 0.860711 0.509095i \(-0.170020\pi\)
0.860711 + 0.509095i \(0.170020\pi\)
\(242\) 1.19240e10 0.223488
\(243\) −4.35842e10 −0.801864
\(244\) 1.72560e10 0.311663
\(245\) 0 0
\(246\) −1.54447e9 −0.0268889
\(247\) 1.22494e10 0.209400
\(248\) −2.96757e10 −0.498160
\(249\) −2.47323e9 −0.0407726
\(250\) 0 0
\(251\) 3.62007e10 0.575685 0.287843 0.957678i \(-0.407062\pi\)
0.287843 + 0.957678i \(0.407062\pi\)
\(252\) −7.29712e9 −0.113985
\(253\) 5.53053e10 0.848641
\(254\) −3.51428e10 −0.529766
\(255\) 0 0
\(256\) 7.03715e9 0.102404
\(257\) 1.97638e10 0.282600 0.141300 0.989967i \(-0.454872\pi\)
0.141300 + 0.989967i \(0.454872\pi\)
\(258\) −5.38980e9 −0.0757329
\(259\) −6.76905e9 −0.0934714
\(260\) 0 0
\(261\) 9.40474e10 1.25448
\(262\) 3.40531e10 0.446479
\(263\) 1.70457e10 0.219692 0.109846 0.993949i \(-0.464964\pi\)
0.109846 + 0.993949i \(0.464964\pi\)
\(264\) 8.25708e9 0.104619
\(265\) 0 0
\(266\) 2.81446e9 0.0344689
\(267\) 3.66539e10 0.441386
\(268\) 8.70398e10 1.03065
\(269\) 6.56819e10 0.764822 0.382411 0.923992i \(-0.375094\pi\)
0.382411 + 0.923992i \(0.375094\pi\)
\(270\) 0 0
\(271\) 1.52442e11 1.71689 0.858447 0.512902i \(-0.171430\pi\)
0.858447 + 0.512902i \(0.171430\pi\)
\(272\) 6.30312e9 0.0698225
\(273\) 1.08593e9 0.0118323
\(274\) 2.83949e10 0.304343
\(275\) 0 0
\(276\) −3.97564e10 −0.412397
\(277\) 1.21612e11 1.24113 0.620566 0.784154i \(-0.286903\pi\)
0.620566 + 0.784154i \(0.286903\pi\)
\(278\) 6.16544e10 0.619102
\(279\) 7.43071e10 0.734195
\(280\) 0 0
\(281\) −2.03083e11 −1.94310 −0.971548 0.236842i \(-0.923888\pi\)
−0.971548 + 0.236842i \(0.923888\pi\)
\(282\) 9.26829e9 0.0872728
\(283\) −3.09567e10 −0.286891 −0.143445 0.989658i \(-0.545818\pi\)
−0.143445 + 0.989658i \(0.545818\pi\)
\(284\) −3.14622e10 −0.286984
\(285\) 0 0
\(286\) 5.70460e9 0.0504171
\(287\) 4.39347e9 0.0382243
\(288\) 8.91824e10 0.763858
\(289\) −1.17388e11 −0.989880
\(290\) 0 0
\(291\) 6.26449e10 0.512115
\(292\) 1.65521e11 1.33238
\(293\) 7.81733e10 0.619661 0.309831 0.950792i \(-0.399728\pi\)
0.309831 + 0.950792i \(0.399728\pi\)
\(294\) −1.24044e10 −0.0968306
\(295\) 0 0
\(296\) 5.41452e10 0.409966
\(297\) −4.34535e10 −0.324057
\(298\) −2.91392e10 −0.214045
\(299\) −5.81798e10 −0.420971
\(300\) 0 0
\(301\) 1.53321e10 0.107659
\(302\) −8.19682e10 −0.567040
\(303\) 1.76933e10 0.120592
\(304\) 7.80324e10 0.524015
\(305\) 0 0
\(306\) 4.55341e9 0.0296887
\(307\) −1.19962e11 −0.770766 −0.385383 0.922757i \(-0.625931\pi\)
−0.385383 + 0.922757i \(0.625931\pi\)
\(308\) −1.10889e10 −0.0702116
\(309\) 7.94419e10 0.495720
\(310\) 0 0
\(311\) 1.16227e11 0.704504 0.352252 0.935905i \(-0.385416\pi\)
0.352252 + 0.935905i \(0.385416\pi\)
\(312\) −8.68626e9 −0.0518964
\(313\) −9.92344e10 −0.584403 −0.292202 0.956357i \(-0.594388\pi\)
−0.292202 + 0.956357i \(0.594388\pi\)
\(314\) −5.43738e10 −0.315651
\(315\) 0 0
\(316\) 6.51236e10 0.367406
\(317\) 2.98194e11 1.65856 0.829281 0.558832i \(-0.188750\pi\)
0.829281 + 0.558832i \(0.188750\pi\)
\(318\) 8.53963e9 0.0468292
\(319\) 1.42917e11 0.772725
\(320\) 0 0
\(321\) −3.20014e10 −0.168227
\(322\) −1.33676e10 −0.0692950
\(323\) 1.48580e10 0.0759539
\(324\) −1.29781e11 −0.654271
\(325\) 0 0
\(326\) −5.39183e9 −0.0264397
\(327\) −8.82367e10 −0.426761
\(328\) −3.51431e10 −0.167652
\(329\) −2.63650e10 −0.124064
\(330\) 0 0
\(331\) 6.87707e10 0.314904 0.157452 0.987527i \(-0.449672\pi\)
0.157452 + 0.987527i \(0.449672\pi\)
\(332\) −2.65680e10 −0.120015
\(333\) −1.35578e11 −0.604214
\(334\) −9.08675e10 −0.399530
\(335\) 0 0
\(336\) 6.91769e9 0.0296097
\(337\) 1.56091e11 0.659239 0.329619 0.944114i \(-0.393080\pi\)
0.329619 + 0.944114i \(0.393080\pi\)
\(338\) −6.00111e9 −0.0250096
\(339\) −8.95772e10 −0.368382
\(340\) 0 0
\(341\) 1.12919e11 0.452243
\(342\) 5.63711e10 0.222812
\(343\) 7.12819e10 0.278071
\(344\) −1.22640e11 −0.472194
\(345\) 0 0
\(346\) 8.29298e10 0.311077
\(347\) 1.65467e11 0.612673 0.306337 0.951923i \(-0.400897\pi\)
0.306337 + 0.951923i \(0.400897\pi\)
\(348\) −1.02736e11 −0.375506
\(349\) −4.02009e11 −1.45051 −0.725257 0.688478i \(-0.758279\pi\)
−0.725257 + 0.688478i \(0.758279\pi\)
\(350\) 0 0
\(351\) 4.57121e10 0.160749
\(352\) 1.35524e11 0.470514
\(353\) −2.74001e11 −0.939217 −0.469609 0.882875i \(-0.655605\pi\)
−0.469609 + 0.882875i \(0.655605\pi\)
\(354\) −3.56229e10 −0.120563
\(355\) 0 0
\(356\) 3.93743e11 1.29923
\(357\) 1.31719e9 0.00429182
\(358\) 2.44805e10 0.0787675
\(359\) 8.26405e10 0.262584 0.131292 0.991344i \(-0.458087\pi\)
0.131292 + 0.991344i \(0.458087\pi\)
\(360\) 0 0
\(361\) −1.38746e11 −0.429969
\(362\) −1.14837e11 −0.351473
\(363\) 6.90869e10 0.208841
\(364\) 1.16652e10 0.0348287
\(365\) 0 0
\(366\) −1.18176e10 −0.0344244
\(367\) −4.83059e10 −0.138996 −0.0694980 0.997582i \(-0.522140\pi\)
−0.0694980 + 0.997582i \(0.522140\pi\)
\(368\) −3.70624e11 −1.05346
\(369\) 8.79974e10 0.247088
\(370\) 0 0
\(371\) −2.42922e10 −0.0665708
\(372\) −8.11721e10 −0.219768
\(373\) −8.53749e10 −0.228371 −0.114185 0.993459i \(-0.536426\pi\)
−0.114185 + 0.993459i \(0.536426\pi\)
\(374\) 6.91947e9 0.0182873
\(375\) 0 0
\(376\) 2.10892e11 0.544145
\(377\) −1.50345e11 −0.383312
\(378\) 1.05030e10 0.0264605
\(379\) −2.25085e11 −0.560365 −0.280182 0.959947i \(-0.590395\pi\)
−0.280182 + 0.959947i \(0.590395\pi\)
\(380\) 0 0
\(381\) −2.03614e11 −0.495047
\(382\) −1.94774e11 −0.468001
\(383\) −6.84152e11 −1.62464 −0.812322 0.583210i \(-0.801797\pi\)
−0.812322 + 0.583210i \(0.801797\pi\)
\(384\) −1.26633e11 −0.297204
\(385\) 0 0
\(386\) −1.96574e10 −0.0450696
\(387\) 3.07088e11 0.695926
\(388\) 6.72944e11 1.50743
\(389\) 7.47317e11 1.65475 0.827374 0.561652i \(-0.189834\pi\)
0.827374 + 0.561652i \(0.189834\pi\)
\(390\) 0 0
\(391\) −7.05700e10 −0.152695
\(392\) −2.82251e11 −0.603738
\(393\) 1.97301e11 0.417218
\(394\) 1.01694e11 0.212600
\(395\) 0 0
\(396\) −2.22100e11 −0.453859
\(397\) −1.63235e11 −0.329804 −0.164902 0.986310i \(-0.552731\pi\)
−0.164902 + 0.986310i \(0.552731\pi\)
\(398\) 8.96133e10 0.179019
\(399\) 1.63067e10 0.0322099
\(400\) 0 0
\(401\) −7.33836e11 −1.41726 −0.708629 0.705581i \(-0.750686\pi\)
−0.708629 + 0.705581i \(0.750686\pi\)
\(402\) −5.96087e10 −0.113839
\(403\) −1.18788e11 −0.224336
\(404\) 1.90065e11 0.354966
\(405\) 0 0
\(406\) −3.45438e10 −0.0630961
\(407\) −2.06028e11 −0.372178
\(408\) −1.05361e10 −0.0188239
\(409\) 7.45800e11 1.31785 0.658927 0.752207i \(-0.271010\pi\)
0.658927 + 0.752207i \(0.271010\pi\)
\(410\) 0 0
\(411\) 1.64518e11 0.284397
\(412\) 8.53380e11 1.45917
\(413\) 1.01334e11 0.171388
\(414\) −2.67741e11 −0.447934
\(415\) 0 0
\(416\) −1.42568e11 −0.233400
\(417\) 3.57221e11 0.578528
\(418\) 8.56628e10 0.137246
\(419\) −5.46254e11 −0.865828 −0.432914 0.901435i \(-0.642515\pi\)
−0.432914 + 0.901435i \(0.642515\pi\)
\(420\) 0 0
\(421\) −2.95449e11 −0.458366 −0.229183 0.973383i \(-0.573606\pi\)
−0.229183 + 0.973383i \(0.573606\pi\)
\(422\) 2.33120e10 0.0357827
\(423\) −5.28067e11 −0.801969
\(424\) 1.94312e11 0.291980
\(425\) 0 0
\(426\) 2.15467e10 0.0316984
\(427\) 3.36170e10 0.0489365
\(428\) −3.43765e11 −0.495182
\(429\) 3.30520e10 0.0471129
\(430\) 0 0
\(431\) −5.49479e11 −0.767014 −0.383507 0.923538i \(-0.625284\pi\)
−0.383507 + 0.923538i \(0.625284\pi\)
\(432\) 2.91201e11 0.402268
\(433\) 7.54093e11 1.03093 0.515465 0.856910i \(-0.327619\pi\)
0.515465 + 0.856910i \(0.327619\pi\)
\(434\) −2.72931e10 −0.0369275
\(435\) 0 0
\(436\) −9.47856e11 −1.25618
\(437\) −8.73654e11 −1.14597
\(438\) −1.13356e11 −0.147167
\(439\) 9.98220e10 0.128273 0.0641366 0.997941i \(-0.479571\pi\)
0.0641366 + 0.997941i \(0.479571\pi\)
\(440\) 0 0
\(441\) 7.06749e11 0.889798
\(442\) −7.27912e9 −0.00907149
\(443\) 1.08040e12 1.33281 0.666404 0.745591i \(-0.267832\pi\)
0.666404 + 0.745591i \(0.267832\pi\)
\(444\) 1.48104e11 0.180860
\(445\) 0 0
\(446\) −7.37024e10 −0.0882013
\(447\) −1.68830e11 −0.200017
\(448\) 5.03380e10 0.0590398
\(449\) 1.02947e12 1.19538 0.597688 0.801729i \(-0.296086\pi\)
0.597688 + 0.801729i \(0.296086\pi\)
\(450\) 0 0
\(451\) 1.33723e11 0.152199
\(452\) −9.62256e11 −1.08435
\(453\) −4.74917e11 −0.529878
\(454\) −3.85466e11 −0.425829
\(455\) 0 0
\(456\) −1.30437e11 −0.141273
\(457\) −1.06106e12 −1.13793 −0.568966 0.822361i \(-0.692657\pi\)
−0.568966 + 0.822361i \(0.692657\pi\)
\(458\) 2.16915e11 0.230354
\(459\) 5.54471e10 0.0583071
\(460\) 0 0
\(461\) −7.20760e11 −0.743253 −0.371626 0.928382i \(-0.621200\pi\)
−0.371626 + 0.928382i \(0.621200\pi\)
\(462\) 7.59414e9 0.00775514
\(463\) −1.41179e11 −0.142776 −0.0713880 0.997449i \(-0.522743\pi\)
−0.0713880 + 0.997449i \(0.522743\pi\)
\(464\) −9.57745e11 −0.959222
\(465\) 0 0
\(466\) −4.91038e11 −0.482368
\(467\) 5.23104e11 0.508935 0.254467 0.967081i \(-0.418100\pi\)
0.254467 + 0.967081i \(0.418100\pi\)
\(468\) 2.33644e11 0.225138
\(469\) 1.69565e11 0.161830
\(470\) 0 0
\(471\) −3.15038e11 −0.294964
\(472\) −8.10568e11 −0.751710
\(473\) 4.66658e11 0.428670
\(474\) −4.45995e10 −0.0405814
\(475\) 0 0
\(476\) 1.41495e10 0.0126331
\(477\) −4.86551e11 −0.430324
\(478\) 5.46560e11 0.478864
\(479\) 1.22387e12 1.06224 0.531122 0.847295i \(-0.321770\pi\)
0.531122 + 0.847295i \(0.321770\pi\)
\(480\) 0 0
\(481\) 2.16736e11 0.184620
\(482\) −6.63206e11 −0.559676
\(483\) −7.74508e10 −0.0647536
\(484\) 7.42145e11 0.614730
\(485\) 0 0
\(486\) 3.20637e11 0.260706
\(487\) 3.77344e11 0.303988 0.151994 0.988381i \(-0.451431\pi\)
0.151994 + 0.988381i \(0.451431\pi\)
\(488\) −2.68900e11 −0.214636
\(489\) −3.12398e10 −0.0247069
\(490\) 0 0
\(491\) −2.35736e12 −1.83046 −0.915229 0.402934i \(-0.867990\pi\)
−0.915229 + 0.402934i \(0.867990\pi\)
\(492\) −9.61271e10 −0.0739610
\(493\) −1.82363e11 −0.139035
\(494\) −9.01153e10 −0.0680812
\(495\) 0 0
\(496\) −7.56717e11 −0.561392
\(497\) −6.12927e10 −0.0450614
\(498\) 1.81949e10 0.0132562
\(499\) −2.64345e12 −1.90862 −0.954309 0.298822i \(-0.903406\pi\)
−0.954309 + 0.298822i \(0.903406\pi\)
\(500\) 0 0
\(501\) −5.26480e11 −0.373346
\(502\) −2.66319e11 −0.187169
\(503\) −1.53328e11 −0.106799 −0.0533994 0.998573i \(-0.517006\pi\)
−0.0533994 + 0.998573i \(0.517006\pi\)
\(504\) 1.13711e11 0.0784993
\(505\) 0 0
\(506\) −4.06866e11 −0.275914
\(507\) −3.47700e10 −0.0233705
\(508\) −2.18727e12 −1.45719
\(509\) −6.36840e11 −0.420533 −0.210267 0.977644i \(-0.567433\pi\)
−0.210267 + 0.977644i \(0.567433\pi\)
\(510\) 0 0
\(511\) 3.22457e11 0.209208
\(512\) −1.57287e12 −1.01153
\(513\) 6.86433e11 0.437593
\(514\) −1.45397e11 −0.0918801
\(515\) 0 0
\(516\) −3.35458e11 −0.208312
\(517\) −8.02463e11 −0.493989
\(518\) 4.97981e10 0.0303899
\(519\) 4.80489e11 0.290690
\(520\) 0 0
\(521\) 1.84033e12 1.09427 0.547137 0.837043i \(-0.315718\pi\)
0.547137 + 0.837043i \(0.315718\pi\)
\(522\) −6.91881e11 −0.407863
\(523\) 1.13176e10 0.00661447 0.00330724 0.999995i \(-0.498947\pi\)
0.00330724 + 0.999995i \(0.498947\pi\)
\(524\) 2.11945e12 1.22809
\(525\) 0 0
\(526\) −1.25401e11 −0.0714272
\(527\) −1.44085e11 −0.0813715
\(528\) 2.10552e11 0.117898
\(529\) 2.34837e12 1.30382
\(530\) 0 0
\(531\) 2.02964e12 1.10788
\(532\) 1.75170e11 0.0948108
\(533\) −1.40673e11 −0.0754987
\(534\) −2.69652e11 −0.143506
\(535\) 0 0
\(536\) −1.35634e12 −0.709787
\(537\) 1.41838e11 0.0736053
\(538\) −4.83203e11 −0.248662
\(539\) 1.07399e12 0.548089
\(540\) 0 0
\(541\) −2.25189e12 −1.13021 −0.565107 0.825018i \(-0.691165\pi\)
−0.565107 + 0.825018i \(0.691165\pi\)
\(542\) −1.12148e12 −0.558204
\(543\) −6.65356e11 −0.328439
\(544\) −1.72929e11 −0.0846591
\(545\) 0 0
\(546\) −7.98886e9 −0.00384696
\(547\) −1.92777e11 −0.0920686 −0.0460343 0.998940i \(-0.514658\pi\)
−0.0460343 + 0.998940i \(0.514658\pi\)
\(548\) 1.76728e12 0.837131
\(549\) 6.73318e11 0.316333
\(550\) 0 0
\(551\) −2.25765e12 −1.04346
\(552\) 6.19524e11 0.284009
\(553\) 1.26870e11 0.0576892
\(554\) −8.94667e11 −0.403522
\(555\) 0 0
\(556\) 3.83733e12 1.70292
\(557\) −3.00574e12 −1.32313 −0.661566 0.749887i \(-0.730108\pi\)
−0.661566 + 0.749887i \(0.730108\pi\)
\(558\) −5.46657e11 −0.238705
\(559\) −4.90913e11 −0.212643
\(560\) 0 0
\(561\) 4.00909e10 0.0170888
\(562\) 1.49402e12 0.631748
\(563\) 1.64962e11 0.0691984 0.0345992 0.999401i \(-0.488985\pi\)
0.0345992 + 0.999401i \(0.488985\pi\)
\(564\) 5.76854e11 0.240054
\(565\) 0 0
\(566\) 2.27740e11 0.0932751
\(567\) −2.52831e11 −0.102732
\(568\) 4.90277e11 0.197639
\(569\) −2.35127e11 −0.0940368 −0.0470184 0.998894i \(-0.514972\pi\)
−0.0470184 + 0.998894i \(0.514972\pi\)
\(570\) 0 0
\(571\) −2.71697e12 −1.06960 −0.534801 0.844978i \(-0.679613\pi\)
−0.534801 + 0.844978i \(0.679613\pi\)
\(572\) 3.55051e11 0.138678
\(573\) −1.12851e12 −0.437329
\(574\) −3.23216e10 −0.0124276
\(575\) 0 0
\(576\) 1.00823e12 0.381643
\(577\) 3.01507e12 1.13242 0.566209 0.824262i \(-0.308410\pi\)
0.566209 + 0.824262i \(0.308410\pi\)
\(578\) 8.63589e11 0.321834
\(579\) −1.13894e11 −0.0421159
\(580\) 0 0
\(581\) −5.17580e10 −0.0188445
\(582\) −4.60862e11 −0.166501
\(583\) −7.39374e11 −0.265067
\(584\) −2.57931e12 −0.917585
\(585\) 0 0
\(586\) −5.75100e11 −0.201467
\(587\) 9.84708e11 0.342323 0.171161 0.985243i \(-0.445248\pi\)
0.171161 + 0.985243i \(0.445248\pi\)
\(588\) −7.72042e11 −0.266344
\(589\) −1.78377e12 −0.610690
\(590\) 0 0
\(591\) 5.89208e11 0.198667
\(592\) 1.38068e12 0.462003
\(593\) −1.01065e12 −0.335625 −0.167812 0.985819i \(-0.553670\pi\)
−0.167812 + 0.985819i \(0.553670\pi\)
\(594\) 3.19676e11 0.105359
\(595\) 0 0
\(596\) −1.81361e12 −0.588756
\(597\) 5.19213e11 0.167286
\(598\) 4.28013e11 0.136868
\(599\) 5.47507e12 1.73768 0.868839 0.495095i \(-0.164867\pi\)
0.868839 + 0.495095i \(0.164867\pi\)
\(600\) 0 0
\(601\) 9.94557e11 0.310953 0.155476 0.987840i \(-0.450309\pi\)
0.155476 + 0.987840i \(0.450309\pi\)
\(602\) −1.12794e11 −0.0350027
\(603\) 3.39624e12 1.04609
\(604\) −5.10165e12 −1.55971
\(605\) 0 0
\(606\) −1.30165e11 −0.0392074
\(607\) −4.57629e12 −1.36825 −0.684124 0.729366i \(-0.739815\pi\)
−0.684124 + 0.729366i \(0.739815\pi\)
\(608\) −2.14086e12 −0.635363
\(609\) −2.00144e11 −0.0589610
\(610\) 0 0
\(611\) 8.44173e11 0.245045
\(612\) 2.83402e11 0.0816623
\(613\) −2.27107e12 −0.649617 −0.324809 0.945780i \(-0.605300\pi\)
−0.324809 + 0.945780i \(0.605300\pi\)
\(614\) 8.82531e11 0.250595
\(615\) 0 0
\(616\) 1.72798e11 0.0483532
\(617\) −3.53862e12 −0.982994 −0.491497 0.870879i \(-0.663550\pi\)
−0.491497 + 0.870879i \(0.663550\pi\)
\(618\) −5.84432e11 −0.161171
\(619\) 1.97957e12 0.541956 0.270978 0.962586i \(-0.412653\pi\)
0.270978 + 0.962586i \(0.412653\pi\)
\(620\) 0 0
\(621\) −3.26029e12 −0.879720
\(622\) −8.55047e11 −0.229052
\(623\) 7.67065e11 0.204003
\(624\) −2.21496e11 −0.0584837
\(625\) 0 0
\(626\) 7.30040e11 0.190004
\(627\) 4.96324e11 0.128251
\(628\) −3.38420e12 −0.868235
\(629\) 2.62893e11 0.0669656
\(630\) 0 0
\(631\) 3.71649e11 0.0933256 0.0466628 0.998911i \(-0.485141\pi\)
0.0466628 + 0.998911i \(0.485141\pi\)
\(632\) −1.01482e12 −0.253025
\(633\) 1.35068e11 0.0334376
\(634\) −2.19373e12 −0.539239
\(635\) 0 0
\(636\) 5.31502e11 0.128809
\(637\) −1.12981e12 −0.271881
\(638\) −1.05140e12 −0.251232
\(639\) −1.22764e12 −0.291284
\(640\) 0 0
\(641\) 1.07772e12 0.252143 0.126071 0.992021i \(-0.459763\pi\)
0.126071 + 0.992021i \(0.459763\pi\)
\(642\) 2.35425e11 0.0546947
\(643\) 6.69209e12 1.54388 0.771938 0.635698i \(-0.219288\pi\)
0.771938 + 0.635698i \(0.219288\pi\)
\(644\) −8.31992e11 −0.190604
\(645\) 0 0
\(646\) −1.09307e11 −0.0246945
\(647\) −1.58975e12 −0.356664 −0.178332 0.983970i \(-0.557070\pi\)
−0.178332 + 0.983970i \(0.557070\pi\)
\(648\) 2.02238e12 0.450583
\(649\) 3.08429e12 0.682423
\(650\) 0 0
\(651\) −1.58134e11 −0.0345073
\(652\) −3.35584e11 −0.0727256
\(653\) 1.96565e12 0.423055 0.211527 0.977372i \(-0.432156\pi\)
0.211527 + 0.977372i \(0.432156\pi\)
\(654\) 6.49133e11 0.138750
\(655\) 0 0
\(656\) −8.96134e11 −0.188932
\(657\) 6.45853e12 1.35235
\(658\) 1.93960e11 0.0403362
\(659\) 1.09426e11 0.0226014 0.0113007 0.999936i \(-0.496403\pi\)
0.0113007 + 0.999936i \(0.496403\pi\)
\(660\) 0 0
\(661\) −2.69590e12 −0.549285 −0.274643 0.961546i \(-0.588560\pi\)
−0.274643 + 0.961546i \(0.588560\pi\)
\(662\) −5.05927e11 −0.102383
\(663\) −4.21747e10 −0.00847698
\(664\) 4.14009e11 0.0826520
\(665\) 0 0
\(666\) 9.97411e11 0.196445
\(667\) 1.07230e13 2.09772
\(668\) −5.65555e12 −1.09896
\(669\) −4.27026e11 −0.0824208
\(670\) 0 0
\(671\) 1.02319e12 0.194852
\(672\) −1.89790e11 −0.0359015
\(673\) 6.37187e12 1.19729 0.598644 0.801015i \(-0.295706\pi\)
0.598644 + 0.801015i \(0.295706\pi\)
\(674\) −1.14832e12 −0.214335
\(675\) 0 0
\(676\) −3.73506e11 −0.0687919
\(677\) 6.61270e12 1.20985 0.604923 0.796284i \(-0.293204\pi\)
0.604923 + 0.796284i \(0.293204\pi\)
\(678\) 6.58995e11 0.119770
\(679\) 1.31099e12 0.236692
\(680\) 0 0
\(681\) −2.23336e12 −0.397921
\(682\) −8.30713e11 −0.147035
\(683\) −3.52480e12 −0.619785 −0.309893 0.950772i \(-0.600293\pi\)
−0.309893 + 0.950772i \(0.600293\pi\)
\(684\) 3.50851e12 0.612872
\(685\) 0 0
\(686\) −5.24401e11 −0.0904076
\(687\) 1.25679e12 0.215257
\(688\) −3.12727e12 −0.532130
\(689\) 7.77804e11 0.131487
\(690\) 0 0
\(691\) 1.21020e12 0.201932 0.100966 0.994890i \(-0.467807\pi\)
0.100966 + 0.994890i \(0.467807\pi\)
\(692\) 5.16151e12 0.855656
\(693\) −4.32681e11 −0.0712638
\(694\) −1.21730e12 −0.199195
\(695\) 0 0
\(696\) 1.60094e12 0.258603
\(697\) −1.70632e11 −0.0273849
\(698\) 2.95747e12 0.471597
\(699\) −2.84503e12 −0.450755
\(700\) 0 0
\(701\) 3.34752e12 0.523591 0.261796 0.965123i \(-0.415685\pi\)
0.261796 + 0.965123i \(0.415685\pi\)
\(702\) −3.36291e11 −0.0522635
\(703\) 3.25461e12 0.502574
\(704\) 1.53212e12 0.235081
\(705\) 0 0
\(706\) 2.01575e12 0.305362
\(707\) 3.70273e11 0.0557359
\(708\) −2.21715e12 −0.331624
\(709\) 1.09345e13 1.62514 0.812568 0.582866i \(-0.198069\pi\)
0.812568 + 0.582866i \(0.198069\pi\)
\(710\) 0 0
\(711\) 2.54109e12 0.372912
\(712\) −6.13570e12 −0.894755
\(713\) 8.47224e12 1.22771
\(714\) −9.69020e9 −0.00139537
\(715\) 0 0
\(716\) 1.52365e12 0.216660
\(717\) 3.16673e12 0.447481
\(718\) −6.07964e11 −0.0853724
\(719\) 4.73071e12 0.660156 0.330078 0.943954i \(-0.392925\pi\)
0.330078 + 0.943954i \(0.392925\pi\)
\(720\) 0 0
\(721\) 1.66250e12 0.229115
\(722\) 1.02071e12 0.139793
\(723\) −3.84256e12 −0.522997
\(724\) −7.14738e12 −0.966770
\(725\) 0 0
\(726\) −5.08254e11 −0.0678994
\(727\) −1.40402e13 −1.86410 −0.932049 0.362333i \(-0.881980\pi\)
−0.932049 + 0.362333i \(0.881980\pi\)
\(728\) −1.81780e11 −0.0239858
\(729\) −3.72119e12 −0.487987
\(730\) 0 0
\(731\) −5.95459e11 −0.0771301
\(732\) −7.35524e11 −0.0946884
\(733\) 1.78493e12 0.228377 0.114188 0.993459i \(-0.463573\pi\)
0.114188 + 0.993459i \(0.463573\pi\)
\(734\) 3.55373e11 0.0451910
\(735\) 0 0
\(736\) 1.01683e13 1.27731
\(737\) 5.16101e12 0.644364
\(738\) −6.47373e11 −0.0803342
\(739\) −1.24956e13 −1.54119 −0.770595 0.637325i \(-0.780041\pi\)
−0.770595 + 0.637325i \(0.780041\pi\)
\(740\) 0 0
\(741\) −5.22121e11 −0.0636194
\(742\) 1.78711e11 0.0216438
\(743\) −4.21591e12 −0.507506 −0.253753 0.967269i \(-0.581665\pi\)
−0.253753 + 0.967269i \(0.581665\pi\)
\(744\) 1.26491e12 0.151349
\(745\) 0 0
\(746\) 6.28080e11 0.0742489
\(747\) −1.03667e12 −0.121814
\(748\) 4.30664e11 0.0503016
\(749\) −6.69701e11 −0.0777522
\(750\) 0 0
\(751\) 9.94988e12 1.14140 0.570701 0.821158i \(-0.306672\pi\)
0.570701 + 0.821158i \(0.306672\pi\)
\(752\) 5.37765e12 0.613214
\(753\) −1.54303e12 −0.174903
\(754\) 1.10605e12 0.124624
\(755\) 0 0
\(756\) 6.53699e11 0.0727829
\(757\) 1.61992e13 1.79293 0.896465 0.443115i \(-0.146127\pi\)
0.896465 + 0.443115i \(0.146127\pi\)
\(758\) 1.65589e12 0.182188
\(759\) −2.35735e12 −0.257831
\(760\) 0 0
\(761\) 4.79250e12 0.518001 0.259001 0.965877i \(-0.416607\pi\)
0.259001 + 0.965877i \(0.416607\pi\)
\(762\) 1.49794e12 0.160952
\(763\) −1.84655e12 −0.197243
\(764\) −1.21226e13 −1.28729
\(765\) 0 0
\(766\) 5.03312e12 0.528211
\(767\) −3.24460e12 −0.338518
\(768\) −2.99954e11 −0.0311121
\(769\) −8.41625e11 −0.0867861 −0.0433930 0.999058i \(-0.513817\pi\)
−0.0433930 + 0.999058i \(0.513817\pi\)
\(770\) 0 0
\(771\) −8.42419e11 −0.0858585
\(772\) −1.22347e12 −0.123970
\(773\) −3.90333e12 −0.393213 −0.196607 0.980482i \(-0.562992\pi\)
−0.196607 + 0.980482i \(0.562992\pi\)
\(774\) −2.25916e12 −0.226263
\(775\) 0 0
\(776\) −1.04865e13 −1.03813
\(777\) 2.88526e11 0.0283982
\(778\) −5.49781e12 −0.537999
\(779\) −2.11241e12 −0.205523
\(780\) 0 0
\(781\) −1.86555e12 −0.179422
\(782\) 5.19164e11 0.0496449
\(783\) −8.42507e12 −0.801024
\(784\) −7.19727e12 −0.680371
\(785\) 0 0
\(786\) −1.45149e12 −0.135648
\(787\) 1.42677e13 1.32577 0.662884 0.748723i \(-0.269332\pi\)
0.662884 + 0.748723i \(0.269332\pi\)
\(788\) 6.32939e12 0.584782
\(789\) −7.26562e11 −0.0667461
\(790\) 0 0
\(791\) −1.87460e12 −0.170261
\(792\) 3.46099e12 0.312563
\(793\) −1.07637e12 −0.0966570
\(794\) 1.20087e12 0.107227
\(795\) 0 0
\(796\) 5.57748e12 0.492413
\(797\) −1.77300e13 −1.55649 −0.778245 0.627960i \(-0.783890\pi\)
−0.778245 + 0.627960i \(0.783890\pi\)
\(798\) −1.19964e11 −0.0104722
\(799\) 1.02395e12 0.0888829
\(800\) 0 0
\(801\) 1.53636e13 1.31870
\(802\) 5.39863e12 0.460785
\(803\) 9.81453e12 0.833009
\(804\) −3.71001e12 −0.313129
\(805\) 0 0
\(806\) 8.73891e11 0.0729372
\(807\) −2.79964e12 −0.232366
\(808\) −2.96179e12 −0.244458
\(809\) 6.57374e12 0.539565 0.269783 0.962921i \(-0.413048\pi\)
0.269783 + 0.962921i \(0.413048\pi\)
\(810\) 0 0
\(811\) 1.30848e13 1.06212 0.531060 0.847334i \(-0.321794\pi\)
0.531060 + 0.847334i \(0.321794\pi\)
\(812\) −2.14999e12 −0.173553
\(813\) −6.49774e12 −0.521621
\(814\) 1.51569e12 0.121004
\(815\) 0 0
\(816\) −2.68666e11 −0.0212132
\(817\) −7.37177e12 −0.578858
\(818\) −5.48665e12 −0.428467
\(819\) 4.55171e11 0.0353506
\(820\) 0 0
\(821\) 4.25638e12 0.326961 0.163480 0.986547i \(-0.447728\pi\)
0.163480 + 0.986547i \(0.447728\pi\)
\(822\) −1.21031e12 −0.0924644
\(823\) 4.41691e12 0.335598 0.167799 0.985821i \(-0.446334\pi\)
0.167799 + 0.985821i \(0.446334\pi\)
\(824\) −1.32982e13 −1.00490
\(825\) 0 0
\(826\) −7.45489e11 −0.0557226
\(827\) 1.65971e13 1.23384 0.616919 0.787026i \(-0.288380\pi\)
0.616919 + 0.787026i \(0.288380\pi\)
\(828\) −1.66641e13 −1.23210
\(829\) −1.79742e13 −1.32176 −0.660882 0.750490i \(-0.729817\pi\)
−0.660882 + 0.750490i \(0.729817\pi\)
\(830\) 0 0
\(831\) −5.18363e12 −0.377077
\(832\) −1.61176e12 −0.116612
\(833\) −1.37042e12 −0.0986171
\(834\) −2.62798e12 −0.188094
\(835\) 0 0
\(836\) 5.33161e12 0.377511
\(837\) −6.65667e12 −0.468805
\(838\) 4.01864e12 0.281502
\(839\) 3.10688e12 0.216469 0.108234 0.994125i \(-0.465480\pi\)
0.108234 + 0.994125i \(0.465480\pi\)
\(840\) 0 0
\(841\) 1.32025e13 0.910070
\(842\) 2.17354e12 0.149026
\(843\) 8.65626e12 0.590345
\(844\) 1.45092e12 0.0984246
\(845\) 0 0
\(846\) 3.88485e12 0.260740
\(847\) 1.44580e12 0.0965234
\(848\) 4.95486e12 0.329041
\(849\) 1.31951e12 0.0871622
\(850\) 0 0
\(851\) −1.54581e13 −1.01036
\(852\) 1.34106e12 0.0871904
\(853\) −1.20700e13 −0.780613 −0.390306 0.920685i \(-0.627631\pi\)
−0.390306 + 0.920685i \(0.627631\pi\)
\(854\) −2.47311e11 −0.0159105
\(855\) 0 0
\(856\) 5.35690e12 0.341021
\(857\) 6.31368e12 0.399824 0.199912 0.979814i \(-0.435934\pi\)
0.199912 + 0.979814i \(0.435934\pi\)
\(858\) −2.43155e11 −0.0153176
\(859\) 1.86663e13 1.16974 0.584870 0.811127i \(-0.301146\pi\)
0.584870 + 0.811127i \(0.301146\pi\)
\(860\) 0 0
\(861\) −1.87269e11 −0.0116132
\(862\) 4.04237e12 0.249375
\(863\) 1.78712e13 1.09675 0.548373 0.836234i \(-0.315247\pi\)
0.548373 + 0.836234i \(0.315247\pi\)
\(864\) −7.98924e12 −0.487746
\(865\) 0 0
\(866\) −5.54766e12 −0.335181
\(867\) 5.00357e12 0.300742
\(868\) −1.69871e12 −0.101573
\(869\) 3.86149e12 0.229703
\(870\) 0 0
\(871\) −5.42926e12 −0.319639
\(872\) 1.47705e13 0.865107
\(873\) 2.62579e13 1.53002
\(874\) 6.42723e12 0.372583
\(875\) 0 0
\(876\) −7.05521e12 −0.404801
\(877\) 3.76100e12 0.214687 0.107343 0.994222i \(-0.465766\pi\)
0.107343 + 0.994222i \(0.465766\pi\)
\(878\) −7.34363e11 −0.0417047
\(879\) −3.33208e12 −0.188263
\(880\) 0 0
\(881\) 2.05824e13 1.15108 0.575539 0.817775i \(-0.304792\pi\)
0.575539 + 0.817775i \(0.304792\pi\)
\(882\) −5.19936e12 −0.289295
\(883\) 3.01536e13 1.66923 0.834616 0.550833i \(-0.185690\pi\)
0.834616 + 0.550833i \(0.185690\pi\)
\(884\) −4.53049e11 −0.0249522
\(885\) 0 0
\(886\) −7.94821e12 −0.433329
\(887\) 3.34317e13 1.81343 0.906717 0.421739i \(-0.138580\pi\)
0.906717 + 0.421739i \(0.138580\pi\)
\(888\) −2.30790e12 −0.124554
\(889\) −4.26109e12 −0.228804
\(890\) 0 0
\(891\) −7.69533e12 −0.409051
\(892\) −4.58720e12 −0.242608
\(893\) 1.26765e13 0.667063
\(894\) 1.24204e12 0.0650304
\(895\) 0 0
\(896\) −2.65007e12 −0.137364
\(897\) 2.47988e12 0.127898
\(898\) −7.57351e12 −0.388646
\(899\) 2.18935e13 1.11788
\(900\) 0 0
\(901\) 9.43448e11 0.0476932
\(902\) −9.83762e11 −0.0494835
\(903\) −6.53519e11 −0.0327087
\(904\) 1.49948e13 0.746765
\(905\) 0 0
\(906\) 3.49384e12 0.172276
\(907\) −2.03004e13 −0.996030 −0.498015 0.867169i \(-0.665937\pi\)
−0.498015 + 0.867169i \(0.665937\pi\)
\(908\) −2.39912e13 −1.17129
\(909\) 7.41625e12 0.360285
\(910\) 0 0
\(911\) 1.74407e13 0.838940 0.419470 0.907769i \(-0.362216\pi\)
0.419470 + 0.907769i \(0.362216\pi\)
\(912\) −3.32608e12 −0.159205
\(913\) −1.57534e12 −0.0750337
\(914\) 7.80592e12 0.369970
\(915\) 0 0
\(916\) 1.35007e13 0.633617
\(917\) 4.12897e12 0.192832
\(918\) −4.07909e11 −0.0189571
\(919\) 1.69619e13 0.784430 0.392215 0.919874i \(-0.371709\pi\)
0.392215 + 0.919874i \(0.371709\pi\)
\(920\) 0 0
\(921\) 5.11332e12 0.234172
\(922\) 5.30243e12 0.241650
\(923\) 1.96251e12 0.0890031
\(924\) 4.72655e11 0.0213315
\(925\) 0 0
\(926\) 1.03861e12 0.0464200
\(927\) 3.32984e13 1.48103
\(928\) 2.62762e13 1.16305
\(929\) 4.90922e12 0.216243 0.108121 0.994138i \(-0.465516\pi\)
0.108121 + 0.994138i \(0.465516\pi\)
\(930\) 0 0
\(931\) −1.69658e13 −0.740117
\(932\) −3.05619e13 −1.32681
\(933\) −4.95408e12 −0.214040
\(934\) −3.84833e12 −0.165467
\(935\) 0 0
\(936\) −3.64088e12 −0.155048
\(937\) −1.13139e13 −0.479497 −0.239749 0.970835i \(-0.577065\pi\)
−0.239749 + 0.970835i \(0.577065\pi\)
\(938\) −1.24745e12 −0.0526149
\(939\) 4.22980e12 0.177552
\(940\) 0 0
\(941\) 7.23052e11 0.0300619 0.0150310 0.999887i \(-0.495215\pi\)
0.0150310 + 0.999887i \(0.495215\pi\)
\(942\) 2.31765e12 0.0958999
\(943\) 1.00332e13 0.413176
\(944\) −2.06691e13 −0.847126
\(945\) 0 0
\(946\) −3.43307e12 −0.139371
\(947\) −4.04364e13 −1.63380 −0.816898 0.576782i \(-0.804308\pi\)
−0.816898 + 0.576782i \(0.804308\pi\)
\(948\) −2.77585e12 −0.111624
\(949\) −1.03247e13 −0.413216
\(950\) 0 0
\(951\) −1.27103e13 −0.503899
\(952\) −2.20492e11 −0.00870014
\(953\) −4.03093e13 −1.58302 −0.791511 0.611155i \(-0.790705\pi\)
−0.791511 + 0.611155i \(0.790705\pi\)
\(954\) 3.57942e12 0.139909
\(955\) 0 0
\(956\) 3.40176e13 1.31717
\(957\) −6.09172e12 −0.234767
\(958\) −9.00366e12 −0.345362
\(959\) 3.44291e12 0.131444
\(960\) 0 0
\(961\) −9.14153e12 −0.345751
\(962\) −1.59447e12 −0.0600245
\(963\) −1.34135e13 −0.502602
\(964\) −4.12776e13 −1.53946
\(965\) 0 0
\(966\) 5.69784e11 0.0210530
\(967\) −1.74415e13 −0.641451 −0.320726 0.947172i \(-0.603927\pi\)
−0.320726 + 0.947172i \(0.603927\pi\)
\(968\) −1.15649e13 −0.423352
\(969\) −6.33314e11 −0.0230761
\(970\) 0 0
\(971\) −5.09597e13 −1.83967 −0.919836 0.392303i \(-0.871678\pi\)
−0.919836 + 0.392303i \(0.871678\pi\)
\(972\) 1.99563e13 0.717102
\(973\) 7.47565e12 0.267388
\(974\) −2.77601e12 −0.0988340
\(975\) 0 0
\(976\) −6.85683e12 −0.241880
\(977\) −3.19652e13 −1.12241 −0.561205 0.827677i \(-0.689662\pi\)
−0.561205 + 0.827677i \(0.689662\pi\)
\(978\) 2.29823e11 0.00803283
\(979\) 2.33469e13 0.812283
\(980\) 0 0
\(981\) −3.69848e13 −1.27501
\(982\) 1.73425e13 0.595127
\(983\) 5.12376e13 1.75024 0.875121 0.483904i \(-0.160782\pi\)
0.875121 + 0.483904i \(0.160782\pi\)
\(984\) 1.49795e12 0.0509354
\(985\) 0 0
\(986\) 1.34159e12 0.0452038
\(987\) 1.12379e12 0.0376927
\(988\) −5.60873e12 −0.187266
\(989\) 3.50131e13 1.16372
\(990\) 0 0
\(991\) −1.90444e13 −0.627243 −0.313622 0.949548i \(-0.601542\pi\)
−0.313622 + 0.949548i \(0.601542\pi\)
\(992\) 2.07609e13 0.680682
\(993\) −2.93130e12 −0.0956730
\(994\) 4.50914e11 0.0146506
\(995\) 0 0
\(996\) 1.13244e12 0.0364627
\(997\) −4.27709e13 −1.37095 −0.685473 0.728098i \(-0.740405\pi\)
−0.685473 + 0.728098i \(0.740405\pi\)
\(998\) 1.94471e13 0.620538
\(999\) 1.21455e13 0.385808
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.10.a.a.1.2 4
5.4 even 2 13.10.a.a.1.3 4
15.14 odd 2 117.10.a.c.1.2 4
20.19 odd 2 208.10.a.g.1.2 4
65.64 even 2 169.10.a.a.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.a.1.3 4 5.4 even 2
117.10.a.c.1.2 4 15.14 odd 2
169.10.a.a.1.2 4 65.64 even 2
208.10.a.g.1.2 4 20.19 odd 2
325.10.a.a.1.2 4 1.1 even 1 trivial